CN101220780A - 基于扭矩的每气缸空气量和容积效率确定 - Google Patents

基于扭矩的每气缸空气量和容积效率确定 Download PDF

Info

Publication number
CN101220780A
CN101220780A CNA2007101961491A CN200710196149A CN101220780A CN 101220780 A CN101220780 A CN 101220780A CN A2007101961491 A CNA2007101961491 A CN A2007101961491A CN 200710196149 A CN200710196149 A CN 200710196149A CN 101220780 A CN101220780 A CN 101220780A
Authority
CN
China
Prior art keywords
apc
map
motor
module
volumetric efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101961491A
Other languages
English (en)
Other versions
CN101220780B (zh
Inventor
M·利夫什茨
J·M·凯泽
L·K·维金斯
J·A·雅各布斯
R·B·杰斯
J·L·沃尔兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101220780A publication Critical patent/CN101220780A/zh
Application granted granted Critical
Publication of CN101220780B publication Critical patent/CN101220780B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10386Sensors for intake systems for flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1434Inverse model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0411Volumetric efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种用于调节内燃机操作的方法,包括:监测所述发动机的歧管绝对压力(MAP);基于所述MAP确定发动机扭矩;基于所述扭矩估计每气缸的空气量(APC);基于所述APC确定所述发动机的容积效率;以及基于所述容积效率调节所述发动机的操作。

Description

基于扭矩的每气缸空气量和容积效率确定
本申请要求于2006年11月28日提交的美国临时申请No.60/861,494的优先权。上述申请的内容通过参考包含于此。
技术领域
本发明涉及发动机,尤其涉及发动机基于扭矩的控制。
背景技术
内燃机在气缸内燃烧空气与燃料混合物以驱动活塞,该活塞产生驱动扭矩。进入发动机的空气流通过节气门调节。更具体地,节气门调节节流面积,其增加或减少进入发动机的空气流。当节流面积增加时,进入发动机的空气流增加。燃料控制系统调节燃料喷射率,以向气缸提供所需的空气/燃料混合物。应当理解,增加气缸的空气和燃料会提高发动机的扭矩输出。
已经研制了发动机控制系统来精确地控制发动机速度输出,以获得所需的发动机速度。但是,传统的发动机控制系统无法按需要精确地控制发动机速度。另外,传统发动机控制系统无法按需要提供对控制信号的快速响应,或者无法在影响发动机扭矩输出的各种装置中协调发动机扭矩控制。
发明内容
因此,本发明提供了一种调节内燃机操作的方法。该方法包括:监测所述发动机的歧管绝对压力(MAP);基于所述MAP确定发动机扭矩;基于所述扭矩估计每气缸的空气量(APC);基于所述APC确定所述发动机的容积效率;以及基于所述容积效率调节所述发动机的操作。
在另一方面,所述发动机的操作还基于所述APC进行调节。
在另一方面,所述的方法还包括:基于实际APC确定修正因子;以及基于所述修正因子修正所述APC。另外,所述方法还包括确定所述发动机是否操作于稳定状态。当所述发动机操作于稳定状态时执行修正所述APC的步骤。
在另一方面,所述方法还包括监测进气温度。所述容积效率还基于所述MAP和所述进气温度。
在另一方面,确定发动机扭矩的步骤包括通过基于MAP的扭矩模型处理所述MAP。
在再一方面,估计APC的步骤包括通过逆基于APC的扭矩模型处理所述发动机扭矩。
根据下文中所提供的详细描述,本发明适用性的其它优点和方面也是显而易见的。应当理解,尽管示出了本发明的实施例,但是其详细描述和具体实例仅仅是示意性目的,而不是限制本公开的范围。
附图说明
从下面的详细描述和附图可全面理解本发明,其中:
图1为根据本发明的典型发动机系统的示意图;
图2为示出由本发明的基于扭矩的容积效率(VE)和每气缸的空气量(APC)确定控制所执行的步骤的流程图;以及
图3为示出执行本发明的基于扭矩的VE和APC确定控制的模块的框图。
具体实施方式
实质上,下列优选实施例的描述仅仅是示意性的,而绝不是限制本发明及其应用或使用。为简便起见,附图中使用相同的附图标记来表示相似的元件。如本文所使用的,术语模块指的是特定用途集成电路(ASIC)、电子电路、执行一种或多种软件或硬件程序的处理器(共享、专用或群组的)和存储器、组合逻辑电路或提供所述功能的其它合适部件。
现在参考图1,发动机系统10包括燃烧空气与燃料混合物以产生驱动扭矩的发动机12。空气通过节气门16吸入进气歧管14。节气门16调节进入进气歧管14的空气流量。进气歧管14内的空气分配到气缸18中。尽管只示出了单个气缸18,但是应当理解,本发明的联合扭矩控制系统可在具有多个气缸(包括,但不限于2、3、4、5、6、8、10和12个气缸)的发动机内执行。
当空气通过进气口吸入气缸18时,燃料喷射器(未示出)喷射与空气混合的燃料。燃料喷射器可为与电子式或机械式燃料喷射系统20相关的喷射器、汽化器或将燃料与进气混合的其它系统的喷嘴或喷口。燃料喷射器控制为在各气缸18内提供所需的空气燃料(A/F)比。
进气门22有选择地打开和关闭,以使空气燃料混合物能够进入气缸18。进气门位置通过进气凸轮轴24来调节。活塞(未示出)在气缸18内压缩空气燃料混合物。火花塞26引发空气燃料混合物的燃烧,驱动气缸18内的活塞。从而活塞驱动曲轴(未示出)以提供驱动扭矩。当排气门28处于打开位置时,气缸18内的燃烧废气排出排气口。排气门位置通过排气凸轮轴30来调节。废气在排气系统中进行处理,再释放到大气中。尽管只示出了单个进气门22和排气门28,但是应当理解,发动机12每个气缸18可包括多个进气门22和排气门28。
发动机系统10可包括分别调节进气凸轮轴24和排气凸轮轴30的旋转正时的进气凸轮相位器32和排气凸轮相位器34。更具体地,进气凸轮轴24和排气凸轮轴30的正时或相位角可相对于彼此,或者相对于活塞在气缸18内的位置或曲轴位置来延迟或提前。这样,进气门22和排气门28的位置可相对于彼此,或者相对于活塞在气缸18内的位置来调节。通过调节进气门22和排气门28的位置,可调节摄入气缸18的空气燃料混合物的量,从而调节了发动机扭矩。
发动机系统10还可包括废气再循环(EGR)系统36。EGR系统36包括调节流回进气歧管14的废气流的EGR阀38。通常执行EGR系统以调节排放。但是,循环回进气歧管14的废气量也影响发动机扭矩输出。
控制模块40基于本公开的基于扭矩的发动机控制来操作发动机。更具体地,控制模块40基于所需的发动机速度(RPMDES)产生节流控制信号和点火提前控制信号。节气门位置传感器(TPS)42产生节气门位置信号。操作员输入件43(例如,加速踏板)产生操作员输入信号。控制模块40指令节气门16至获得所需节流面积(ATHRDES)的稳定状态位置,并指令点火正时以获得所需的点火正时(SDES)。节气门致动器(未示出)基于节流控制信号调节节气门位置。
进气温度(IAT)传感器44响应于进气流的温度并产生进气温度(IAT)信号。质量气流(MAF)传感器46响应于进气流的质量产生MAF信号。歧管绝对压力(MAP)传感器48响应于进气歧管14内的压力产生MAF信号。发动机冷却液温度传感器50响应于冷却液温度并产生发动机温度信号。发动机速度信号52响应于发动机12的转速(即,RPM)并产生发动机速度信号。传感器产生的各信号由控制模块40接收。
发动机系统10还可包括由发动机12或发动机废气驱动的增压涡轮或增压器54。增压涡轮54压缩从进气歧管14吸入的空气。更特别地,空气吸入增压涡轮54的中间室。中间室内的空气吸入压缩机(未示出),并在其中压缩。压缩的空气通过管路56流回到进气歧管14以在气缸18内燃烧。在管路56内设有旁通阀58,用以调节流回进气歧管14的压缩空气流。
本发明的基于扭矩的VE和APC确定控制基于测量的或实际的MAP(MAPACT)确定估计的发动机每气缸的空气量(APCEST)和容积效率(VE)。更具体地,执行基于MAP的扭矩模型以确定基于MAP的扭矩(TMAP),其关系如下:
TMAP=(aP1(RPM,I,E,S)·MAPACT+aP0(RPM,I,E,S)
                                                   (1)
     +aP2(RPM,I,E,S)·B)·η(IAT)
其中:
S-点火正时
I-进气凸轮相位角
E-排气凸轮相位角
B-大气压力
η-基于IAT确定的热效率因子
系数aP为预定值。基于APC的扭矩模型可用于确定基于APC的扭矩(TAPC),其关系如下:
TAPC=aA1(RPM,I,E,S)·APC+aA0(RPM,I,E,S)    (2)
系数aA为预定值。因为TMAP等于TAPC,所以基于APC的扭矩模型可求逆以根据下列关系基于MAPACT计算APCEST
APC EST = a P 1 · η · MAP ACT + ( a P 0 + a P 2 · B ) · η - a A 0 a A 1 - - - ( 3 )
如果发动机运行在稳定状态,那么基于测量的或实际APC(APCACT)修正APCEST,以提供修正的APCEST。APCEST根据下列关系修正:
APCEST=APCEST+kI·∫(APCEST-APCACT)dt    (4)
kI为预定修正系数。监测MAPACT以确定发动机是否操作于稳定状态。例如,如果当前MAPACT与前面记录的MAPACT之间的差小于阈值差,那么发动机运行于稳定状态。随后根据下列关系基于APCEST确定VE:
VE = APC EST MAP ACT · k ( IAT ) - - - ( 5 )
k为使用如预存查寻表基于IAT确定的系数。然后基于VE和APCEST操作发动机。
现在参考图2,对由基于扭矩的VE和APC确定控制所执行的典型步骤进行详细描述。在步骤200中,控制确定发动机是否在运行。如果发动机未在运行,那么控制结束。如果发动机在运行,那么在步骤202中,控制监测MAP。在步骤204中,控制使用基于MAP的扭矩模型确定TMAP,如上面所详细描述的。控制使用逆APC扭矩模型基于TMAP确定APCEST,如上面所详细描述的。
在步骤208中,控制确定发动机是否操作于稳定状态。如果发动机操作于稳定状态,那么控制继续至步骤210。如果发动机未操作于稳定状态,那么控制继续至步骤212。在步骤210中,控制基于APCACT修正APCEST,如上面所详细描述的。在步骤212中,控制基于APCEST、MAP和IAT确定VE,如上面所详细描述的。在步骤214中,控制基于VE和APCEST调节发动机操作,控制结束。
现在参考图3,对执行基于扭矩的VE和APC确定控制的典型模块进行详细描述。典型模块包括基于MAP的扭矩模型模块300、逆的基于APC的扭矩模型模块302、修正模块304、稳定状态确定模块306、加法器模块308、VE模块310和发动机控制模块(ECM)314。基于MAP的扭矩模型模块300使用上述基于MAP的扭矩模型确定TMAP。逆的基于APC的扭矩模型模块302使用逆的基于APC的扭矩模型确定APCEST
修正模块304基于APCEST、APCACT和稳定状态确定模块306的信号确定APCCORR。更具体地,稳定状态确定模块306基于MAPACT确定发动机是否操作于稳定状态。如果发动机操作于稳定状态,修正模块304输入修正因子。如果发动机未操作于稳定状态,那么修正因子设定为等于零。加法器模块308将APCEST和修正因子加起来以提供修正的APCEST。VE模块310基于APCEST、MAPACT和IAT确定VE,如上面所详细描述的。ECM 314基于APCEST和VE产生发动机控制信号,以调节发动机操作。
基于扭矩的VE和APC确定控制能够从已知数据集确定VE和APC值。该数据集在发动机研发期间使用工具(例如,DYNA-AIR)产生。在发动机研发期间,当发动机在测功机上运行时,因为这些值可从已知值确定,无需确定VE和APC值,所以减少了测功机的时间量。这利于降低发动机研发的总时间和成本。另外,基于扭矩的VE和APCE确定控制提供用于估计VE和APC值的自动化处理。
本领域的技术人员从前面的描述应当理解,本发明广泛的教导可以多种形式执行。因此,尽管根据其特定实施例描述了本发明,但是由于通过对附图、说明书和所附权利要求的研究,其它修改对于技术人员也是显而易见的,所以本发明的实际范围不应当这样限制。

Claims (20)

1.一种用于调节内燃机操作的方法,包括:
监测所述发动机的歧管绝对压力(MAP);
基于所述MAP确定发动机扭矩;
基于所述扭矩估计每气缸的空气量(APC);
基于所述APC确定所述发动机的容积效率;以及
基于所述容积效率调节所述发动机的操作。
2.如权利要求1所述的方法,其中所述发动机的操作还基于所述APC进行调节。
3.如权利要求1所述的方法,还包括:
基于实际APC确定修正因子;以及
基于所述修正因子修正所述APC。
4.如权利要求3所述的方法,还包括确定所述发动机是否操作于稳定状态,其中当所述发动机操作于稳定状态时执行修正所述APC的所述步骤。
5.如权利要求1所述的方法,还包括监测进气温度,其中所述容积效率还基于所述MAP和所述进气温度。
6.如权利要求1所述的方法,其中确定发动机扭矩的所述步骤包括通过基于MAP的扭矩模型处理所述MAP。
7.如权利要求1所述的方法,其中估计APC的所述步骤包括通过逆的基于APC的扭矩模型处理所述发动机扭矩。
8.一种用于调节内燃机操作的系统,包括:
基于所述发动机的歧管绝对压力(MAP)确定发动机扭矩的第一模块;
基于所述扭矩估计每气缸的空气量(APC)的第二模块;
基于所述APC确定所述发动机的容积效率的第三模块;以及
基于所述容积效率调节所述发动机的操作的第四模块。
9.如权利要求8所述的系统,还包括监测所述发动机的所述MAP的MAP传感器。
10.如权利要求8所述的系统,其中所述发动机的操作还基于所述APC进行调节。
11.如权利要求8所述的系统,还包括:
基于实际APC确定修正因子的第五模块;以及
基于所述修正因子修正所述APC的第六模块。
12.如权利要求11所述的系统,还包括确定所述发动机是否操作于稳定状态的第七模块,其中当所述发动机操作于稳定状态时,所述第六模块修正所述APC。
13.如权利要求8所述的系统,还包括监测进气温度的传感器,其中所述容积效率还基于所述MAP和所述进气温度。
14.如权利要求8所述的系统,其中所述第一模块通过用基于MAP的扭矩模型处理所述MAP来确定所述发动机扭矩。
15.如权利要求8所述的系统,其中所述第二模块通过用逆的基于APC的扭矩模型处理所述发动机扭矩来估计所述APC。
16.一种用于调节内燃机操作的方法,包括:
监测所述发动机的歧管绝对压力(MAP)、实际的每气缸的空气量(APC)和进气温度;
通过用基于MAP的扭矩模型处理所述MAP,来基于所述MAP确定发动机扭矩;
通过用逆的基于APC的扭矩模型处理所述发动机扭矩,来基于所述扭矩计算估计的APC;
基于所述估计的APC确定所述发动机的容积效率;以及
基于所述容积效率调节所述发动机的操作。
17.如权利要求16所述的方法,其中所述发动机的操作还基于所述估计的APC进行调节。
18.如权利要求16所述的方法,还包括:
基于所述实际APC确定修正因子;以及
基于所述修正因子修正所述估计的APC。
19.如权利要求18所述的方法,还包括确定所述发动机是否操作于稳定状态,其中当所述发动机操作于稳定状态时执行修正所述估计的APC的所述步骤。
20.如权利要求16所述的方法,其中所述容积效率还基于所述MAP和所述进气温度。
CN2007101961491A 2006-11-28 2007-11-28 基于扭矩的每气缸空气量和容积效率确定 Expired - Fee Related CN101220780B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US86149406P 2006-11-28 2006-11-28
US60/861494 2006-11-28
US11/737190 2007-04-19
US11/737,190 US7440838B2 (en) 2006-11-28 2007-04-19 Torque based air per cylinder and volumetric efficiency determination

Publications (2)

Publication Number Publication Date
CN101220780A true CN101220780A (zh) 2008-07-16
CN101220780B CN101220780B (zh) 2010-06-23

Family

ID=39431994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101961491A Expired - Fee Related CN101220780B (zh) 2006-11-28 2007-11-28 基于扭矩的每气缸空气量和容积效率确定

Country Status (3)

Country Link
US (1) US7440838B2 (zh)
CN (1) CN101220780B (zh)
DE (1) DE102007056406B4 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936231A (zh) * 2010-08-20 2011-01-05 三一重工股份有限公司 发动机、发动机的预警控制装置及发动机的预警控制方法
CN102043899A (zh) * 2010-11-12 2011-05-04 中国北车集团大连机车车辆有限公司 缸内工作过程测试数据的处理方法及装置
CN103670744A (zh) * 2012-09-10 2014-03-26 通用汽车环球科技运作有限责任公司 容积效率确定系统和方法
CN103850815A (zh) * 2012-12-03 2014-06-11 罗伯特·博世有限公司 确定带机械操作的节流阀的内燃机输出的额定转矩的方法
US9341128B2 (en) 2014-06-12 2016-05-17 GM Global Technology Operations LLC Fuel consumption based cylinder activation and deactivation control systems and methods
US9382853B2 (en) 2013-01-22 2016-07-05 GM Global Technology Operations LLC Cylinder control systems and methods for discouraging resonant frequency operation
US9416743B2 (en) 2012-10-03 2016-08-16 GM Global Technology Operations LLC Cylinder activation/deactivation sequence control systems and methods
US9441550B2 (en) 2014-06-10 2016-09-13 GM Global Technology Operations LLC Cylinder firing fraction determination and control systems and methods
US9458779B2 (en) 2013-01-07 2016-10-04 GM Global Technology Operations LLC Intake runner temperature determination systems and methods
US9458780B2 (en) 2012-09-10 2016-10-04 GM Global Technology Operations LLC Systems and methods for controlling cylinder deactivation periods and patterns
US9458778B2 (en) 2012-08-24 2016-10-04 GM Global Technology Operations LLC Cylinder activation and deactivation control systems and methods
US9494092B2 (en) 2013-03-13 2016-11-15 GM Global Technology Operations LLC System and method for predicting parameters associated with airflow through an engine
US9534550B2 (en) 2012-09-10 2017-01-03 GM Global Technology Operations LLC Air per cylinder determination systems and methods
US9556811B2 (en) 2014-06-20 2017-01-31 GM Global Technology Operations LLC Firing pattern management for improved transient vibration in variable cylinder deactivation mode
US9599047B2 (en) 2014-11-20 2017-03-21 GM Global Technology Operations LLC Combination cylinder state and transmission gear control systems and methods
US9638121B2 (en) 2012-08-24 2017-05-02 GM Global Technology Operations LLC System and method for deactivating a cylinder of an engine and reactivating the cylinder based on an estimated trapped air mass
US9650978B2 (en) 2013-01-07 2017-05-16 GM Global Technology Operations LLC System and method for randomly adjusting a firing frequency of an engine to reduce vibration when cylinders of the engine are deactivated
US9719439B2 (en) 2012-08-24 2017-08-01 GM Global Technology Operations LLC System and method for controlling spark timing when cylinders of an engine are deactivated to reduce noise and vibration
US9726139B2 (en) 2012-09-10 2017-08-08 GM Global Technology Operations LLC System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated
US10227939B2 (en) 2012-08-24 2019-03-12 GM Global Technology Operations LLC Cylinder deactivation pattern matching
US10337441B2 (en) 2015-06-09 2019-07-02 GM Global Technology Operations LLC Air per cylinder determination systems and methods

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2885175B1 (fr) * 2005-04-28 2010-08-13 Renault Sas Procede de commande d'un moteur de vehicule mettant en oeuvre un reseau de neurones
US7519466B2 (en) * 2007-05-08 2009-04-14 Gm Global Technology Operations, Inc. Cam phaser compensation in a hybrid vehicle system
US20090049897A1 (en) * 2007-08-24 2009-02-26 Olin Peter M Method for on-line adaptation of engine volumetric efficiency using a mass air flow sensor
US7606652B2 (en) * 2007-11-02 2009-10-20 Gm Global Technology Operations, Inc. Torque based crank control
US8157035B2 (en) * 2008-08-15 2012-04-17 GM Global Technology Operations LLC Hybrid vehicle auto start systems and methods
WO2011039769A2 (en) * 2009-09-15 2011-04-07 Kpit Cummins Infosystems Ltd. Hybrid drive system with reduced power requirement for vehicle
BR112012005366A2 (pt) * 2009-09-15 2020-09-15 Kpit Cummins Infosystems Ltd. método de assistência de motor para um veículo híbrido com base na entrada de usuário, seu sistema e dispositivo
US9227626B2 (en) * 2009-09-15 2016-01-05 Kpit Technologies Limited Motor assistance for a hybrid vehicle based on predicted driving range
US8423214B2 (en) 2009-09-15 2013-04-16 Kpit Cummins Infosystems, Ltd. Motor assistance for a hybrid vehicle
WO2011039770A2 (en) 2009-09-15 2011-04-07 Kpit Cummins Infosystems Ltd. Method of converting vehicle into hybrid vehicle
US8538659B2 (en) * 2009-10-08 2013-09-17 GM Global Technology Operations LLC Method and apparatus for operating an engine using an equivalence ratio compensation factor
JP4862083B2 (ja) * 2010-01-12 2012-01-25 本田技研工業株式会社 内燃機関の気筒吸入空気量算出装置
IT1401041B1 (it) * 2010-07-14 2013-07-12 Magneti Marelli Spa Metodo di controllo dell'alimentazione di carburante in un cilindro di un motore a combustione interna a quattro tempi e ad accensione comandata.
US8650011B2 (en) 2010-12-17 2014-02-11 Delphi Technologies, Inc. Method for determining an engine response characteristic
DE102011081959A1 (de) * 2011-09-01 2013-03-07 Robert Bosch Gmbh Verwendung eines geschätzten Luftaufwandfaktors zur Fehlerüberwachung im Luftsystem
DE102012212860B3 (de) * 2012-07-23 2013-12-12 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung der Füllung der Zylinder von Hubkolbenbrennkraftmaschinen
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9784198B2 (en) 2015-02-12 2017-10-10 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9920697B2 (en) * 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9863345B2 (en) 2012-11-27 2018-01-09 GM Global Technology Operations LLC System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control
US9938908B2 (en) 2016-06-14 2018-04-10 GM Global Technology Operations LLC System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position
WO2021193036A1 (ja) * 2020-03-27 2021-09-30 株式会社クボタ 吸気量測定装置およびエンジン

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130095A (en) * 1977-07-12 1978-12-19 General Motors Corporation Fuel control system with calibration learning capability for motor vehicle internal combustion engine
US5497329A (en) * 1992-09-23 1996-03-05 General Motors Corporation Prediction method for engine mass air flow per cylinder
AUPO094996A0 (en) * 1996-07-10 1996-08-01 Orbital Engine Company (Australia) Proprietary Limited Engine fuelling rate control
US6508233B1 (en) * 2001-04-04 2003-01-21 Brunswick Corporation Method for controlling a fuel system of a multiple injection system
US6701890B1 (en) * 2001-12-06 2004-03-09 Brunswick Corporation Method for controlling throttle air velocity during throttle position changes
DE10234706B4 (de) * 2002-07-30 2006-06-08 Siemens Ag Verfahren zur Bestimmung der Kraftstoffmenge für eine Brennkraftmaschine
US6810854B2 (en) * 2002-10-22 2004-11-02 General Motors Corporation Method and apparatus for predicting and controlling manifold pressure
US6976471B2 (en) * 2003-09-17 2005-12-20 General Motors Corporation Torque control system
US6840215B1 (en) * 2003-09-17 2005-01-11 General Motors Corporation Engine torque control with desired state estimation
US7004144B2 (en) * 2003-09-17 2006-02-28 General Motors Corporation Dynamical torque control system
US7021282B1 (en) * 2004-12-01 2006-04-04 General Motors Corporation Coordinated engine torque control
US7275426B2 (en) * 2005-04-01 2007-10-02 Wisconsin Alumni Research Foundation Internal combustion engine control system
US7069905B1 (en) * 2005-07-12 2006-07-04 Gm Global Technology Operations, Inc. Method of obtaining desired manifold pressure for torque based engine control
US7278396B2 (en) * 2005-11-30 2007-10-09 Ford Global Technologies, Llc Method for controlling injection timing of an internal combustion engine
US7139656B1 (en) * 2005-12-14 2006-11-21 Gm Global Technology Operations, Inc. Mass airflow rate per cylinder estimation without volumetric efficiency map
US7302335B1 (en) * 2006-11-03 2007-11-27 Gm Global Technology Operations, Inc. Method for dynamic mass air flow sensor measurement corrections

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936231A (zh) * 2010-08-20 2011-01-05 三一重工股份有限公司 发动机、发动机的预警控制装置及发动机的预警控制方法
CN101936231B (zh) * 2010-08-20 2013-06-05 三一汽车制造有限公司 发动机、发动机的预警控制装置及发动机的预警控制方法
CN102043899A (zh) * 2010-11-12 2011-05-04 中国北车集团大连机车车辆有限公司 缸内工作过程测试数据的处理方法及装置
US9638121B2 (en) 2012-08-24 2017-05-02 GM Global Technology Operations LLC System and method for deactivating a cylinder of an engine and reactivating the cylinder based on an estimated trapped air mass
US10227939B2 (en) 2012-08-24 2019-03-12 GM Global Technology Operations LLC Cylinder deactivation pattern matching
US9719439B2 (en) 2012-08-24 2017-08-01 GM Global Technology Operations LLC System and method for controlling spark timing when cylinders of an engine are deactivated to reduce noise and vibration
US9458778B2 (en) 2012-08-24 2016-10-04 GM Global Technology Operations LLC Cylinder activation and deactivation control systems and methods
CN103670744B (zh) * 2012-09-10 2017-04-12 通用汽车环球科技运作有限责任公司 容积效率确定系统和方法
US9376973B2 (en) 2012-09-10 2016-06-28 GM Global Technology Operations LLC Volumetric efficiency determination systems and methods
US9726139B2 (en) 2012-09-10 2017-08-08 GM Global Technology Operations LLC System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated
US9458780B2 (en) 2012-09-10 2016-10-04 GM Global Technology Operations LLC Systems and methods for controlling cylinder deactivation periods and patterns
CN103670744A (zh) * 2012-09-10 2014-03-26 通用汽车环球科技运作有限责任公司 容积效率确定系统和方法
US9534550B2 (en) 2012-09-10 2017-01-03 GM Global Technology Operations LLC Air per cylinder determination systems and methods
US9416743B2 (en) 2012-10-03 2016-08-16 GM Global Technology Operations LLC Cylinder activation/deactivation sequence control systems and methods
CN103850815A (zh) * 2012-12-03 2014-06-11 罗伯特·博世有限公司 确定带机械操作的节流阀的内燃机输出的额定转矩的方法
US9650978B2 (en) 2013-01-07 2017-05-16 GM Global Technology Operations LLC System and method for randomly adjusting a firing frequency of an engine to reduce vibration when cylinders of the engine are deactivated
US9458779B2 (en) 2013-01-07 2016-10-04 GM Global Technology Operations LLC Intake runner temperature determination systems and methods
US9382853B2 (en) 2013-01-22 2016-07-05 GM Global Technology Operations LLC Cylinder control systems and methods for discouraging resonant frequency operation
US9494092B2 (en) 2013-03-13 2016-11-15 GM Global Technology Operations LLC System and method for predicting parameters associated with airflow through an engine
US9441550B2 (en) 2014-06-10 2016-09-13 GM Global Technology Operations LLC Cylinder firing fraction determination and control systems and methods
US9341128B2 (en) 2014-06-12 2016-05-17 GM Global Technology Operations LLC Fuel consumption based cylinder activation and deactivation control systems and methods
US9556811B2 (en) 2014-06-20 2017-01-31 GM Global Technology Operations LLC Firing pattern management for improved transient vibration in variable cylinder deactivation mode
US9599047B2 (en) 2014-11-20 2017-03-21 GM Global Technology Operations LLC Combination cylinder state and transmission gear control systems and methods
US10337441B2 (en) 2015-06-09 2019-07-02 GM Global Technology Operations LLC Air per cylinder determination systems and methods

Also Published As

Publication number Publication date
DE102007056406B4 (de) 2016-08-11
CN101220780B (zh) 2010-06-23
US7440838B2 (en) 2008-10-21
US20080121211A1 (en) 2008-05-29
DE102007056406A1 (de) 2008-06-26

Similar Documents

Publication Publication Date Title
CN101220780B (zh) 基于扭矩的每气缸空气量和容积效率确定
CN101240752B (zh) 处于高压比状态下的发动机转矩控制
CN101173637B (zh) 动态修正空气流量传感器检测的方法
CN1654798B (zh) 发动机的燃料喷射控制装置
CN100432404C (zh) 可调式发动机扭矩控制
CN100432399C (zh) 用于发动机扭矩控制的凸轮相位器和按需排量协调
JP4464924B2 (ja) エンジンの制御装置および制御方法
JP2001115865A (ja) 内燃機関の制御装置
CN101382092B (zh) 估计带进排气凸轮相位器的发动机容积效率的系统和方法
JP4114574B2 (ja) 内燃機関の吸気量制御装置及び吸気量制御方法
CN108730055B (zh) 内燃机的控制装置
CN101126357B (zh) 发动机预节流压力估计
CN101025122B (zh) 控制装配有废气再循环的内燃机的设备以及方法
CN106468210A (zh) 带增压器的内燃机的控制装置
US20130220284A1 (en) Air amount estimating apparatus for internal combustion engine with supercharger
JP2002122041A (ja) 内燃機関の運転方法および装置
CN102032066B (zh) 利用当量比补偿因子操作发动机的方法和装置
CN109944708B (zh) 用于确定内燃机的理论进气管压力的方法和控制装置
JPH09287507A (ja) 内燃機関のスロットル弁制御装置
US9822697B2 (en) Turbine expansion ratio estimation for model-based boost control
CN101275492A (zh) 基于转矩的发动机转速控制
JP4748935B2 (ja) 内燃機関の制御方法および装置、並びにその制御のためのコンピュータ・プログラム
CN101201021B (zh) 发动机转矩控制
JPH04166637A (ja) エンジンの空燃比制御装置
US6845761B2 (en) System and method for combustion engines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100623

Termination date: 20191128