CN101214938A - 超纯黄磷的生产方法 - Google Patents

超纯黄磷的生产方法 Download PDF

Info

Publication number
CN101214938A
CN101214938A CNA2008100451157A CN200810045115A CN101214938A CN 101214938 A CN101214938 A CN 101214938A CN A2008100451157 A CNA2008100451157 A CN A2008100451157A CN 200810045115 A CN200810045115 A CN 200810045115A CN 101214938 A CN101214938 A CN 101214938A
Authority
CN
China
Prior art keywords
yellow phosphorus
district
molten bath
ring heater
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100451157A
Other languages
English (en)
Other versions
CN100581997C (zh
Inventor
李军
任永胜
金央
罗建洪
段潇潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Wengfu Group Co Ltd
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN200810045115A priority Critical patent/CN100581997C/zh
Publication of CN101214938A publication Critical patent/CN101214938A/zh
Application granted granted Critical
Publication of CN100581997C publication Critical patent/CN100581997C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Filtration Of Liquid (AREA)

Abstract

一种超纯黄磷的生产方法,以工业黄磷为原料,将工业黄磷依次通过萃取、区域熔融、加压或减压微滤制备成超纯黄磷。萃取剂至少为二(2-乙基己基)磷酸、磷酸三丁酯或杯芳烃中的一种,稀释剂为煤油或石蜡油或三氯甲烷或四氯化碳,萃取工艺参数:有机相与工业黄磷的体积比为1∶2~1∶3。区域熔融设备包括区熔池、环形加热器、环形冷却器和驱动装置;环形加热器和环形冷却器环绕区熔池安装,且沿区熔池的轴向相隔一定间距相间排列。加压或减压微滤用0.1μm~0.5μm级的加压或减压过滤器。采用本发明所述方法对工业黄磷进行净化,所获黄磷产品的纯度可达99.99%~99.99999%,收率可达73.2%~88.4%。

Description

超纯黄磷的生产方法
技术领域
本发明属于超纯黄磷的生产方法,特别涉及一种以工业黄磷为原料生产超纯黄磷的方法。
背景技术
工业黄磷是将磷矿石在电炉中用SiO2和焦炭进行高温还原反应而获得,纯度一般为99.8%左右,含有以下杂质:
金属元素:Ca、Fe、Al、Mg、Sr、Mn、Na、K、Ti、V、Cr、Ni、Ga、Cd、Cu、Sb、Pb、Zn、Sn、U。
半金属元素:Se、Si、C、B、As、Bi。
有机物:酚、蒽、焦油及多原子多环芳烃,约30种以上。黄磷的颜色与有机杂质,尤其是苝和蒽嵌蒽等有关。黄磷中占有机杂质总量约70%的是下列物质:咔唑、芘、蒽、菲等。苯并(a)芘、苯并(g,h,i)芘、苯并(k)荧蒽、吖啶、苝、硫芴、氧芴、二苯并(a,c)蒽、蒽嵌蒽、晕苯等约占有机物总量的10%,其它的如萘、联苯、苊、芴、荧蒽、崫、苯并(a)蒽、7,12-二甲基苯并蒽、苯并(e)芘等约占10%~15%。
上述杂质中,最主要的是砷(As)和有机物(俗称油份,主要是多核芳烃),其次为Fe、Ni、Cu、Pb、Zn。其它的杂质总量在10-9数量级上。
由于工业黄磷中含有上述杂质,严重影响其应用范围。为了满足食品、医药、电子、石化、汽车制造等工业部门对超纯黄磷的需求,人们对超纯黄磷的制备(或生产)方法不断进行探索和研究。
公开号为CN1532140A的专利申请公开了一种高纯黄磷的生产方法,采用了如下工艺步骤:(1)对工业黄磷减压蒸馏,初步脱除机械杂质;(2)在隔绝空气状况下,与浓硫酸搅拌反应,再用蒸馏水洗涤除去残余硫酸;(3)与硝酸和氧化增强剂搅拌反应,然后用双氧水溶液洗涤黄磷,再用蒸馏水洗涤;(4)用2μm~5μm的过滤器进行过滤,得到纯度为99.99%~99.99999%的黄磷。从上述步骤可以看出,工业黄磷中的机械杂质采用蒸馏(物理法)脱除,工业黄磷中最主要的杂质砷和有机物采取化学方法来脱除,存在的缺点主要有:(1)用浓硫酸与工业黄磷搅拌反应,然后将工业黄磷与硝酸和氧化增强剂搅拌反应。浓硫酸与工业黄磷搅拌反应安全性极低,国内外曾有报道,该法曾引起爆炸;将经过处理的黄磷与硝酸和氧化增强剂混合反应,很多资料都证明脱除砷的效果有限(见“高纯度黄磷生产工艺初探”,杨陆华,马新良,无机盐工业2004年36卷第2期;“水相氧化法脱除黄磷中砷的试验研究”,任永胜,张振,无机盐工业2007年39卷第5期),本专利申请的发明人进行了多次试验,试验结果也表明对黄磷脱砷效果较差,脱除率低,仅90%,若要达到高的脱砷率,则磷损失很大。(2)硝酸、硫酸属强酸性、强腐蚀性物质,由于此方法用量大,因而回收处理不便,若直接中和排放,则造成环境污染,增大净化成本。
公开号为CN1962419A的中国专利申请公开了一种“利用区域熔融分子扩散法提纯工业黄磷的方法”,该方法中所用的设备包括熔化装置、灌注装置、提纯系统和回收系统,提纯系统主要包括加热器、电动马达和承载磷的棒壳,加热器为环形电热带加热器,套装在承载磷的棒壳上并与电动马达固连。提纯操作时,所有装置系统都置于冷却水槽中。操作步骤为:a、将固态工业黄磷原料熔化成液态,通过灌注装置中的泵进行抽取,再经过流量控制阀向棒壳壳体中灌注液态黄磷,之后要进行冷却变为固态磷;b、启动马达,环形电热带加热器随马达恒速的在棒壳外表面沿轴向移动,形成的熔融区域也沿棒壳轴向移动;c、回收系统中的切割装置把提纯后,由棒壳内取出的黄磷棒中砷含量较高的部分切除;d、回收系统中的泵装置把提纯后,又熔为液态的成品磷灌注到储存容器中,最终得到高纯度的黄磷。此种方法和设备主要存在以下问题:1、加热器产生的热量一部分用于了水槽中水的加热没有把热量全部贡献给熔融系统,导致能源的浪费;2、随着操作时间的增长,水温逐渐升高,冷却效果下降;3、成品黄磷的回收方法增加了设备投资;4、难于实现工业化生产。
发明内容
本发明针对现有技术存在的不足,提供一种超纯黄磷的生产方法,采用此种方法对工业黄磷进行净化,不仅产品纯度高,而且操作过程安全,排污少,易于实现工业化生产。
本发明的技术方案:根据工业黄磷杂质含量高而多,最主要的杂质是砷(As)和有机物的特点,以达到总杂质脱除率高、磷收率高、操作安全、排污少为目标设计工艺流程,将工业黄磷依次通过萃取、区域熔融、加压或减压微滤制备成超纯黄磷。
萃取在氮气保护下进行,有机相中萃取剂的体积百分数为10%~35%,稀释剂的体积百分数为65%~90%,萃取剂至少为二(2-乙基己基)磷酸(俗称P204)、磷酸三丁酯、杯芳烃中的一种,稀释剂为煤油或石蜡油或三氯甲烷或四氯化碳,萃取工艺参数:有机相与工业黄磷的体积比为1∶2~1∶3,温度60℃~80℃,搅拌线速度200r/min~800r/min,搅拌时间20min~45min。试验表明:当萃取剂为二(2-乙基己基)磷酸或/和磷酸三丁酯时,稀释剂为煤油或石蜡油效果更好;当萃取剂为杯芳烃时,稀释剂为三氯甲烷或四氯化碳或煤油效果更好。若萃取剂为二(2-乙基己基)磷酸与磷酸三丁酯的混合物,优选方案是二(2-乙基己基)磷酸与磷酸三丁酯的的体积比为1∶1;若萃取剂为二(2-乙基己基)磷酸与杯芳烃的混合物,优选方案是二(2-乙基己基)磷酸与杯芳烃的体积比为1∶1。
区域熔融使用的设备和操作步骤如下:
①区域熔融设备包括区熔池、环形加热器、环形冷却器、组合套和驱动装置;所述区熔池为两端封闭的柱状简体,安装在支座上;所述环形加热器至少为一组,环形冷却器的数量与环形加热器的数量相同,环形加热器和环形冷却器环绕区熔池安装,且沿区熔池的轴向相隔一定间距相间排列;所述组合套套装在环形加热器和环形冷却器上,与环形加热器和环形冷却器形成一体化结构;驱动装置通过连接构件与组合套连接;
上述设备中,一组环形加热器沿区熔池的轴向长度为区熔池总长度的0.04~0.06,一组环形冷却器沿区熔池的轴向长度是一组环形加热器沿区熔池的轴向长度的1~3倍,环形加热器与环形冷却器之间的间距d为2mm~5mm。
②区域熔融方法依次为以下步骤
A、将区熔池内腔中灌满60℃~80℃的热水;
B、将经过萃取的液态黄磷由压磷槽压入区熔池内腔,与此同时,区熔池内腔中的热水被排出,当区熔池内腔充满液态黄磷后,关闭黄磷入口与排水口;
C、将区熔池内腔中的液态黄磷固化;
D、将环形加热器和环形冷却器调整到与热源和冷源导通的状态,然后开启驱动装置,驱动环形加热器和环形冷却器沿区熔池的轴向往复移动,使固体黄磷分区熔化、产生沿区熔池轴向移动的熔区,这样运送每一个熔区到下一个环形加热器,重复这样的循环,工业黄磷中的杂质随着熔区的移动,逐渐的转移到区熔池的两端,当达到除杂要求后,关闭驱动装置;
E、首先将杂质含量高的黄磷熔化,通过区熔池的排磷口放出,然后切断环形冷却器冷源,用环形加热器将精制黄磷熔化后放出并用热水清洗区熔池。
试验表明,区域熔融时,按以下工艺参数操作,则可满足除杂要求,使砷脱除率达到99.99%:加热温度60℃~80℃、冷却温度5℃~20℃;环形加热器和环形冷却器沿区熔池轴向往复移动过程中,区熔速度0.2mm/min~3mm/min,返回速度至少为100mm/min;环形加热器和环形冷却器沿区熔池轴向往复移动次数至少为20次(具体移动次数根据区熔池尺寸和原料杂质含量确定)。若环形加热器和环形冷却器沿区熔池轴向往复移动将先后按两种区熔速度操作,即首先按区熔速度0.2mm/min~1mm/min操作,往复移动的次数至少为10次,然后按区熔速度1mm/min~3mm/min操作,往复移动的次数至少为5次,这样除杂效果更好。需要说明的是:在计算“往复移动次数”时,将“环形加热器和环形冷却器按确定的区熔速度从区熔池的一端向另一端移动距离D(D=一组环形加热器沿区熔池的轴向长度+一组环形冷却器沿区熔池的轴向长度+它们之间的间距d),再以确定的返回速度返回到起始端”定义为“1次”;
上述区域熔融设备中,区熔池可以是两端封闭的圆柱筒体或椭圆柱简体或棱柱筒体,区熔池的壁厚为2mm~5mm;区熔池优选两端封闭的四棱柱筒体,四棱柱简体内腔的高h与宽b之比优选2~10;环形加热器为加热介质循环管组或电感应加热线圈,环形冷却器为冷却介质循环管组。
加压或减压微滤用0.1μm~0.5μm级的加压或减压过滤器进行过滤。
本发明具有以下有益效果:
1、采用本发明所述方法对工业黄磷进行净化,所获黄磷产品的纯度可达99.99%~99.99999%,收率可达73.2%~88.4%。
2、萃取、区域熔融、加压或减压微滤各工序的操作安全。
3、区域熔融、加压或减压微滤均属于物理法,对环境无污染;萃取工序排污少,萃取剂可再生,再生后可循环使用,不会对环境造成污染。
4、在区域熔融步骤,杂质含量高的黄磷和精制黄磷采用分步熔化排出实现分离,可省去现有技术中的回收系统,有利于减少投资。
5、易于实现工业化生产。
附图说明
图1是本发明所述超纯黄磷的生产方法的工艺流程图;
图2是本发明所述工业黄磷区熔提纯设备的一种结构示意图,环形加热器为加热介质循环管组,环形冷却器为冷却介质循环管组,环形加热器和环形冷却器上套装有组合套;
图3是本发明所述工业黄磷区熔提纯设备的又一种结构示意图,环形加热器为电感应加热线圈,环形冷却器为冷却介质循环管组,环形加热器和环形冷却器上套装有组合套;
图4是图2的B-B剖面图;
图5是图2的A向视图;
图6是加热介质循环管组与冷却介质循环管组的安装、排列立体示意图;
图7是区熔池端面设置的取样口及取样时注射器的安装示意图;
图8是使用本发明所述工业黄磷区熔提纯设备进行提纯时,黄磷中杂质的状态图。
图中,1-进磷管、2-流量调节阀、3-加热介质入口、4-输水管、5-加热介质循环管组、6-区熔池、7-加热介质出口、8-支座、9-冷却介质入口、10-冷却介质循环管组、11-螺套、12-丝杆、13-连接构件、14-减速器、15-电机、16-冷却介质出口、17-排磷管、18-底座、19-取样口、20-组合套、21-注射器、22-热电偶、23-垫片、24-帽盖、25-压缩橡胶、26-固态区、27-熔融区、28-电感应加热线圈。
具体实施方式
以下各实施例的原料相同,所述原料——工业黄磷中杂质的组成如表1。
表1工业黄磷杂质含量(单位mg/kg)
  杂质   As   Fe     Cu     Zn     Pb   Ni   有机物总量   多核芳烃
  含量   231   112     11.7     14     4.5   8   3610   2760
注:有机物总量(以C计)分光光度法测量;多核芳烃用高效液相色谱测量;As、Zn、Pb、Fe、Cu、Ni用电感耦合等离子体原子发射光谱(ICP-AES)测量。
实施例1
本实施例的工艺流程如图1所示,工艺步骤依次为萃取、区域熔融、减压微滤。
1、萃取
萃取剂为二(2-乙基己基)磷酸,稀释剂为煤油,有机相中,萃取剂的体积百分数为15%,稀释剂的的体积百分数为85%。有机相与工业黄磷的体积比为1∶3。
萃取反应器为普通玻璃夹套反应器,夹套中为70℃循环热水,然后加入有机相,并向反应器中通入氮气,当反应器中的空气被完全排出后,将工业黄磷由压磷槽压入反应器,在氮气保护下进行萃取,搅拌线速度为200r/min,搅拌时间45min。停止搅拌后排出有机相,用热水洗涤黄磷两次,然后将黄磷放入初品储磷槽。萃取后分析黄磷中的杂质含量如表2所示:
表2萃取后黄磷杂质含量(单位mg/kg)
  杂质   As     Fe     Cu     Zn   Pb     Ni 有机物总量   多核芳烃
  含量   105     51     10.5     14   4.2     6.9 1657   1148
2、区域熔融
区域熔融设备的结构如图2所示,包括区熔池6、环形加热器、环形冷却器、驱动装置、支座8、底座18和组合套20。
区熔池6用不锈钢制作,为两端封闭的四棱柱筒体,其侧面的壁厚为2mm,两端的壁厚为5mm;所述四棱柱简体的总长L为400mm(不包括两端壁厚,两端壁厚为嵌入支座部分),四棱柱筒体内腔的高h与宽b之比为4(高为60mm,宽为15mm)(如图4所示);四棱柱简体的两端下部均设置有排磷口17,所述排磷口与排磷管17组合成排磷通道;四棱柱简体的一端上部设置有进磷口和进水/排水口,所述进磷口与进磷管1组合成进磷通道,所述进水/排水口与输水管4组合成进水/排水通道;四棱柱筒体的两端面设置有取样口19,取样口中塞有压缩橡胶25,取样口用帽盖24覆盖,采用注射器21取样,如图7所示;制作时特别要注意区熔池进/排磷口、进水/排水口、取样口处的密封性问题,确保区熔池中所装的黄磷无泄漏。
环形加热器为9组,环形冷却器的数量与环形加热器的数量相同,一组环形加热器沿区熔池6的轴向长度为区熔池总长度的0.04(16mm),一组环形冷却器沿区熔池6的轴向长度同样为区熔池总长度的0.04(16mm),环形加热器与环形冷却器之间的间距d为3mm;环形加热器为加热介质循环管组5,各组加热介质循环管组串联连接,设置了一个加热介质入口3和一个加热介质出口7;环形冷却器为冷却介质循环管组10,各组冷却介质循环管组串联连接,设置了一个冷却介质入口9和一个冷却介质出口16;组成加热介质循环管组5和冷却介质循环管组10的管子可以是圆管或矩形管,本实施例优选矩形铜管,其外形尺寸为4×3mm;加热介质为75℃的水,冷却介质10℃的水。
驱动装置包括电机15、减速器14、传动丝杆12和螺套11,减速器的动力输入轴与电机的动力输出轴连接,减速器的动力输出轴与传动丝杆连接,传动丝杆与螺套组成传动副。
底座18为台式结构,其台面与水平线的夹角θ为5度。
各部件的组装方式:支座8为两个,相隔一定间距(所述间距与区熔池的长度L匹配)安装在底座18的台面上;区熔池6的两端安装在支座8上,其轴线与水平线的夹角θ为5度;各加热介质循环管组5和冷却介质循环管组10环绕区熔池6安装,且沿区熔池的轴向相隔间距d相间排列;驱动装置安装在底座18上;组合套20套装在加热介质循环管组5和冷却介质循环管组10上,与加热介质循环管组5和冷却介质循环管组10形成一体化结构,驱动装置中的螺套11通过连接构件13与组合套20连接。
区域熔融方法依次为以下步骤:
A、通过输水管4向区熔池6内腔注入70℃左右的热水,直至区熔池6内腔充满热水为止;
B、通过进磷管1将萃取后的液态工业黄磷由压磷槽压入区熔池内腔,与此同时,区熔池内腔中的热水通过输水管4排出,当区熔池内腔充满液态工业黄磷后,关闭黄磷入口与排水口;
C、通过自然冷却使区熔池内腔中的液态工业黄磷固化;
D、首先将加热介质循环管组5和冷却介质循环管组10调整到与加热介质和冷却介质导通的状态(加热介质温度为75℃,冷却介质为10℃),然后开启驱动装置,驱动加热介质循环管组5和冷却介质循环管组10沿区熔池的轴向往复移动20次,前15次区熔速度为0.5mm/min,返回速度为100mm/min,后5次区熔速度为1.5mm/min,返回速度为100mm/min;区域熔融时,黄磷中杂质的状态如图8所示;往复移动结束后,关闭驱动装置;
E、首先将杂质含量高的黄磷熔化,通过排磷管17放出,然后切断冷却介质循环管组10的冷却介质,将精制黄磷用加热介质循环管组5熔化后通过排磷管17放出,用精制黄磷储磷槽存放,并用热水清洗区熔池。经过此步后黄磷中的杂质含量如表3所示:
表3区域熔融后黄磷杂质含量(单位mg/kg)
  杂质   As   Fe   Cu   Zn   Pb   Ni 有机物总量     多核芳烃
  含量   21.1   37   2.1   5.0   0.8   3.1 1294     1054
3、减压微滤
A、将减压过滤器抽真空,真空度0.09Mpa;
B、用温度为60℃的热水冲洗滤膜(滤膜采用孔径为0.3μm的聚四氟乙烯膜);
C、将区域熔融提纯后的液态黄磷由压磷槽压入减压过滤器进行过滤。
工业生产可采用进出口压差不高于0.2Mpa的大型微滤设备(有市售商品),如WL型PE高效微滤机。
本实施例所获黄磷产品的收率为88.4%,所含杂质的分析结果见表4。
表4杂质含量分析结果(单位mg/kg)
  杂质   As     Fe     Cu     Zn     Pb     Ni 有机物总量     多核芳烃
  含量   19.4     35     2.1     4.8     0.6     3.1 1238     992
实施例2
本实施例的工艺流程如图1所示,工艺步骤依次为萃取、区域熔融、减压微滤。
1、萃取
萃取剂为磷酸三丁酯,稀释剂为石蜡油,有机相中,萃取剂的体积百分数为30%,稀释剂的的体积百分数为70%。有机相与工业黄磷的体积比为1∶3。
萃取反应器为普通玻璃夹套反应器,夹套中为70℃循环热水,然后加入有机相,并向反应器中通入氮气,当反应器中的空气被完全排出后,将工业黄磷由压磷槽压入反应器,在氮气保护下进行萃取,搅拌线速度为600r/min,搅拌时间35min。停止搅拌后排出有机相,用热水洗涤黄磷两次,然后将黄磷放入初品储磷槽。
2、区域熔融
区域熔融设备的结构如图2所示,与实施例1相同。
区域熔融方法依次为以下步骤:
A、通过输水管4向区熔池6内腔注入70℃左右的热水,直至区熔池6内腔充满热水为止;
B、通过进磷管1将萃取后的液态工业黄磷由压磷槽压入区熔池内腔,与此同时,区熔池内腔中的热水通过输水管4排出,当区熔池内腔充满液态工业黄磷后,关闭黄磷入口与排水口;
C、通过自然冷却使区熔池内腔中的液态工业黄磷固化;
D、首先将加热介质循环管组5和冷却介质循环管组10调整到与加热介质和冷却介质导通的状态(加热介质温度为70℃,冷却介质为15℃),然后开启驱动装置,驱动加热介质循环管组5和冷却介质循环管组10沿区熔池的轴向往复移动20次,前10次区熔速度为0.6mm/min,返回速度为120mm/min,后10次区熔速度为1.2mm/min,返回速度为120mm/min;区域熔融时,黄磷中杂质的状态如图8所示;往复移动结束后,关闭驱动装置;
E、首先将杂质含量高的黄磷熔化,通过排磷管17放出,然后切断冷却介质循环管组10的冷却介质,将精制黄磷用加热介质循环管组5熔化后通过排磷管17放出,用精制黄磷储磷槽存放,并用热水清洗区熔池。
3、减压微滤
使用的装置和操作与实施例1相同。
本实施例所获黄磷产品的收率为81.2%,所含杂质的分析结果见表5。
表5杂质含量分析结果(单位mg/kg)
  杂质   As     Fe     Cu     Zn     Pb     Ni 有机物总量     多核芳烃
  含量   6.5     13.1     0.7     8.8     1.3     2.9 310     194
实施例3
本实施例的工艺流程如图1所示,工艺步骤依次为萃取、区域熔融、减压微滤。
1、萃取
萃取剂为二(2-乙基己基)磷酸和磷酸三丁酯,二(2-乙基己基)磷酸与磷酸三丁酯的体积比为1∶1,稀释剂为石蜡油,有机相中,萃取剂的体积百分数为20%,稀释剂的体积百分数为80%。有机相与工业黄磷的体积比为1∶2。
萃取反应器为普通玻璃夹套反应器,夹套中为70℃循环热水,然后加入有机相,并向反应器中通入氮气,当反应器中的空气被完全排出后,将工业黄磷由压磷槽压入反应器,在氮气保护下进行萃取,搅拌线速度为800r/min,搅拌时间25min。停止搅拌后排出有机相,用热水洗涤黄磷两次,然后将黄磷放入初品储磷槽。
2、区域熔融
区域熔融设备的结构如图2所示,与实施例1相同。
区域熔融方法依次为以下步骤:
A、通过输水管4向区熔池6内腔注入70℃左右的热水,直至区熔池6内腔充满热水为止;
B、通过进磷管1将萃取后的液态工业黄磷由压磷槽压入区熔池内腔,与此同时,区熔池内腔中的热水通过输水管4排出,当区熔池内腔充满液态工业黄磷后,关闭黄磷入口与排水口;
C、通过自然冷却使区熔池内腔中的液态工业黄磷固化;
D、首先将加热介质循环管组5和冷却介质循环管组10调整到与加热介质和冷却介质导通的状态(加热介质温度为70℃,冷却介质为15℃),然后开启驱动装置,驱动加热介质循环管组5和冷却介质循环管组10沿区熔池的轴向往复移动25次,前10次的区熔速度为0.5mm/min,返回速度为140mm/min,后15次的区熔速度为2mm/min,返回速度为140mm/min,区域熔融时,黄磷中杂质的状态如图8所示;往复移动结束后,关闭驱动装置;
E、首先将杂质含量高的黄磷熔化,通过排磷管17放出,然后切断冷却介质循环管组10的冷却介质,将精制黄磷用加热介质循环管组5熔化后通过排磷管17放出,用精制黄磷储磷槽存放,并用热水清洗区熔池。
3、减压微滤
使用的装置和操作与实施例1相同。
本实施例所获黄磷产品的收率为73.2%,所含杂质的分析结果见表6。
表6杂质含量分析结果(单位mg/kg)
  杂质   As   Fe Cu Zn Pb Ni 有机物总量   多核芳烃
  含量   0.9   1.3 未检出 未检出 未检出 未检出 6.5   3.2
实施例4
本实施例的工艺流程如图1所示,工艺步骤依次为萃取、区域熔融、减压微滤。
1、萃取
萃取剂为二(2-乙基己基)磷酸和杯芳烃,二(2-乙基己基)磷酸与杯芳烃的体积比为1∶1,稀释剂为煤油,有机相中,萃取剂的体积百分数为30%,稀释剂的的体积百分数为70%。有机相与工业黄磷的体积比为1∶2。
萃取反应器为普通玻璃夹套反应器,夹套中为70℃循环热水,然后加入有机相,并向反应器中通入氮气,当反应器中的空气被完全排出后,将工业黄磷由压磷槽压入反应器,在氮气保护下进行萃取,搅拌线速度为600r/min,搅拌时间40min。停止搅拌后排出有机相,用热水洗涤黄磷两次,然后将黄磷放入初品储磷槽。
2、区域熔融
区域熔融设备的结构如图3所示,与实施例1不同之处是:1、环形加热器为电感应加热线圈28;2、四棱柱简体区熔池6的总长L为400mm(不包括两端壁厚,两端壁厚为嵌入支座部分),四棱柱筒体内腔的高h与宽b之比为2(高为40mm,宽为20mm);3、环形加热器为5组,环形冷却器的数量与环形加热器的数量相同,一组环形加热器沿区熔池6的轴向长度为区熔池总长度的0.04(16mm),一组环形冷却器沿区熔池6的轴向长度为区熔池总长度的0.10(40mm),环形加热器与环形冷却器之间的间距d为4mm;4、底座18的台面与水平线的夹角θ为13度;
区域熔融方法依次为以下步骤:
A、通过输水管4向区熔池6内腔注入70℃左右的热水,直至区熔池6内腔充满热水为止;
B、通过进磷管1将萃取后的液态工业黄磷由压磷槽压入区熔池内腔,与此同时,区熔池内腔中的热水通过输水管4排出,当区熔池内腔充满液态工业黄磷后,关闭黄磷入口与排水口;
C、通过自然冷却使区熔池内腔中的液态工业黄磷固化;
D、首先将电感应加热线圈28和冷却介质循环管组10调整到与加热热源和冷却介质导通的状态(加热温度为80℃,冷却介质为5℃),然后开启驱动装置,驱动电感应加热线圈28和冷却介质循环管组10沿区熔池的轴向往复移动40次,前20次的区熔速度为0.3mm/min,返回速度为150mm/min,后20次的区熔速度为1.5mm/min,返回速度为150mm/min;区域熔融时,黄磷中杂质的状态如图8所示,往复移动结束后,关闭驱动装置;
E、首先将杂质含量高的黄磷熔化,通过排磷管17放出,然后切断冷却介质循环管组10的冷却介质,将精制黄磷用电感应加热线圈28熔化后通过排磷管17放出,用精制黄磷储磷槽存放,并用热水清洗区熔池。
3、减压微滤
使用的装置和操作与实施例1相同。
本实施例所获超纯黄磷产品的收率为78.3%,所含杂质的分析结果见表7。
表7杂质含量分析结果(单位mg/kg)
杂质   As   Fe   Cu Zn Pb Ni 有机物总量 多核芳烃
含量   0.02   未检出   未检出 未检出 未检出 未检出 0.4 未检出

Claims (10)

1.一种超纯黄磷的生产方法,其特征在于以工业黄磷为原料,将工业黄磷依次通过萃取、区域熔融、加压或减压微滤制备成超纯黄磷。
2.根据权利要求1所述的超纯黄磷的生产方法,其特征在于萃取在氮气保护下进行,有机相中萃取剂的体积百分数为10%~35%,稀释剂的体积百分数为65%~90%,萃取剂至少为二(2-乙基己基)磷酸、磷酸三丁酯、杯芳烃中的一种,稀释剂为煤油或石蜡油或三氯甲烷或四氯化碳,萃取工艺参数:有机相与工业黄磷的体积比为1∶2~1∶3,温度60℃~80℃,搅拌线速度200r/min~800r/min,搅拌时间20min~45min。
3.根据权利要求2所述的超纯黄磷的生产方法,其特征在于当萃取剂为二(2-乙基己基)磷酸或/和磷酸三丁酯时,稀释剂为煤油或石蜡油,当萃取剂为杯芳烃时,稀释剂为三氯甲烷或四氯化碳或煤油。
4.根据权利要求2所述的超纯黄磷的生产方法,其特征在于当萃取剂为二(2-乙基己基)磷酸与磷酸三丁酯的混合物时,二(2-乙基己基)磷酸与磷酸三丁酯的的体积比为1∶1;当萃取剂为二(2-乙基己基)磷酸与杯芳烃的混合物时,二(2-乙基己基)磷酸与杯芳烃的体积比为1∶1。
5.根据权利要求1至4中任一权利要求所述的超纯黄磷的生产方法,其特征在于:
①区域熔融设备包括区熔池(6)、环形加热器、环形冷却器、组合套(20)和驱动装置;所述区熔池(6)为两端封闭的柱状筒体,安装在支座(8)上;所述环形加热器至少为一组,环形冷却器的数量与环形加热器的数量相同,环形加热器和环形冷却器环绕区熔池(6)安装,且沿区熔池的轴向相隔一定间距相间排列;所述组合套(20)套装在环形加热器和环形冷却器上,与环形加热器和环形冷却器形成一体化结构,驱动装置通过连接构件(13)与组合套(20)连接;
②区域熔融方法按以下步骤进行
A、将区熔池(6)内腔中灌满60℃~80℃的热水;
B、将经过萃取的液态黄磷由压磷槽压入区熔池(6)内腔,与此同时,区熔池(6)内腔中的热水被排出,当区熔池(6)内腔充满液态黄磷后,关闭黄磷入口与排水口;
C、将区熔池内腔中的液态黄磷固化;
D、将环形加热器和环形冷却器调整到与热源和冷源导通的状态,然后开启驱动装置,驱动环形加热器和环形冷却器沿区熔池的轴向往复移动,使固体黄磷分区熔化、产生沿区熔池轴向移动的熔区,当达到除杂要求后,关闭驱动装置;
E、首先将杂质含量高的黄磷熔化,通过区熔池(6)的排磷口放出,然后切断环形冷却器冷源,用环形加热器将精制黄磷熔化后放出并用热水清洗区熔池。
6.根据权利要求5所述的超纯黄磷的生产方法,其特征在于区域熔融时,加热温度60℃~80℃,冷却温度5℃~20℃;环形加热器和环形冷却器沿区熔池轴向往复移动过程中,区熔速度0.2mm/min~3mm/min,返回速度至少为100mm/min;环形加热器和环形冷却器沿区熔池轴向往复移动次数至少为20次。
7.根据权利要求6所述的超纯黄磷的生产方法,其特征在于环形加热器和环形冷却器沿区熔池轴向往复移动时,先后按两种区熔速度操作,即首先按区熔速度0.2mm/min~1mm/min操作,往复移动的次数至少为10次,然后按区熔速度1mm/min~3mm/min操作,往复移动的次数至少为5次。
8.根据权利要求5所述的超纯黄磷的生产方法,其特征在于环形加热器为加热介质循环管组(5)或电感应加热线圈(28),环形冷却器为冷却介质循环管组(10)。
9.根据权利要求1至4中任一权利要求所述的超纯黄磷的生产方法,其特征在于加压或减压微滤用0.1μm~0.5μm级的加压或减压过滤器进行过滤。
10.根据权利要求8所述的超纯黄磷的生产方法,特征在于加压或减压微滤用0.1μm~0.5μm级的加压或减压过滤器进行过滤。
CN200810045115A 2008-01-04 2008-01-04 超纯黄磷的生产方法 Active CN100581997C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810045115A CN100581997C (zh) 2008-01-04 2008-01-04 超纯黄磷的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810045115A CN100581997C (zh) 2008-01-04 2008-01-04 超纯黄磷的生产方法

Publications (2)

Publication Number Publication Date
CN101214938A true CN101214938A (zh) 2008-07-09
CN100581997C CN100581997C (zh) 2010-01-20

Family

ID=39621460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810045115A Active CN100581997C (zh) 2008-01-04 2008-01-04 超纯黄磷的生产方法

Country Status (1)

Country Link
CN (1) CN100581997C (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650301B (zh) * 2009-08-10 2010-12-08 四川大学 黄磷中铁锌杂质含量原子光谱测定方法
WO2011097961A1 (en) * 2010-02-12 2011-08-18 Dongying Jieda Chemical Technology Co., Ltd. Method for production of ultrapure phosphorus by zone melting and apparatus thereof
CN103641089A (zh) * 2013-11-18 2014-03-19 瓮福(集团)有限责任公司 黄磷纯化装置及方法
CN103641085A (zh) * 2013-11-18 2014-03-19 瓮福(集团)有限责任公司 黄磷纯化装置及方法
CN103641091A (zh) * 2013-11-18 2014-03-19 瓮福(集团)有限责任公司 高纯黄磷生产装置及方法
CN103641084A (zh) * 2013-11-18 2014-03-19 瓮福(集团)有限责任公司 黄磷纯化装置及方法
CN103641087A (zh) * 2013-11-18 2014-03-19 瓮福(集团)有限责任公司 黄磷纯化装置及方法
CN104211132A (zh) * 2014-09-05 2014-12-17 广东溢达纺织有限公司 一种萃取剂以及处理活性染料染色废水的方法
CN109592657A (zh) * 2019-01-21 2019-04-09 江山市艺康化学有限公司 一种黄磷切割反应装置
CN111204724A (zh) * 2020-02-24 2020-05-29 江苏秦烯新材料有限公司 一种去除黄磷内痕量硫的方法
CN111517296A (zh) * 2020-05-22 2020-08-11 四川君和环保股份有限公司 利用三氯甲烷从含磷污泥中回收黄磷的方法
CN111892029A (zh) * 2020-08-21 2020-11-06 江苏秦烯新材料有限公司 一种去除黄磷中混合杂质的方法
CN112010346A (zh) * 2020-06-24 2020-12-01 湖南锐异资环科技有限公司 一种三氧化二砷提纯系统及提纯方法
CN113896176A (zh) * 2021-11-10 2022-01-07 贵州威顿晶磷电子材料股份有限公司 一种超低硫高纯红磷制备工艺及其保藏方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650301B (zh) * 2009-08-10 2010-12-08 四川大学 黄磷中铁锌杂质含量原子光谱测定方法
WO2011097961A1 (en) * 2010-02-12 2011-08-18 Dongying Jieda Chemical Technology Co., Ltd. Method for production of ultrapure phosphorus by zone melting and apparatus thereof
CN103641091B (zh) * 2013-11-18 2015-04-01 瓮福(集团)有限责任公司 高纯黄磷生产装置及方法
CN103641085A (zh) * 2013-11-18 2014-03-19 瓮福(集团)有限责任公司 黄磷纯化装置及方法
CN103641091A (zh) * 2013-11-18 2014-03-19 瓮福(集团)有限责任公司 高纯黄磷生产装置及方法
CN103641084A (zh) * 2013-11-18 2014-03-19 瓮福(集团)有限责任公司 黄磷纯化装置及方法
CN103641087A (zh) * 2013-11-18 2014-03-19 瓮福(集团)有限责任公司 黄磷纯化装置及方法
CN103641089A (zh) * 2013-11-18 2014-03-19 瓮福(集团)有限责任公司 黄磷纯化装置及方法
CN104211132A (zh) * 2014-09-05 2014-12-17 广东溢达纺织有限公司 一种萃取剂以及处理活性染料染色废水的方法
CN109592657A (zh) * 2019-01-21 2019-04-09 江山市艺康化学有限公司 一种黄磷切割反应装置
CN111204724A (zh) * 2020-02-24 2020-05-29 江苏秦烯新材料有限公司 一种去除黄磷内痕量硫的方法
CN111517296A (zh) * 2020-05-22 2020-08-11 四川君和环保股份有限公司 利用三氯甲烷从含磷污泥中回收黄磷的方法
CN112010346A (zh) * 2020-06-24 2020-12-01 湖南锐异资环科技有限公司 一种三氧化二砷提纯系统及提纯方法
CN112010346B (zh) * 2020-06-24 2022-07-12 刘积社 一种三氧化二砷提纯系统及提纯方法
CN111892029A (zh) * 2020-08-21 2020-11-06 江苏秦烯新材料有限公司 一种去除黄磷中混合杂质的方法
CN113896176A (zh) * 2021-11-10 2022-01-07 贵州威顿晶磷电子材料股份有限公司 一种超低硫高纯红磷制备工艺及其保藏方法
CN113896176B (zh) * 2021-11-10 2023-09-26 贵州威顿晶磷电子材料股份有限公司 一种超低硫高纯红磷制备工艺

Also Published As

Publication number Publication date
CN100581997C (zh) 2010-01-20

Similar Documents

Publication Publication Date Title
CN100581997C (zh) 超纯黄磷的生产方法
CN104341081B (zh) 油泥分离与回收的无害化处理方法
CN101070507B (zh) 一种废润滑油的再生方法及设备
CN113230686B (zh) 一种应用于光伏行业硅烷偶联剂的连续精馏设备及方法
CN202860190U (zh) 一种带有结疤清理功能的沉降槽
CN101475871B (zh) 废机油循环再利用处理方法及其设备
CN206814709U (zh) 一种利用废机油生产燃料油的工业生产系统
CN101214937B (zh) 工业黄磷区熔提纯设备
CN102827680A (zh) 一种废液压油再生设备
CN201148348Y (zh) 工业黄磷区熔提纯设备
CN201912795U (zh) 一种可移动的用于油罐清洗系统的油水分离装置
CN203754419U (zh) 一种双氧水氧化残液精制回收装置
CN203648245U (zh) 一种新型聚结分离滤油机
CN112499605A (zh) 一种黄磷漂洗系统与泥磷连续回收的一体化装置及方法
CN103752075B (zh) 一种烷基铝生产中反应产物残余固体杂质的脱除分离方法
CN220589015U (zh) 用于提纯过氧化氢的系统
CN103641086B (zh) 黄磷纯化装置及方法
CN103641085B (zh) 黄磷纯化装置及方法
CN202322785U (zh) 动植物废油回收系统
CN201337847Y (zh) 废机油循环再利用处理设备
CN204079858U (zh) 一种废弃硅橡胶回收处理系统
CN205527849U (zh) 一种酚氨废水除油处理装置
CN103641089A (zh) 黄磷纯化装置及方法
CN112442751A (zh) 一种用于油水分离的聚结纤维的制备方法及应用
CN115321734B (zh) 一种高cod高含盐难生化废水的处理系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: WENGFU (GROUP) CO., LTD.

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20110111

Address after: 610065 Sichuan, Chengdu, South Ring Road, No. 1, No. 24

Co-patentee after: Wengfu (Group) Co., Ltd.

Patentee after: Sichuan University

Address before: 610065 Sichuan, Chengdu, South Ring Road, No. 1, No. 24

Patentee before: Sichuan University