CN101209881B - 一种垃圾焚烧厂沥滤液处理系统 - Google Patents

一种垃圾焚烧厂沥滤液处理系统 Download PDF

Info

Publication number
CN101209881B
CN101209881B CN2006100645562A CN200610064556A CN101209881B CN 101209881 B CN101209881 B CN 101209881B CN 2006100645562 A CN2006100645562 A CN 2006100645562A CN 200610064556 A CN200610064556 A CN 200610064556A CN 101209881 B CN101209881 B CN 101209881B
Authority
CN
China
Prior art keywords
treatment
water
leachate
outlet
system comprises
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006100645562A
Other languages
English (en)
Other versions
CN101209881A (zh
Inventor
吴燕琦
兰建伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Energy and Environmental Protection Co Ltd
Original Assignee
Shenzhen Energy Environmental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Energy Environmental Engineering Co Ltd filed Critical Shenzhen Energy Environmental Engineering Co Ltd
Priority to CN2006100645562A priority Critical patent/CN101209881B/zh
Publication of CN101209881A publication Critical patent/CN101209881A/zh
Application granted granted Critical
Publication of CN101209881B publication Critical patent/CN101209881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明涉及一种垃圾焚烧厂沥滤液处理方法及系统,该方法包括在沥滤液中加入混凝剂进行混凝沉淀预处理,去除悬浮物;将经预处理的沥滤液进行蒸发浓缩处理,得到冷凝水,去除污染物残渣、残液;将冷凝水进行氨吹脱处理,去除氨氮;将经氨吹脱处理的水进行后处理,达到环保排放标准。该系统包括依次连接的预处理系统、蒸发浓缩系统、氨吹脱系统和后处理系统。本发明适合于处理包括易生化污染物含量低的沥滤液在内的各种高浓度垃圾沥滤液,可达到国家一级排放标准,利用垃圾焚烧热能处理沥滤液,达到以废治废的目的,无二次污染;本发明投资及运行成本低,节省能源,长期运行可行性和抗负荷冲击性优于现有技术,其实施运用不受国外技术限制。

Description

一种垃圾焚烧厂沥滤液处理系统
技术领域
本发明涉及一种污水处理工艺方法,还涉及实现该工艺方法的系统,更具体地说,涉及一种垃圾焚烧厂沥滤液处理方法及系统。
背景技术
随着经济的飞速发展,人民生活水平的不断提高,城市生活垃圾产量也飞速增长。在城市垃圾处理的多种方法中,垃圾焚烧处理相对于卫生填埋法、堆肥法而言,在减量化、无害化、资源化等方面具有很大优势,尤其是在人口高度密集、土地资源紧张、垃圾热值较高的大中城市和沿海经济发达地区,垃圾焚烧处理法得到大力发展。
在城市垃圾焚烧处理方法中,由于中国城市生活垃圾的厨余物多、含水率高、热值较低,焚烧法处理垃圾时必须将新鲜垃圾在垃圾储坑中储存3~5天进行发酵熟化,以达到沥出水份、提高热值的目的,才能保证后续焚烧炉的正常运行。
在垃圾发酵熟化处理过程中产生出的沥滤液,污染物浓度高、水质变化大、带有强烈恶臭,其化学需氧量COD(Chemical Oxygen Demand)、生化需氧量BOD(Biochemical Oxygen Demand)、悬浮物SS(Suspend Solid)及氨氮(NH3-N)等指标超标严重。
国内典型的城市生活垃圾焚烧厂沥滤液,其COD约40000~80000mg/l,夏季时较低,冬季较高;BOD/COD为0.2~0.3,氨氮为400~2000mg/l,pH为5.0~6.5,SS为1000~5000mg/l,呈黄褐色或灰褐色,COD、BOD、SS及氨氮等指标已大大超出国家标准。沥滤液挥发出的气体带有强烈恶臭,对人体有危害,能使人产生恶心、尿血、头晕等症状。通过质谱分析,垃圾沥滤液中有机物种类高达百余种,其中所含有机物大多为腐殖类高分子碳水化合物和中等分
化的泥水混合液进入超滤系统进行泥水分离,透过液进入DTRO系统,浓缩后的污泥回流回生化罐来提高罐中的污泥浓度,剩余污泥排至污泥储罐,经离心机脱水后,干泥落入污泥储槽,液相排入中间水池,达到去除大部分的有机污染物和氨氮的目的。
3、DTRO系统
主要由超滤清水池、DTRO进水泵、DTRO系统、浓缩液储池及浓缩液回喷系统组成。
据该公司的技术资料,COD为50000mg/l、氨氮为1100mg/l的沥滤液,经过离心分离后上清液进入硝化罐,沥滤液在该罐水力停留时间为5天,污泥浓度为10~15g/l,通过射流曝气即可使COD降到1000~2000mg/l、氨氮降到20~30mg/l,硝化罐内的水通过UF(Ultra Film超滤)膜过滤排出,随后进入DTRO反渗透膜处理系统,出水COD小于100mg/l,氨氮小于20mg/l。MBR的剩余污泥和DTRO的浓缩液都回垃圾仓,产水率为80%。
对上述MBR+DTRO工艺方法进行分析发现,该工艺存在以下问题:
1、对于可生化性差的沥滤液处理难度很大。该工艺对沥滤液中污染物的去除主要是在MBR处理单元的好氧生化氧化过程中进行的,当沥滤液中可生化处理污染物含量低即BOD/COD低(如为0.2)时,将沥滤液COD处理到仅剩1000mg/l的难度很大;
2、耗电量大,运行成本高。从该公司提供的MBR单元运行用电量数据,平均为19kwh/t,按照好氧生化处理通过鼓风曝气充氧效率估算和运行经验数据,每去除1kgBOD要耗电约1.5~2kwh左右,即使以所有COD均为可生化性物质BOD计算,去除50000mg/l的COD要耗电约75~100kwh/t;
3、不可生物降解物质对微生物产生巨大的毒害作用。若MBR单元的好氧过程只能将COD降解到20000mg/l,且MBR出水的COD能达到小于2000mg/l,则必定有大量不可生物降解的物质被UF膜截留在硝化罐内,长期积累后会对微生物产生巨大的毒害作用;
4、工程造价和运行成本高。该工艺所用的MBR和DTRO均为国外进口设备,对于200吨/天的处理规模,总造价约在2300万以上,据该公司的运行成本资料为44.8元/吨。考虑膜设备处理高浓度的沥滤液时膜极易堵塞和中毒导致膜的频繁更换、膜的频繁反冲洗所产生的污水处理因素,上述运行成本会更高。
发明内容
本发明要解决的技术问题之一在于,提供一种垃圾焚烧厂沥滤液处理方法,可以处理包括易生化污染物含量低的沥滤液在内的各种高浓度垃圾沥滤液,达到国家规定排放标准,解决现有技术存在的上述缺陷。
本发明要解决的技术问题之二在于,提供一种垃圾焚烧厂沥滤液处理系统,实施上述垃圾沥滤液处理工艺方法。
本发明解决其技术问题之一所采用的技术方案是:构造一种垃圾焚烧厂沥滤液处理方法,其特征在于,包括如下工艺步骤:
a、在沥滤液中加入混凝剂进行混凝沉淀预处理,去除悬浮物;
b、将经预处理的沥滤液进行蒸发浓缩处理,得到冷凝水,去除污染物残渣、残液;
c、将冷凝水进行氨吹脱处理,去除氨氮;
d、将经氨吹脱处理的水进行后处理,使之达到环保排放标准。
在本发明所述的垃圾焚烧厂沥滤液处理方法中,在所述步骤a中,控制沥滤液的pH值在9以上;在所述步骤b中,控制第一蒸发罐的蒸发温度为105~130℃,在采用多效蒸发时,控制末效蒸发罐的蒸发温度为65~60℃,控制沥滤液的pH值为10~13;在所述步骤c中,控制pH值在10以上,控制冷凝水水温为50℃以上,控制气水比在1500以上。
本发明解决其技术问题之二所采用的技术方案是:提供一种垃圾焚烧厂沥滤液处理系统,其特征在于,包括依次连接的预处理系统、蒸发浓缩系统、氨吹脱系统和后处理系统。
在本发明所述的垃圾焚烧厂沥滤液处理系统中,所述预处理系统包括:设置有搅拌装置的混合反应池、向该混合反应池投放混凝剂/助凝剂的投加设备和设置在该混合反应池之后的污泥浓缩脱水设备,所述混合反应池和污泥浓缩脱水设备之间设置连接管路和阀门;
所述蒸发浓缩系统包括:预热系统、加热系统、蒸发器、疏水系统、冷凝系统、抽真空系统和浓缩液输送系统,所述预热系统包括输送去除悬浮物后的沥滤液的升压泵、加热罐及连接管路阀门,所述加热罐出口连接所述蒸发器进口,所述加热系统包括蒸汽进口和减温水进口、集汽箱、减温减压阀组以及连接所述集汽箱、减温减压阀组、加热罐和所述蒸发器的输送和控制加热蒸汽的管路阀门,所述疏水系统包括连接所述加热罐和所述蒸发器的疏水器和连接管路阀门,所述冷凝系统包括冷凝器、连接该冷凝器出口的冷凝水箱和连接该冷凝水箱液体出口的冷凝水输送装置,该冷凝器进口连接所述蒸发器出口,所述抽真空系统包括真空泵及其连接管路阀门,该冷凝水箱气体出口连接所述真空泵进口;所述浓缩液输送系统包括浓缩液输送泵及其连接管路阀门,该浓缩液输送系统出口连接垃圾仓或焚烧炉;
所述氨吹脱系统包括:氨吹脱塔、连接在该氨吹脱塔上的进水泵、出水泵和送风装置,所述进水泵进口连接所述冷凝水输送装置出口;
所述后处理系统包括吹脱出水后处理设备及连接管路阀门,该吹脱出水后处理设备进口连接所述氨吹脱塔出水泵出口,该吹脱出水后处理设备出口排出经后处理的水。
实施本发明的垃圾焚烧厂沥滤液处理方法及系统,与现有技术MBR+DTRO法比较如表一:
表一:200t/d沥滤液处理本发明工艺与MBR+DTRO工艺对比表
  长期运行可行性   可靠   存在一定问题
  抗负荷冲击性   强   弱
  重要组件更换   没有定期更换的重要组件   UF膜和DTRO膜需定期更换
  技术所有权   国内   国外
运用本工艺方法处理的沥滤液出水水质实测数据如表二:
表二:运用本工艺方法处理的沥滤液出水水质实测数据
  污染物   COD   SS   BOD   氨氮
  浓度范围(mg/l)   20~77   <2~8   <2~12   0.18~0.56
  国家一级排放标准   100   70   20   15
  达标率(%)   100   100   100   100
由表一和表二的数据可知,本发明的有益效果是:
1、本发明适合于处理包括易生化污染物含量低的沥滤液在内的各种高浓度垃圾沥滤液;
2、经本发明工艺方法和系统处理的沥滤液出水水质各项指标优于MBR+DTRO法的出水水质(COD小于100mg/l,氨氮小于20mg/l),并大大低于国家一级排放标准;
3、投资成本及运行成本均低于MBR+DTRO工艺;
4、以垃圾焚烧产生的热能处理沥滤液,达到以废治废,不消耗太多的其他成本;
5、生产过程中产生的废气、废渣均送入焚烧炉处理,不产生“二次污染”;
6、出水经简单深度处理后可回用,达到“零排放”;
7、长期运行可行性和抗负荷冲击性均优于MBR+DTRO工艺;
8、节省能源:采用低温蒸发,蒸汽用量少。沥滤液中大部分COD以固体形式进入焚烧炉,焚烧后有一定的热能,可产生蒸汽;
9、本发明为自主创新技术,其实施运用不受国外技术限制。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是现有的垃圾沥滤液MBR+DTRO处理法工艺流程图。
图2是本发明垃圾焚烧厂沥滤液处理流程及系统图,示出了本发明圾焚烧厂沥滤液处理方法和系统的一种实施例。
图3是本发明垃圾焚烧厂沥滤液处理方法及系统中蒸发浓缩系统的一种实施方式。
图4是本发明垃圾焚烧厂沥滤液处理方法中蒸发浓缩工序处理在进水PH=10.5时冷凝水出水COD变化图。
图5是本发明垃圾焚烧厂沥滤液处理方法中蒸发浓缩工序处理在进水PH=10.5时冷凝水出水氨氮变化图。
图6是本发明垃圾焚烧厂沥滤液处理方法中蒸发浓缩工序处理在进水PH=12时冷凝水出水COD变化图。
图7是本发明垃圾焚烧厂沥滤液处理方法中蒸发浓缩工序处理在进水PH=12时冷凝水出水氨氮变化图。
具体实施方式
如图2所示,本发明垃圾焚烧厂沥滤液处理方法包括预处理工序、蒸发浓缩处理工序、氨吹脱处理工序和后处理工序,以下对各工序进行详细说明;
预处理工序是污水处理工艺中常见的混凝沉淀处理,即在垃圾沥滤液中加入混凝剂(可用的混凝剂有烧碱(NaOH)、生石灰(CaO)、熟石灰(Ca(OH)2)等。为加快沉淀,还可加入助凝剂),对沥滤液进行充分搅拌,使混凝剂/助凝剂与沥滤液中污染物进行反应,使沥滤液中的悬浮物沉淀出,形成污泥,将污泥脱水并去除,将沉淀后的上层清液和脱出的水送入下步工序处理。
实验表明,当沥滤液的pH值被调整到9以上时,均能使沥滤液中的悬浮物沉淀出。但为了保证后续蒸发浓缩处理工序的除污效率,应维持沥滤液的pH在10以上为益,一般取pH值为12左右。
蒸发浓缩处理工序是本发明的关键工序,经过预热(单级或多级)、蒸发(单效或多效),大部分污染物以蒸发残渣或残液的形式排出,并被送入垃圾仓随垃圾进入焚烧炉或直接回喷入焚烧炉进行焚烧处理,沥滤液经蒸发冷凝后成为无色透明的水,其污染物浓度大大降低。
如图3所示是蒸发浓缩处理工序的一种典型实施方式,图3示出了四效蒸发浓缩处理工序。在其他实施例中,可以采用单效、二效、三效、五效、六效蒸发浓缩处理工序等来代替四效蒸发浓缩处理工序。
实验表明,采用单效蒸发时,控制蒸发罐的蒸发温度为105~130℃,可以达到较好的除污(主要是去除COD和氨氮)效果。采用多效蒸发时,控制一号蒸发罐的蒸发温度为105~130℃,控制末效蒸发罐的蒸发温度为65~60℃,可以达到较好的除污效果。如控制一号蒸发罐的蒸发温度为118℃,末效蒸发罐温度条件60℃。
在蒸发浓缩处理工序中,为了达到理想的除污效果,降低后续处理的除污工作负荷,并为后续氨吹脱工序作准备,需要将蒸发进水的PH值控制在一定数值范围内。以下是对几种PH值进水进行低温蒸发的实验数据:
PH=9.5时,蒸发出水水质如表三:
         表三(pH=9.5时蒸发实验)
  水样名称   COD(mg/L)   氨氮(mg/L)   pH   测定时间   备注
  1kg出水   12960   2787   10~11   4.17   黄色
  3.5kg出水   5825   1387   10~11   4.17   已变清
  7kg出水   2280   567   -   4.17
  8kg出水   -   334   9.5   4.17
  10kg出水   796   230   9.5   4.17
  残液   102530   1135   8   4.17   黑色,约5kg
PH=10时,蒸发综合出水COD约3000~4000mg/l,氨氮为800~1000mg/l。
PH=10.5时,蒸发出水COD变化如图4所示,氨氮变化如图5所示。
PH=12,时,蒸发出水COD变化如图6所示,氨氮变化如图7所示。
PH=13,时,蒸发综合出水COD约1200~1500mg/l,氨氮为1200~1500mg/l。
根据以上实验数据,蒸发时出水COD随进水pH值的升高而降低,而氨氮随进水pH值的升高而升高。为保证后续氨吹脱过程的高吹脱效率,以及尽量减轻后处理生化系统进水COD,使生化系统出水COD尽可能的低,蒸发系统进水pH值应当取大值,为节省混凝剂使用量,并降低蒸发器的结垢,一般取pH值为12左右,通常取PH值为10~13,使最终出水达到国家排放标准。
氨吹脱处理工序对蒸发出的冷凝水进行去氨氮处理,为后续的后处理奠定基础。吹脱产生的尾气可以通入垃圾仓,经过垃圾焚烧炉供风系统抽取进入焚烧炉高温氧化处理。
实验研究表明,废水中的游离氨存在的比例随其PH值上升而增加,氨吹脱的效率随之提高,但当废水的PH值达到10.5以上时,游离氨按比例的增加量就小。一般控制pH值在10以上。
氨吹脱处理工序氨氮的去除效率受水温影响较大,氨氮的去除效率η与水温tL和空气温度tg的关系可用以下公式表示:
              η(%)=f·tg 0.26·tL 0.51
其中:tg、tL>10℃,系数f由水的PH值确定。如PH值为10.5时,f=4.95;PH值为11.0时,f=5.6。
从上述公式可知,氨氮的去除效率η随水温的升高而升高。考虑到蒸发浓缩工序出水状况,在本发明的处理方法中,通常取冷凝水水温为50℃以上。
气水比也是影响氨吹脱处理工序氨氮去除效率的重要因素,表四是气水比与污染物去除率的部分实验数据。
             表四:气水比与污染物去除率实验数据
Figure G06164556220070117D000091
在本发明的处理方法中,通常气水比取1500以上。
实验表明,经氨吹脱处理后,沥滤液冷凝水中的COD可下降到1000以下、氨氮可下降到100mg/l以下。
后处理工序进一步降低冷凝水中的COD和氨氮,使之达到国家排放标准。垃圾沥滤液经本发明工艺方法处理后的出水水质实际测量数据见表二,其污染物参数值已大大低于国家一级排放标准。
后处理工序可以采用以下工艺或其他后处理工艺:
1、生化处理,如水解酸化+好氧生化处理;
2、膜处理,如纳滤、反渗透等膜处理等;
3、生化+膜处理,如水解酸化+好氧生化+膜处理(纳滤或反渗透膜)。
上述各工序的工艺参数可以根据国家对废水处理的不同环保排放标准进行调整。
本实施例中的蒸发浓缩处理采用焚烧厂余热蒸汽对沥滤液进行预热。在其他实施例中,可以采用其他热源对沥滤液进行预热。
本工艺方法中产生的污泥、残渣或残液等除进入焚烧炉高温氧化处理外,还可以进行采用外运填埋等方法进行处理。
在其他实施例中,氨吹脱产生的尾气可以采用其他处理方法,如制造氨氮化肥等。
为了使出水达到回用的目的,在后处理工序之后设置深度处理系统。将经后处理的水进行过滤和消毒,使之达到回用标准。
如图2所示,本发明圾焚烧厂沥滤液处理系统包括预处理系统、蒸发浓缩系统、氨吹脱系统和后处理系统,其中:
预处理系统包括:设置有搅拌装置的沥滤液混合反应池3、向该混合反应池投放混凝剂/助凝剂的投加设备2和设置在该混合反应池3之后的污泥浓缩设备4和脱水设备5,混合反应池3、泥浓缩设备4和脱水设备5之间设置连接管路和阀门,当混合反应池3、泥浓缩设备4和脱水设备5之间可以设置高差,利用高差实现沥滤液和沉淀污泥由前一设备向后一设备的输送,也可以直接采用污水泵、污泥泵等设备实现沥滤液和沉淀污泥由前一设备向后一设备的输送。脱水设备5可采用压滤机、离心脱水机或带式脱水机。
蒸发浓缩系统包括:加热系统、预热系统、蒸发器、疏水系统、冷凝系统、抽真空系统和浓缩液输送系统。如图3所示是一个典型的四效蒸发浓缩系统,其预热系统包括连接混合反应池3出口的沥滤液升压泵75、加热罐74、冷凝罐73及连接管路阀门,加热罐74出口连接蒸发器进口。蒸发器包括依次连接的四个蒸发罐72。加热系统包括蒸汽进口、减温水进口、连接蒸汽进口、减温水进口的减温减压装置71、集汽箱(图中未示出)及管路阀门、连接加热罐74和蒸发罐72输送和控制加热蒸汽的管路阀门,蒸汽进口连接焚烧厂内余热锅炉蒸汽汽包或汽机抽汽,减温水进口连接焚烧厂内的锅炉給水(在其他实施例中,可以仅设置蒸汽进口或减温水进口)。疏水系统包括连接加热罐74和蒸发罐72的疏水器76和连接管路阀门。冷凝系统包括冷凝器77、连接该冷凝器出口的冷凝水收集器78和连接该冷凝水收集器78液体出口的冷凝水输送泵79(或其他输送装置),该冷凝器77进口连接蒸发罐72的出口。抽真空系统包括真空泵80及其连接管路阀门,该冷凝水收集器78气体出口连接真空泵进口。
为了实现蒸发浓缩系统自动化运行,设置蒸发浓缩系统的自动控制系统(图中未示出),该自动控制系统采用现有的自动控制技术来实现蒸发浓缩系统的自动控制。
为了清除蒸发浓缩过程中附着在蒸发设备及管路内壁上的碱性残液、残渣等产生的结垢,设置蒸发浓缩系统的酸洗系统(图中未示出),该酸洗系统包括酸储罐、搅拌稀释酸箱、酸洗泵(不锈钢泵)、管道及阀门等,酸洗系统定期对加热罐、蒸发罐等设备及管路进行酸洗,以清除结垢。
如图2所示,氨吹脱系统8包括:氨吹脱塔、连接在该氨吹脱塔上的进水泵、出水泵和送风装置,进水泵进口连接冷凝水输送装置出口,氨吹脱塔尾气出口连接垃圾仓,尾气经过垃圾焚烧炉供风系统抽取进入焚烧炉高温氧化处理。氨吹脱塔可采用填料塔、旋流板式塔、筛板塔、泡罩塔等,氨吹脱系统送风装置为风机。
后处理系统包括吹脱出水后处理设备及连接管路阀门,该吹脱出水后处理设备进口连接氨吹脱塔出水泵出口,该吹脱出水后处理设备出口排出经后处理的水。
吹脱出水后处理设备可以采用生化处理设备、膜处理设备或生化+膜处理设备,其中,生化处理设备可以采用水解酸化设备+好氧生化处理设备,膜处理设备可以采用纳滤或反渗透膜,生化+膜处理设备可以采用水解酸化设备+好氧生化处理设备+纳滤或反渗透膜。
在其他实施例中,可以采用单效、二效、三效、五效、六效蒸发浓缩系统等来代替四效蒸发浓缩系统。
在其他实施例中,蒸发浓缩系统的加热系统可以连接其他蒸汽热源对加热罐74和蒸发罐72进行加热。
在其他实施例中,氨吹脱塔尾气出口可以连接到其他处理氨氮的设备上,如利用氨氮制造化肥的设备上。
为使出水达到回用标准,在后处理工序之后设置深度处理工序。如图2所示,深度处理系统包括过滤器10、消毒池11、产生臭氧的消毒系统13和连接管路阀门,过滤器10进口连接处理设备出口、消毒装置排出经深度处理的水。
在消毒池12之后,设置清水池12存放经过深度处理的水供回用之需。

Claims (7)

1.一种垃圾焚烧厂沥滤液处理系统,包括依次连接的预处理系统、蒸发浓缩系统、氨吹脱系统和后处理系统,其特征在于:
所述预处理系统包括:设置有搅拌装置的混合反应池、向该混合反应池投放混凝剂/助凝剂的投加设备和设置在该混合反应池之后的污泥浓缩脱水设备,所述混合反应池和污泥浓缩脱水设备之间设置连接管路和阀门;
所述蒸发浓缩系统包括:预热系统、加热系统、蒸发器、疏水系统、冷凝系统、抽真空系统和浓缩液输送系统,所述预热系统包括输送去除悬浮物后的沥滤液的升压泵、加热罐及连接管路阀门,所述加热罐出口连接所述蒸发器进口;所述加热系统包括蒸汽进口和减温水进口、集汽箱、减温减压阀组以及连接所述集汽箱、减温减压阀组、加热罐和所述蒸发器输送和控制加热蒸汽的管路阀门;所述疏水系统包括连接所述加热罐和所述蒸发器的疏水器和连接管路阀门;所述冷凝系统包括冷凝器、连接该冷凝器出口的冷凝水箱和连接该冷凝水箱液体出口的冷凝水输送装置,该冷凝器进口连接所述蒸发器出口;所述抽真空系统包括真空泵及其连接管路阀门,该冷凝水箱气体出口连接所述真空泵进口;所述浓缩液输送系统包括连接到所述蒸发罐的浓缩液输送泵及其连接管路阀门,该浓缩液输送系统出口连接垃圾仓或焚烧炉;
所述氨吹脱系统包括:氨吹脱塔、连接在该氨吹脱塔上的进水泵、出水泵和送风装置,所述进水泵进口连接所述冷凝水输送装置出口;
所述后处理系统包括吹脱出水后处理设备及连接管路阀门,该吹脱出水后处理设备进口连接所述氨吹脱塔出水泵出口,该吹脱出水后处理设备出口排出经后处理的水。
2.如权利要求1所述的垃圾焚烧厂沥滤液处理系统,其特征在于,所述蒸发浓缩系统包括自动控制系统和酸洗系统,该自动控制系统实现蒸发浓缩系统生产的自动控制,该酸洗系统包括酸储罐、搅拌稀释酸箱、酸洗泵、管道及阀门,该酸洗系统连接所述加热罐、蒸发罐及其管路。
3.如权利要求1所述的垃圾焚烧厂沥滤液处理系统,其特征在于,所述蒸发浓缩系统的加热系统蒸汽进口连接焚烧厂内余热锅炉蒸汽汽包或汽机抽汽,所述的加热系统减温水进口连接焚烧厂内的锅炉给水。
4.如权利要求1所述的垃圾焚烧厂沥滤液处理系统,其特征在于,所述氨吹脱塔为填料塔、旋流板式塔、筛板塔或泡罩塔,所述氨吹脱塔的尾气出口连接垃圾仓或焚烧炉供风系统进口。
5.如权利要求1至4之一所述的垃圾焚烧厂沥滤液处理系统,其特征在于,所述吹脱出水后处理设备为水解酸化设备+好氧生化处理设备、膜处理设备或水解酸化设备+好氧生化处理设备+膜处理设备中的一种。
6.如权利要求5所述的垃圾焚烧厂沥滤液处理系统,其特征在于,所述预处理系统污泥浓缩脱水设备为压滤机或离心脱水机或带式脱水机,所述蒸发浓缩系统蒸发器为一个或多个,所述氨吹脱系统送风装置为风机。
7.如权利要求6所述的垃圾焚烧厂沥滤液处理系统,其特征在于,包括深度处理系统,该深度处理系统包括过滤装置、消毒装置和连接管路阀门,所述过滤装置进口连接所述处理设备出口、所述消毒装置排出经深度处理的水。
CN2006100645562A 2006-12-28 2006-12-28 一种垃圾焚烧厂沥滤液处理系统 Active CN101209881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006100645562A CN101209881B (zh) 2006-12-28 2006-12-28 一种垃圾焚烧厂沥滤液处理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006100645562A CN101209881B (zh) 2006-12-28 2006-12-28 一种垃圾焚烧厂沥滤液处理系统

Publications (2)

Publication Number Publication Date
CN101209881A CN101209881A (zh) 2008-07-02
CN101209881B true CN101209881B (zh) 2010-07-14

Family

ID=39610160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100645562A Active CN101209881B (zh) 2006-12-28 2006-12-28 一种垃圾焚烧厂沥滤液处理系统

Country Status (1)

Country Link
CN (1) CN101209881B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020388B (zh) * 2009-09-15 2012-07-11 北京建筑材料科学研究总院有限公司 一种垃圾飞灰洗灰水的循环利用工艺
CN102198961A (zh) * 2011-04-08 2011-09-28 临沂中环新能源有限公司 垃圾渗沥液处理系统
CN102267781A (zh) * 2011-06-24 2011-12-07 苏州苏净环保工程有限公司 一种高盐度难降解有机废水的处理方法
CN102350071A (zh) * 2011-09-05 2012-02-15 武汉科技大学 一种用气流解吸法处理高浓度氨氮废水的复合塔
CN103539300B (zh) * 2012-07-13 2016-12-21 中国石油化工股份有限公司 一种处理丁烯氧化脱氢制丁二烯废水的方法
CN103663826B (zh) * 2012-09-19 2015-10-28 中国石油化工股份有限公司 一种钛硅分子筛生产废水的预处理方法
CN102976543A (zh) * 2012-12-18 2013-03-20 深圳市能源环保有限公司 一种垃圾沥滤液处理方法及系统
CN103011519B (zh) * 2012-12-24 2013-10-09 绍兴县江滨水处理有限公司 一种高盐分碱减量废水的处理方法及设备
CN103922538B (zh) * 2014-04-09 2015-05-06 无锡市新都环保科技有限公司 一种畜禽养殖废水处理方法
CN103922543B (zh) * 2014-04-22 2016-04-13 东南大学 垃圾沥滤液处理方法
CN104528986A (zh) * 2014-12-10 2015-04-22 深圳能源资源综合开发有限公司 垃圾沥滤液总硬度去除处理系统及方法
CN104496121B (zh) * 2014-12-17 2016-11-30 巨野县鑫源化工有限公司 一种多级催化氧化加微电解和多效蒸发处理废水的方法
CN104986906B (zh) * 2015-06-09 2018-01-02 江苏理工学院 一种危废渗滤液的处理方法
CN105157044B (zh) * 2015-09-30 2018-01-05 华南理工大学 一种垃圾焚烧炉渗滤液回喷脱硝装置及方法
CN106018971A (zh) * 2016-05-04 2016-10-12 常州工学院 一种多功能用于小麦叶片生理电特性测定的电容装置
CN107324574B (zh) * 2017-07-31 2023-09-08 南京圆点环境清洁技术有限公司 垃圾焚烧污水处理装置
CN107585940B (zh) * 2017-10-10 2020-08-07 泉州台商投资区国进信息技术有限公司 一种使用锅炉废气处理垃圾站渗液的系统
CN107777851A (zh) * 2017-11-30 2018-03-09 重庆三峰环境产业集团有限公司 一种电厂渗滤液系统脱水污泥处理方法
CN108609809A (zh) * 2018-06-07 2018-10-02 江苏善鼎环保科技有限公司 一种高有机物高盐废水的处理方法及其处理系统
CN110304779A (zh) * 2019-07-19 2019-10-08 中节能工程技术研究院有限公司 一种垃圾渗滤液厌氧出水的物化脱氨方法和处理系统
CN110372143A (zh) * 2019-07-19 2019-10-25 中节能工程技术研究院有限公司 一种垃圾渗滤液物化脱氨预处理方法和设备
CN110454802A (zh) * 2019-09-05 2019-11-15 成都市兴蓉再生能源有限公司 降低炉内氮氧化物浓度的浓缩液入炉回喷系统及回喷方法
CN110746044A (zh) * 2019-10-30 2020-02-04 长春黄金研究院有限公司 一种高浓度酸性废水的净化方法
CN111547799B (zh) * 2020-06-27 2022-02-15 商洛市海蓝科技有限公司 一种废水、垃圾渗滤液低温蒸发处理系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335133A1 (de) * 1993-10-15 1995-04-20 Udo Dr Zietz Verfahren zur Reinigung von Sickerwässern aus Hausmülldeponien und schwermetallhaltigen gewerblichen Abwässern
CN1196867C (zh) * 2000-11-16 2005-04-13 埃米特克有限公司 具有一个径向扩散器旁路的马达/风扇装置
CN200988817Y (zh) * 2006-12-28 2007-12-12 深圳市能源环保有限公司 一种垃圾焚烧厂沥滤液处理系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335133A1 (de) * 1993-10-15 1995-04-20 Udo Dr Zietz Verfahren zur Reinigung von Sickerwässern aus Hausmülldeponien und schwermetallhaltigen gewerblichen Abwässern
CN1196867C (zh) * 2000-11-16 2005-04-13 埃米特克有限公司 具有一个径向扩散器旁路的马达/风扇装置
CN200988817Y (zh) * 2006-12-28 2007-12-12 深圳市能源环保有限公司 一种垃圾焚烧厂沥滤液处理系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
兰建伟.垃圾沥滤液CTB工艺处理研究及应用.工程设计与建设37 4.2005,37(4),50-53页.
兰建伟.垃圾沥滤液CTB工艺处理研究及应用.工程设计与建设37 4.2005,37(4),50-53页. *
陈柯影,张亚强,王红攀.垃圾焚烧厂沥滤液处理新型工艺.安康师专学报18 3.2006,18(3),81-86页.
陈柯影,张亚强,王红攀.垃圾焚烧厂沥滤液处理新型工艺.安康师专学报18 3.2006,18(3),81-86页. *

Also Published As

Publication number Publication date
CN101209881A (zh) 2008-07-02

Similar Documents

Publication Publication Date Title
CN101209881B (zh) 一种垃圾焚烧厂沥滤液处理系统
CN103922543B (zh) 垃圾沥滤液处理方法
CN101549938B (zh) 一种有机硅高浓度废水的处理方法
CN102976543A (zh) 一种垃圾沥滤液处理方法及系统
CN105036462A (zh) 一种基于mvr技术的机加工乳化废水处理方法
CN102190409A (zh) 一种垃圾沥滤液处理系统
CN109704503B (zh) 一种高盐、高粘度厌氧发酵液资源化处理系统及方法
CN109455884A (zh) 一种氮资源热提取回收系统
CN203173935U (zh) 一种垃圾沥滤液处理系统
CN111875151A (zh) 一种垃圾渗滤液和焚烧飞灰协同处理的系统及方法
CN109851161B (zh) 生产联苯二氯苄及邻磺酸钠苯甲醛所产污水的处理方法
CN104628065A (zh) 一种化学制药废水处理系统及方法
CN212293240U (zh) 垃圾焚烧厂渗滤液的零排放处理系统
CN202089863U (zh) 一种垃圾沥滤液处理系统
CN104355451B (zh) 垃圾渗滤液生化出水资源化利用的工艺
CN107151082B (zh) 一种含dmf废水的零排放处理系统及其方法
CN211226804U (zh) 一种膜浓缩液减量化处理系统
CN200988817Y (zh) 一种垃圾焚烧厂沥滤液处理系统
CN209522738U (zh) 一种处理生产邻磺酸钠苯甲醛所产污水的处理系统
CN111115978A (zh) 一种垃圾焚烧发电厂渗滤液处理系统及处理方法
CN207002529U (zh) 吡唑酮生产废水处理装置
CN211712895U (zh) 一种垃圾焚烧发电厂渗滤液处理系统
Chen et al. Study on engineering process and equipment operation of total treatment project of leachate and concentrated solution
CN215756877U (zh) 一种市政污水无污泥一体化处置设备
CN111847797A (zh) 垃圾焚烧厂渗滤液的零排放处理系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Shenzhen Nanshan District City, Guangdong province 518052 Chang Hing No. 83 21 floor Guoxing building

Patentee after: Shenzhen Energy and environmental protection Co.,Ltd.

Address before: Shenzhen Nanshan District City, Guangdong province 518052 Chang Hing No. 83 21 floor Guoxing building

Patentee before: SHENZHEN ENERGY ENVIRONMENTAL ENGINEERING Co.,Ltd.

CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 13 / F, Times financial center, 4001 Shennan Avenue, Futian District, Shenzhen, Guangdong 518000

Patentee after: Shenzhen Energy and environmental protection Co.,Ltd.

Address before: Shenzhen Nanshan District City, Guangdong province 518052 Chang Hing No. 83 21 floor Guoxing building

Patentee before: Shenzhen Energy and environmental protection Co.,Ltd.