CN101208415A - 基于超临界二氧化碳的金属加工润滑制剂 - Google Patents

基于超临界二氧化碳的金属加工润滑制剂 Download PDF

Info

Publication number
CN101208415A
CN101208415A CNA2006800229122A CN200680022912A CN101208415A CN 101208415 A CN101208415 A CN 101208415A CN A2006800229122 A CNA2006800229122 A CN A2006800229122A CN 200680022912 A CN200680022912 A CN 200680022912A CN 101208415 A CN101208415 A CN 101208415A
Authority
CN
China
Prior art keywords
supercritical
oil
lubricant
metal
mwf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800229122A
Other languages
English (en)
Other versions
CN101208415B (zh
Inventor
S·J·斯科洛斯
K·F·哈耶斯
A·克拉伦斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Michigan
Original Assignee
University of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Michigan filed Critical University of Michigan
Publication of CN101208415A publication Critical patent/CN101208415A/zh
Application granted granted Critical
Publication of CN101208415B publication Critical patent/CN101208415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1038Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality
    • B23Q11/1053Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality using the cutting liquid at specially selected temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1038Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality
    • B23Q11/1061Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality using cutting liquids with specially selected composition or state of aggregation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/02Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/005Volatile oil compositions; Vaporous lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/003Inorganic compounds or elements as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/16Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • C10M2207/0225Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/1253Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/401Fatty vegetable or animal oils used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/04Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
    • C10M2211/044Acids; Salts or esters thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/083Volatile compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/04Aerosols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/06Gaseous phase, at least during working conditions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

一种用于在金属加工过程期间润滑金属工件的方法,包括在金属加工过程期间送递超临界二氧化碳至工件。超临界二氧化碳起到润滑剂、冷却剂、碎屑排空剂和/或另一种润滑剂或缓蚀剂的载体的作用。

Description

基于超临界二氧化碳的金属加工润滑制剂
相关申请的交叉引用
本申请要求2005年4月29日提交的美国临时专利申请系列第60/676,531号的权益。
关于联邦资助的研究或开发的声明
本发明在来自National Science Foundation(NSF)、基金编号DMII0093514的基金和来自National Science Foundation(NSF)/Environmental Protection Agency(EPA)、基金编号RD 83134701的基金支持的研究期间产生。美国政府拥有本发明中的某些权力。
技术背景
本公开涉及金属加工,并且更具体地涉及用于金属加工的润滑剂。
金属加工液(MWF)在多种金属加工过程(金属加工过程的一些非限制性实例包括切削过程、成型过程等)期间润滑和冷却金属并且对适当的加工功能有用。具体地,MWF增加工具寿命,大大确保适当的表面光洁度,允许更快的制造率并降低机械加工期间的能量消耗。金属加工液通常是水包油乳状液,其中油润滑切削带,而水冷却切削带。然而,油与水的混合物有可能使MWF造成环境问题和职业健康问题。这可能归咎于(至少部分如此)可以在这些流体内聚集的金属、有机成分和微生物,和在机械加工过程中极过量地喷射这些液体时可能形成的气溶胶。可以由这些油溶液形成的气溶胶降低车间内的空气质量并且在某些情况下可能潜在地对工人造成急性和/或慢性皮肤影响及肺影响。水包油乳状液容易因微生物侵袭和硬水离子聚集而随时间出现质量下降,这可能造成废弃物处理问题,尤其当混合物含有有毒添加剂时。因此当MEF达到最终使用寿命时,它们可以变成有害废弃物。如果可以使用除水以外的其它溶剂提供最小量的润滑作用,则可以基本消除与MWF有关的诸多环境问题及健康问题。
因此,理想的是使用非水溶剂提供最小必需量的金属加工润滑作用。这样的替代性溶剂可以有利地减少或消除与水基MWF有关的问题,并且因此减少或消除对传统MWF维护系统或处理系统如泵和分离系统的需要。另外,送递最小量的润滑可以保护资源,维持更一致的高质量加工操作,并减少使用寿命周期排放,与此同时大大有助于消除潜在的与传统水基MWF有关的健康风险和变质问题。
发明简述
用于在金属加工过程期间润滑金属工件的方法包括在金属加工过程期间送递超临界二氧化碳至工件。超临界二氧化碳作为润滑剂、冷却剂、碎屑排空剂和/或用于另一种润滑剂或缓蚀剂的载体。
附图简述
本公开的实施方案的目的、特征和益处通过参考如下详述的说明和附图将显而易见,在其中:
图1是显示实验设置的示意图,所述实验设置包含本公开的实施方案;
图2A是使用水基MWF的攻丝扭矩的试验照片;
图2B是根据本公开中实施方案的使用超临界CO2基MWF的攻丝扭矩试验的照片;
图3是描绘对如下水基MWF和超临界CO2基MWF的攻丝扭矩效率的图:仅用超临界CO2(3A);石油MWF微乳状液(3B);大豆油MWF微乳状液(3C);仅用大豆油(3D)和超临界CO2内的大豆油(3E);
图4a是扫描电子显微图(SEM),该显微图显示仅用超临界CO2切削的一块1018冷轧钢的碎屑表面的放大图;
图4b是SEM,该SEM显示在用石油MWF微乳状液切削的一块1018冷轧钢的碎屑表面的放大图;
图4c是SEM,该SEM显示在用大豆油MWF微乳状液切削的一块1018冷轧钢的碎屑表面的放大图;
图4d是SEM,该SEM显示仅用大豆油切削的一块1018冷轧钢的碎屑表面的放大图;并且
图4e是SEM,该SEM显示用超临界CO2内的大豆油切削的一块1018冷轧钢的碎屑表面的放大图。
实施方案的详细描述
本发明人出乎预料而偶然地发现超临界二氧化碳(超临界CO2)可以用作金属加工过程/操作(例如切削和成型)中的有效润滑剂和润滑剂载体。另外,超临界CO2比水在金属加工中提供更好的基础润滑,并且发现单独的超临界CO2具有与基础半合成金属加工液(MWF)基本类似的润滑性,至少在一种机械加工应用中是这样的。润滑剂如纯油(straight oil),即不添加水的油,是用于绝大多数加工过程的最熟知润滑剂。而本发明人还发现超临界CO2与润滑剂的组合具有有利的协同性,即由该组合测得的润滑能力比单用其中任一种时所测得的润滑能力明显更好。还发现当油在超临界CO2内被送递时,即便向系统施加更少的油,也显示出上述协同性。例如,比较具有和没有超临界CO2送递系统的相同的油,已经发现了(用超临界CO2送递系统)改良的性能,但是有利的是,当随同超临界CO2送递系统一起使用时,用更少量的相同的油,也发现了这些改良的结果。更进一步,本发明人还预期根据本文中实施方案的方法还可以有利地清除切削期间的碎屑(碎屑排空)、降低工具磨损、提供抗腐蚀性并改善某些系统中的表面光洁度。
虽然超临界CO2正成为制药工业和半导体工业以及化学工程中的萃取过程、蚀刻过程和清洁过程的重要组成,但超临界CO2迄今没有显示出在金属加工工业中的有利用途。如本文中显示,可以将超临界CO2润滑剂和/或超临界CO2基润滑剂流体以明显受控制的量添加至切削区域,从而改善效率和回收,并减少制造该流体所需要的原材料的量。因此超临界CO2的使用可被看作可以与全部的金属切削及成型操作兼容的新类型的微润滑/毫微润滑(micro-/nano-lubrication)技术。根据需要添加更多的油(即不限于微润滑/毫微润滑)至金属加工区也在本公开的范围内。
进一步地,除了显著促进润滑剂的送递外(当使用一种或多种其它的润滑剂,例如油,作为与超临界CO2组合的润滑剂时),如本文中所公开的新分散方法明显产生了过冷却效应(例如通过干冰)。对于冷却要求高于用干冰冷却所满足的冷却要求的机械加工操作,超临界CO2系统可以任选地与压缩的空气或氮气或其它惰性气体的喷射相结合,作为以压力释放的冷却喷雾,以提供额外的冷却。
应当理解的是当本发明实施方案的超临界CO2制剂抵达金属加工区时,它们不再是超临界的;然而,润滑剂被非常精细地分散,因此,与假使所述制剂起初不是超临界态时相比,该润滑剂能够更好地抵达到金属加工带(例如切削带)。更大的压力释放通常还使得与用非超临界制剂送递润滑剂相比,所递送的每单位质量的润滑剂具有更好的冷却作用。
如在本文中更充分地描述,应当理解的是本公开不意图限于任何机械加工操作和/或成型操作;即所述的攻丝过程仅是预期本发明组合物的实施方案有用的众多机械加工操作中的一个实例。另外,应当理解的是本公开不意图限于本实施方案的润滑剂中的任何一个制剂/组合物。预期在本公开范围内的是,除了单独的超临界CO2之外,多种油、酯、脂肪酸、氟化油、嵌段共聚物、表面活性剂、离子液体和其它化合物可以适合用于本实施方案的超临界CO2基润滑剂内,可作为在超临界CO2内溶解或分散的油,或使用专用于CO2系统内乳化的表面活性剂将其乳化。还预期在本公开范围内的是,第二添加剂可以任选地添加至本实施方案的润滑剂内。通常用于金属机械加工操作中的一些第二添加剂的类别是缓蚀剂、耐特压添加剂、边界润滑剂和/或抗磨添加剂,已知这些类别内各有一些种类物质可能在CO2内是不溶解的,并且因此可能无法用于该应用。进一步,应当理解的是本实施方案的方法和组合物/制剂可以用于金属切削(金属切削的非限制性实例包括钻、镗、车、铣、攻丝、拉削、螺纹成型(thread forming)、刨(planing)、剪(shearing)、冲(punching)、铰(reaming)和/或其它等)以及用于金属成型(金属成型的非限制性实例包括冲压(stamping)、拉伸(drawing)、轧制(roiling)、挤出(extruding)、锻造(forging)和/或其它等).
如本文中所用,术语“金属加工”意图包括例如金属切削和金属成型的全部金属加工操作。“冷却”、“冷却剂”或类似术语意图包括因为(至少部分因为)二氧化碳在喷嘴处或在喷嘴附近迅速膨胀而冷却金属工件的现象。本文中所述的润滑剂组合物/制剂,除超临界CO2本身以外,意图包括通过任何合适方法而在超临界CO2内溶解和/或分散和/或乳化的任何此类润滑剂。
如下文中更详细的讨论,示于图4a-4e内的SEM图和示于图3内的攻丝扭矩数据是具有良好相关性的。摩擦表面(ground surface)显示较高的摩擦;较高的摩擦等同于较高扭矩;并且较高的扭矩等同于较低的攻丝扭矩效率。图3与图4a-4e的比较清晰地显示了这种联系。因此,从文中所显示数据,可以看出攻丝扭矩效率是润滑潜能的可靠指示。
另外,本文中实施方案的方法有利地清除切削过程期间的碎屑(碎屑排空),因而允许本实施方案的润滑剂更深地渗透。所述碎屑排空可以是因为(至少部分因为)本方法的压力所致。应当理解的是润滑剂更深的渗透还可能是因为极精细的分散和二氧化碳释放的高压力,从而允许极小液滴抵达切削带和碎屑排空带的更深处所致。此外,超临界CO2具有比水更低的表面张力并且已知超临界CO2可以减少溶解有超临界CO2的流体的表面张力,进而增加了在CO2内送递的润滑剂的渗透能力。
已经开发了数种植物基制剂作为石油基制剂的替代。使用攻丝扭矩试验以比较基于植物和/或基于超临界CO2的新润滑剂与目前所用石油基和水基MWF的性能。据信本文中提供的数据首次证实了CO2基MWF的可行性。
在MWF应用中使用植物油是理想的,因为它们来自可更新的原料(这降低了对外国油的依赖),它们在使用期间以及在到使用期限时的毒性较低并且已经证明它们在野外条件(field conditions)下更稳定和更容易再循环。植物油还可以特别适合于医疗应用(例如医疗产品的机械加工),因为医疗应用需使用基本无毒的材料,植物油还适用于传统手术。还已经证实植物油是比矿物油更好的润滑剂。此外,当种植植物原料时,隔离了CO2。虽然在市场上可获得多种原料,但选择三种常用的基于植物的油和两种基于石油的油作为本文中所述实验的说明。它们是:环烷矿物油、环烷矿物油与石蜡矿物油50/50的混合物、大豆油、菜籽油(油酸含量75%)和TMP酯(通过nC8和nC10脂肪酸混合物与三羟甲基丙烷反应而制得的多元醇酯可以称作“TMP”酯)。这五种油作为纯油和作为可溶性油MWF及半合成MWF进行测试,以了解乳化对基础油性能的影响。机械加工性能使用改进的标准攻丝扭矩试验(ASTM D 5619)进行评估。MWF性能使用度量的“攻丝扭矩效率”相对于商业可获得的MWF进行表述。较高效率指示攻丝扭矩试验中改进的性能,并且已经证实较高效率是适用于野外性能的量度(如下更详细讨论)。
对每种试验流体开展超过25个攻丝扭矩实验以建立实验误差的统计估计。结果表明作为纯油,全部植物基的原料的性能表现显著优于矿物油。在植物原料乳化成可溶解性油MWF和半合成性MWF后,该趋势仍是这样,虽然明显小得多。此结果还表明一些基于植物油的原料比其它基于植物油的原料具有更高润滑潜力,数据显示,在乳化的MWF内,大豆油和TMP酯可提供相对于菜籽油更高的攻丝扭矩效率。应当理解的是进行以上实验,显示植物基MWF(未配制于超临界CO2内)性能表现类似于或优于MWF。
该研究还产生可以用作MWF的超临界CO2与大豆油的稳定分散体。这些分散体可以以控制的量喷雾至切削区上以施加局部润滑。除了提供润滑之外,迅速膨胀的CO2还提供相对于水的更好的冷却能力。另外,CO2的压力释放还提供先前用水作为MWF中工作成分的载体所实现的碎屑排空功能。
在工业环境中可轻易地实现CO2的超临界温度和压力(Tc=31.1℃和Pc=72.8atm)。在这些条件下,CO2是众多材料的良好溶剂,并且应当指出,一些基于植物的油在CO2内是高度可溶解的。
为检验超临界CO2基MWF的可行性,开发在超临界CO2内大豆油的分散体,并使用攻丝扭矩方法,相对于大豆油MWF微乳状液,对该分散体进行检测。图1描述了包含本公开实施方案的实验设置10的实施方案。应当理解的是这是非限制性的实施方案、并且如下所列的要素中的某些可以是非必需的和/或额外的要素可以根据需要添加。在图1中,字母A代表食品级二氧化碳罐(低温气体(CryogenicGases),MI);字母B代表止回阀;字母C代表增压器(高压设备,PA);字母D代表压力表;字母E代表六通阀(Valco Instruments,TX);字母F代表进油口;字母G代表固定体积的蛇管;字母H代表高压容器;字母I代表加热元件;字母J代表热电偶(Omega,Stamford,CT);字母K代表压力转换器(Zook Enterprises,OH);字母L代表计算机;字母M代表电磁阀(Clark Cooper,NJ);字母N代表喷嘴;字母O代表攻丝扭矩机;字母P代表钢工件并且字母V1-V3代表针阀。
在设置10的实施方案中,来自罐A的CO2可以由增压器C加压至超临界压力。可以使用阀E(可为任何适当的阀或装置)将油经入口F添加至加压的CO2内。加压的CO2与油的混合物随后可以进入容器H,该容器可以是适合容纳加压的混合物的任意装置。油可以离开容器H并经过电磁阀M,随后从喷嘴N中喷出至金属加工区域,如攻丝扭矩机O内的钢工件P。
可以是任意适合的计算装置的计算机L可以用来控制电磁阀M的动作和/或用来记录来自攻丝扭矩机O的数据。计算机L还可以用来监视/控制容器H内部的操作/环境条件。计算机L可以接收来自热电偶J的温度数据和/或来自压力传感装置的压力数据。计算机L可以与加热元件I和压力转换器K联系,加热元件I和压力转换器K可同容器H联系,因而若容器H内部的温度或压力降至预定的范围之外,计算机指导加热元件I和/或压力转换器K校正环境条件以与预定的范围相对应。
在实验设置10的另一个实施方案中,作为将油经入油口F添加至阀E的替代方式或附加方式,可以将油添加至容器H内加压的CO2并与之混合。在该实施方案中,容器H内可以包含搅拌棒以辅助CO2与油的混合。
图2A描述使用经喷嘴18送递的水基MWF12的攻丝扭矩试验,并且图2B显示利用经喷嘴18’送递的超临界CO2基MWF14的相同试验。图2A和2B的攻丝扭矩试验用具有锁紧螺母24和样品螺母(specimen nut)26的攻丝扭矩试验工具22进行。图2A中可见到过量的水基MWF28,而使用超临界CO2基MWF14的图2B内所示的试验通常没有这样的过量流体。应当理解的是图2B内所述的试验可以在送递较少体积流体14至金属加工区域的同时提供更多润滑,并且有可能降低施用率。
图3的表描述对水基MWF和超临界CO2基MWF的攻丝扭矩效率。该结果显示在超临界CO2内的大豆油(3E)性能表现优于大豆油MWF微乳状液(3C)大致20%,如本文中如下进一步讨论。观察到的性能上的显著增加达到了以前在攻丝扭矩试验中未观察到的性能水平。虽然CO2价廉、不可燃、环境友好并且可以从产品中轻易除去,然而已经证实CO2是导致人为全球变暖的潜在原因。目前证实这个缺点在所提出的应用中是相对微小的,因为工业中所用的大部分CO2是其它过程的副产物。工业过程中CO2的使用,实际上利用了大量的废弃物流,而不是导致需要另外的污染物。因此,相比较于MWF系统对人类健康和环境现有的危害而言,超临界CO2MWF技术增加全球变暖的可能并不非常显著。
本公开教授在金属加工操作中使用超临界二氧化碳(超临界CO2)润滑、冷却和/或排空碎屑的新方法。传统上使用水基金属加工液(MWF)以执行这些功能,即便使用水可能导致高昂的经济代价、职业健康代价和环境代价。在临界温度和临界压力上的二氧化碳是溶解某些油的可调的溶剂。这意味着可以将油送递至先前的水注流达不到的缝隙空间内。CO2包油分散体可以以高速度从喷嘴中喷射出来以送递油,并在切削区内形成干冰,如图2B中所示。CO2的迅速膨胀导致低温温度下的冷却。CO2和/或CO2溶液的这种迅速膨胀因为压力下降而明显地冷却,并可以达到约-80℃以下的温度。溶解的物质随着CO2变暖并挥发,在喷射表面上形成均匀的涂层。攻丝扭矩效率度量显示,就攻丝扭矩效率而言,新的超临界CO2基流体性能优于常规含水流体高达20%。如下文进一步所述,攻丝操作中所产生碎屑的扫描电子显微镜(SEM)图像表明,超临界CO2是比水更好的润滑剂送递方法。另外,当在超临界CO2内被送递时,纯油显示出比常规压力下施加时更高的性能。
为进一步描述本公开的实施方案,本文中给出多种实施例。应当理解的是实施例为说明目的而提供,并且不应当解释为限制所公开的实施方案的范围。
实施例
攻丝扭矩试验方法
如本文中所公开开发的MWF的机械加工性能通过攻丝扭矩试验,使用MicroTap Mega G8(Rochester Hills,MI)机床,以1000RPM的机械加工速度,在预钻削和预铰削有240M6钻孔(Maras Tool,Schaumburg,IL)的1018钢工件上测量。攻丝使用具有60°节距(pitch)和3个直槽的无涂层高速钢(HSS)丝锥(用于1018钢)进行。MWF评估根据ASTM D 5619(用于使用攻丝扭矩试验机以比较金属除去流体的标准(the Standard for Comparing Metal Removal Fluid Using theTapping Torque Test Machine))进行,由于使用允许在单个工件上进行多重评估的MWF评估试验床,对该标准进行了几处修改。MWF性能本文中报道为攻丝扭矩效率百分数(%),其是工具完全结合期间所测量的平均扭矩,将该平均扭矩对所测量的参考MWF的平均扭矩进行归一化。较高的效率表明攻丝扭矩试验中改进的性能,并且已经证实较高的效率是野外性能的足够量度(如下更详细地讨论)。
超临界二氧化碳试验床
本发明人设计实验性试验床以产生超临界CO2基MWF并将它们施加至攻丝扭矩机的切削区域。再次参考如前所述的图1,实验设置的示意图总体命名为10。
CO2通过增压器C从约700磅/平方英寸(绝对)(psia)加压至超临界压力>1070磅/平方英寸(绝对)。使用六通阀E,将油经入口F添加至混合物内并且将混合物贮存在高压容器H内。25mL体积的容器H具有用于观察混合物的两个蓝宝石窗。混合物由压力容器H的出口流出并且通过自动电磁阀M,随后从喷嘴N喷射至攻丝扭矩切削区域上。使用个人计算机L以监视高压容器H内的操作条件、控制电磁阀M的动作并记录来自攻丝扭矩机O的数据。
超临界CO2基流体随攻丝工具进入空白工件表面而同时地施加至切削区。打开阀M持续2秒以允许机器O在受MWF混合物喷射的同时执行完整的攻丝过程。对于每个使用CO2流体的试验,使容器H达到大约1500磅/平方英寸(绝对)和35℃,并且允许容器H的内容物平衡3分钟。如本文中以上所述,使用水基MWF和超临界CO2基MWF的切削过程的照片分别在图2A和2B中显示。在两种情况下,在工具接合(tool engagement)期间打开阀M。在图2A中可看到在20磅/平方英寸(表压)下送递的含水工艺送递过量的MWF 12。图2B的设置在送递较少体积流体14的同时提供更多的润滑,并有可能通过工艺优化而减少油的施加率至更低水平。在切削后,容器H内的压力通常是在900磅/平方英寸(绝对)左右,并且将更多CO2注入容器H以使压力返回至大约1500磅/平方英寸(绝对)。在每6次攻丝试验后,添加额外的油。
制剂
使用大豆油和矿物油开发水基MWF制剂。水基制剂是基于商业MWF供应商提供的制剂。攻丝扭矩效率100%代表从所述商业MWF供应商购买的可溶性油MWF的攻丝扭矩效率。MWF首先以浓缩形式产生,随后于去离子水内稀释至工作浓度。该配制过程与实际制备及利用含水MWF的方式相一致。用于每种含水制剂以及根据本实施方案的制剂的组合物在表1中显示。
                            表1
成分    超临界CO2    水中的矿物  大豆油    大豆油    超临界
                    油          MWF微乳             CO2内的
                                状液                大豆油
大豆油                          0.72%    100%     1%
矿物油              0.72%
Tomadol             1.56%
91(非离子
表面活性
剂)
Tagat                           1.38%
V20(非离子
表面活性
剂)
Dowfax(阴           0.14%      0.21%
离子表面活
性剂)
偶联剂              0.07%      0.10%
超临界CO2     100%                                99%
水                    97.50%    97.59%
两种水基制剂用阴离子表面活性剂和/或非离子表面活性剂制成,但是对于不同的油,略微调整表面活性剂的结构和量以得到稳定的乳状液。两种基于水的制剂含有偶合剂(coupler)作为第二乳化剂。
超临界CO2基制剂通过将大豆油注射至高压容器H内产生,其中所述大豆油的浓度与水基流体内的大豆油浓度相当。使用搅拌棒搅拌容器H的内容物,并且将压力和温度维持在CO2的临界值以上。使用的全部流体成分从制造商处获得,并经受相同的处理和贮存条件。制剂内所用的基础油是石油基环烷油和大豆油(碱精炼大豆油,Cargill Inc.,Minneapolis,MN)。用于含水制剂的表面活性剂是TagatV20(可从Degussa-Goldschmidt Chemical Corporation,Hopewell,VA商业获得的基于甘油脂肪酸酯的表面活性剂)、Dowfax3B2(可从DowChemicai,Midland,MI商业获得的二磺酸酯表面活性剂)和Tomadol91-6(可从Tomah Corporation,Milton,WI商业获得的醇乙氧化物表面活性剂)。
虽然未在图3内显示,还根据本文中所述的“攻丝扭矩试验方法”,仅使用去离子水作为润滑剂在1018高速钢(HSS)上进行了试验。该试验的结果显示约50%的攻丝扭矩效率。
实验结果和讨论
现在参考图3,攻丝扭矩研究的结果显示,就攻丝扭矩效率而言,超临界CO2分散体内的大豆油(如3E所示)性能优于大豆油MWF微乳状液(如3C所示)大约达20%。仅有超临界CO2(如3A所示)的性能大致与常规的水内半合成矿物油MWF(如3B所示)相同,并优于仅用水时的性能。大豆油MWF微乳状液(半合成MWF油浓度0.75%)与相同浓度常规可溶性油(3.4%油)的矿物油(未显示)具有相同的性能。如3D所示,纯大豆油改善了攻丝性能,超过参考液体大约12%(参考流体是工业中所用的基于可溶性矿物油的油,加入蜡以提供额外的润滑作用)。参考流体未在图中显示,但是产生100%攻丝扭矩效率。
如果大豆油使用超临界CO2作为载体被送递至切削区,流体的性能大幅度增加。超临界CO2内大豆油的流体性能显著地优于在水中乳化的大豆油,甚至优于纯大豆油。这表示除了施加润滑剂并冷却切削区域以外,超临界CO2具有使切削过程更有效的摩擦学优点。为了帮助研究这种由基于超临界CO2内大豆油的MWF所提供的增强的润滑特性的现象,拍摄在攻丝期间所产生碎屑的扫描电子显微图像。
现在参考图4,一般而言,图4a-4e显示在纯大豆油存在下和在超临界CO2内的大豆油存在下所产生的碎屑在离开工件时与金属表面接触较少。图4d和4e之间的表面形态学方面的相似性表明当在超临界CO2流体内的油分散体从喷嘴中喷射出来时,它渗透碎屑离开带(chip exit zone)并填充碎屑背侧的空白空间,以有效地携带荷载(load)并阻止碎屑-工具的接触。
如上所述,图4a-4e中每一幅图各自对应于3A-3E其中之一。在图4中提供的代表性电子显微镜图像清晰地显示了,相对于以较高的攻丝扭矩效率值为特征的实验(例如,如图4e中所示的超临界CO2与大豆油的混合物),在以较低的攻丝扭矩效率值为特征的攻丝实验中(例如,如图4b中所示的石油MWF微乳状液和如图4c中所示的大豆油微乳状液)金属与金属的接触大得多。例如,石油基微乳状液显示了来自切削过程的已经被磨损至与碎屑表面齐平的磨痕,如图4b中所示。该图像还显示了表明不良润滑以及金属与金属接触的擦痕和刮痕。该摩擦意味着必须提供更大扭矩以开展攻丝操作,导致如在3B所示的攻丝扭矩效率的较低值。相反,超临界CO2/大豆油MWF显示碎屑与工件间少得多的接触,如图4e中所示。在此时,接触区域孤立成为在碎屑表面上的少数高出的凸起带(relief zone),其因存在有效的润滑而未被磨光。由于这些结果与单独使用大豆油(如图4d中所示)区别明显,据信超临界CO2的压力及其携带事先溶解的大豆油深入切削过程的能力可以起到使碎屑与工件间接触最小化的作用。这有利地导致较小的摩擦和在攻丝操作中观察到的较小的扭矩。
从本文中所讨论的实验中得到的众多结论之一是,由大豆油制成并在超临界CO2内送递的金属加工液的性能显著优于传统的水包油乳状液和纯油MWF。
虽然本文中为说明目的而讨论了一些制剂,应当理解,所证实的以溶解、分散和/或乳化的混合物形式同时使用超临界CO2与润滑剂而产生的新颖性和/或协同性可以延伸至包括但不限于如下实例的众多类型的油、酯、聚合物、蜡和皂:矿物油,包括环烷油、石蜡油及其混合物中的至少一种;植物油,包括大豆油、油菜籽油、菜籽油、玉米油、向日葵油及其混合物中的至少一种;酯、聚合物和/或二醇,包括三甲基丙酯、聚亚烷基二醇、聚合酯(例如一元/二元酸酯、基于脂肪族胺的酯、硫化的酯)、环氧乙烷/环氧丙烷共聚物、合成和天然聚合物(烃、氟化的、氯化的)及其混合物中的至少一种;以及以上任意组合。
此外,超临界CO2润滑系统可以包括在具有或没有主要润滑剂的金属成型或切削应用中起额外润滑作用的耐特压添加剂,所述耐特压添加剂包括,但不限于氯化石蜡、氯化蜡、氯化酯、氯化脂肪酸;硫化脂、硫化烯烃、聚硫化物、硫-氯化化合物、硫化磺酸酯、磷酸酯、磷酸酯脂肪酸(phosphate fatty acid)、磷酸酯胺(phosphateamines)(例如烷基或芳香族)和/或其组合。
使用超临界二氧化碳(超临界CO2)的本发明方法和/或组合物的实施方案适合于在金属加工应用中送递油润滑剂、边界润滑剂和耐特压润滑剂。使用CO2作为润滑剂和/或作为润滑剂送递系统提供了如下的非限制性益处:改善金属加工的效率和回收、减少为制造产品所需要的原材料的量;基本上消除(如果不是完全消除)与传统金属加工液相关的缺点(所述缺点的一个实例包括它们可能有微生物污染);基本上消除对杀生物剂的需要,其中所述的杀生物剂可能由于与制造环境下接触杀生物剂相关的潜在处理危害及职业危害而造成问题;基本上排除辅助的金属加工液添加剂如螯合剂,这些添加剂可带来处理问题;与多种传统和非传统的基础油相容,如有高度氧化稳定性、耐久性和再利用可能性的氟化油及表面活性剂、相对于石油替代物而言使用寿命周期负担较小的植物油和具有表面活性剂的石油基油;使用超临界CO2作为溶剂得到了对于油和/或表面活性剂而言有效的回收系统,该系统可以有利地产生“干燥生产”环境,其中不再需要含水溶剂和/或有机溶剂。又一个益处是,本发明实施方案的方法和/或组合物可以基本排除对金属加工液的处理。
其它益处包括、但不限于减少或消除对MWF工厂循环和维护的需要;可应用于否则难以加工的金属,如硬质钢或钛;和可应用于医疗应用中所用的产品(使用基本无毒的材料)。
虽然已经详细描述了数个实施方案,但是本领域技术人员明白可以修改已公开的实施方案。因此,之前的描述将被视为示例性的而不是限制性的。

Claims (18)

1.一种用于在金属加工过程期间润滑金属工件的方法,所述方法包括:
在金属加工过程期间送递超临界二氧化碳至工件。
2.权利要求1的方法,其中润滑剂在送递至工件前与超临界二氧化碳混合。
3.权利要求2的方法,其中所述润滑剂选自矿物油、植物油、酯、聚合物、二醇、脂肪酸及其组合。
4.权利要求1的方法,其中所述金属加工过程是切削过程,并且其中切削过程期间形成的金属碎屑在超临界二氧化碳送递期间被排空。
5.权利要求1的方法,其中所述工件在超临界二氧化碳送递期间被冷却。
6.权利要求1的方法,其中所述的超临界二氧化碳送递基本实现了金属工件的微润滑或毫微润滑中的至少一种润滑。
7.权利要求1的方法,还包括在金属加工过程期间,以压力释放冷却喷雾送递压缩空气或惰性气体中的至少一种气体至工件,以提供额外的冷却。
8.一种用于在金属加工过程期间润滑金属工件的组合物,所述组合物包含超临界二氧化碳载体与润滑剂的混合物。
9.权利要求8的组合物,其中所述润滑剂选自矿物油、植物油、酯、聚合物、二醇、脂肪酸及其组合。
10.权利要求8的组合物,还包含耐特压添加剂、缓蚀剂、边界润滑剂、抗磨添加剂或其组合中的至少一种。
11.权利要求10的组合物,其中所述的耐特压添加剂选自氯化石蜡、氯化蜡、氯化酯、氯化脂肪酸;硫化脂;硫化烯烃;聚硫化物;硫-氯化化合物;硫化磺酸酯;磷酸酯;磷酸酯脂肪酸;磷酸酯胺及其组合。
12.权利要求8的组合物,其中所述润滑剂以溶解于超临界二氧化碳内、分散在超临界二氧化碳内、用超临界二氧化碳乳化或上述方式组合中的至少一种方式使用。
13.一种用于在金属加工过程期间施加超临界二氧化碳的系统,所述系统包含:
二氧化碳源;
与二氧化碳源以液体相联系的增压器;
与增压器以液体相联系的高压容器;
与高压容器以液体相联系的润滑剂源;及
与高压容器以液体相联系的喷嘴。
14.权利要求13的系统,其中所述系统适用于在金属加工过程期间提供润滑、冷却、腐蚀抑制或碎屑排空中的至少一种作用。
15.权利要求13的系统,还包含与高压容器和喷嘴以液体相联系,且位于二者之间的自动电磁阀。
16.权利要求13的系统,还包含与加热元件和压力转换器相联系的计算机、与高压容器相联系的加热元件和压力转换器和适合于控制容器内一个或多个环境条件的计算机。
17.权利要求16的系统,还包含与计算机相联系,并适合于监测容器温度的热电偶。
18.权利要求13的系统,还包含与高压容器和喷嘴相联系,且位于二者之间的电磁阀。
CN2006800229122A 2005-04-29 2006-04-28 基于超临界二氧化碳的金属加工润滑制剂 Active CN101208415B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67653105P 2005-04-29 2005-04-29
US60/676,531 2005-04-29
PCT/US2006/016324 WO2006119047A2 (en) 2005-04-29 2006-04-28 Metalworking lubricant formulations based on supercritical carbon dioxide

Publications (2)

Publication Number Publication Date
CN101208415A true CN101208415A (zh) 2008-06-25
CN101208415B CN101208415B (zh) 2012-04-04

Family

ID=37308533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800229122A Active CN101208415B (zh) 2005-04-29 2006-04-28 基于超临界二氧化碳的金属加工润滑制剂

Country Status (10)

Country Link
US (2) US7414015B2 (zh)
EP (1) EP1885827B1 (zh)
JP (1) JP5113040B2 (zh)
CN (1) CN101208415B (zh)
DK (1) DK1885827T3 (zh)
ES (1) ES2581763T3 (zh)
HU (1) HUE06751815T2 (zh)
PL (1) PL1885827T3 (zh)
PT (1) PT1885827T (zh)
WO (1) WO2006119047A2 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004565A (zh) * 2013-02-21 2014-08-27 林德股份公司 用于润滑摩擦学系统的方法和装置
TWI605875B (zh) * 2016-10-26 2017-11-21 Nozzle device
CN107378129A (zh) * 2017-09-22 2017-11-24 东莞安默琳机械制造技术有限公司 一种刀具切削加工系统
CN107378635A (zh) * 2017-09-22 2017-11-24 东莞安默琳机械制造技术有限公司 一种超临界二氧化碳集中供液系统
CN107398777A (zh) * 2017-09-22 2017-11-28 东莞安默琳机械制造技术有限公司 一种用于金属加工的超临界二氧化碳复合雾化喷嘴
CN107443163A (zh) * 2017-09-22 2017-12-08 东莞安默琳机械制造技术有限公司 一种刀具冷却润滑系统
CN107443162A (zh) * 2017-09-22 2017-12-08 东莞安默琳机械制造技术有限公司 一种涡流管复合雾化刀具切削加工系统
CN108202271A (zh) * 2018-03-14 2018-06-26 广东技术师范学院 一种基于超临界二氧化碳的低温微量润滑装置
CN109333144A (zh) * 2018-10-29 2019-02-15 广州汇专工具有限公司 一种超临界二氧化碳的传输工艺
CN109955116A (zh) * 2019-04-18 2019-07-02 厦门理工学院 一种冷却用混合物及其发生装置、发生方法和冷却方法
WO2020087918A1 (zh) * 2018-10-29 2020-05-07 汇专科技集团股份有限公司 一种超临界二氧化碳供给调控系统及工艺

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060479A1 (de) * 2004-12-16 2006-06-29 Schaeffler Kg Verfahren und Vorrichtung zum Schmieren und Kühlen eines hochbelasteten Lagers
JP4684951B2 (ja) * 2006-06-16 2011-05-18 トヨタ紡織株式会社 金属材料加工用の潤滑油とそれを用いた金属材料の加工方法
JP2008062361A (ja) * 2006-09-11 2008-03-21 Nippon Oil Corp 極微量油剤供給式切削・研削加工方法および極微量油剤供給式切削・研削加工用油剤組成物
US8048830B1 (en) 2008-06-19 2011-11-01 Cool Clean Technologies, Inc. Method of forming and using carbonated machining fluid
US20090320655A1 (en) * 2008-06-30 2009-12-31 Marion Billingsley Grant Machining tool utilizing a supercritical coolant
US9873852B2 (en) * 2009-10-16 2018-01-23 University Of Virginia Patent Foundation Gas-expanded lubricants for increased energy efficiency and related method and system
US20110262633A1 (en) * 2010-04-27 2011-10-27 Seagate Technology Llc Lubricant deposition onto magnetic media
DE102011102539A1 (de) * 2011-05-26 2012-11-29 Linde Aktiengesellschaft Aerosol-Schmiervorrichtung, Schmieranordnung und Schmierverfahren
JP6259348B2 (ja) * 2014-04-04 2018-01-10 株式会社 エマージー 加工工具冷却装置及び加工方法
US9798275B2 (en) * 2014-06-05 2017-10-24 Clover Technologies Group, Llc System and method for applying lubricant onto a surface
US9381574B1 (en) * 2014-07-18 2016-07-05 Cleanlogix Llc Method and apparatus for cutting and cleaning a superhard substrate
US10007246B2 (en) * 2014-12-02 2018-06-26 Caterpillar Inc. Machining tool utilizing a supercritical coolant
CN105881094A (zh) * 2016-06-13 2016-08-24 镇江市富德数控机床科技有限公司 一种用于数控机床的油气润滑机构
EP3219421A1 (en) 2016-09-09 2017-09-20 Seco Tools Ab Toolholders with fluid supply conduits for supercritical co2
CN107448246A (zh) * 2017-07-26 2017-12-08 中国科学院工程热物理研究所 一种超临界二氧化碳透平发电机
US11602815B2 (en) * 2019-01-31 2023-03-14 Fusion Coolant Systems, Inc. Machining systems utilizing supercritical fluids
WO2020231793A1 (en) 2019-05-10 2020-11-19 Fusion Coolant Systems, Inc. Tooling for machining systems utilizing supercritical machining fluids
CN114310465B (zh) * 2021-12-14 2023-02-28 上海工程技术大学 一种适用于铣床的可变位调压变径的环形微量润滑装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US633466A (en) * 1897-10-20 1899-09-19 George W Miskimen Jr Hot-air furnace.
US4829859A (en) * 1986-08-29 1989-05-16 Ulticon Systems, Inc. Method of high speed machining
US5129190A (en) * 1990-10-31 1992-07-14 Eaton Corporation Machining and apparatus
US5652201A (en) * 1991-05-29 1997-07-29 Ethyl Petroleum Additives Inc. Lubricating oil compositions and concentrates and the use thereof
EP0539055B1 (en) 1991-10-09 1997-03-12 Toyota Jidosha Kabushiki Kaisha Method and apparatus for working on a workpiece, using foamed working liquid in area of contact between the workpiece and working tool
SE505859C2 (sv) * 1996-01-05 1997-10-20 Rolf Skoeld Förfarande för mekanisk bearbetning med användande av en kylande och smörjande komposition, som består av koldioxid med tillsats av ett polärt smörjmedel
US6099937A (en) * 1998-05-11 2000-08-08 Seagate Technology, Inc. High molecular weight fractioned lubricant for use with thin film magnetic media
SE519272C2 (sv) * 1999-05-28 2003-02-11 Volvo Car Corp Metod och anordning vid automatisk spånavverkande bearbetning av ett arbetsstycke
TW552302B (en) * 1999-06-21 2003-09-11 Idemitsu Kosan Co Refrigerator oil for carbon dioxide refrigerant
US6334266B1 (en) * 1999-09-20 2002-01-01 S.C. Fluids, Inc. Supercritical fluid drying system and method of use
US6508259B1 (en) * 1999-08-05 2003-01-21 S.C. Fluids, Inc. Inverted pressure vessel with horizontal through loading
WO2001030945A1 (fr) * 1999-10-25 2001-05-03 Nippon Mitsubishi Oil Corporation Composition de fluide pour systeme de coupe ou de meulage utilisant une quantite de fluide a peine decelable
WO2001087505A1 (en) * 2000-05-18 2001-11-22 S. C. Fluids, Inc. Supercritical fluid cleaning process for precision surfaces
US6710973B2 (en) * 2000-09-18 2004-03-23 Hitachi, Ltd. Single pole type recording head including tapered edges
US6623355B2 (en) * 2000-11-07 2003-09-23 Micell Technologies, Inc. Methods, apparatus and slurries for chemical mechanical planarization
US6875285B2 (en) * 2003-04-24 2005-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for dampening high pressure impact on porous materials
JP4631256B2 (ja) 2003-08-08 2011-02-16 日本精工株式会社 プラスチック成形品の改質方法及びプラスチック成形品
WO2005090490A2 (en) * 2004-03-17 2005-09-29 The Lubrizol Corporation Method to use an emulsified material as a coating
US7713629B2 (en) * 2004-03-26 2010-05-11 Florida State University Research Foundation Hydrophobic fluorinated polyelectrolyte complex films and associated methods
WO2006065869A2 (en) * 2004-12-13 2006-06-22 Cool Clean Technologies, Inc. Cryogenic fluid composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004565A (zh) * 2013-02-21 2014-08-27 林德股份公司 用于润滑摩擦学系统的方法和装置
TWI605875B (zh) * 2016-10-26 2017-11-21 Nozzle device
CN107443162A (zh) * 2017-09-22 2017-12-08 东莞安默琳机械制造技术有限公司 一种涡流管复合雾化刀具切削加工系统
CN107378635A (zh) * 2017-09-22 2017-11-24 东莞安默琳机械制造技术有限公司 一种超临界二氧化碳集中供液系统
CN107398777A (zh) * 2017-09-22 2017-11-28 东莞安默琳机械制造技术有限公司 一种用于金属加工的超临界二氧化碳复合雾化喷嘴
CN107443163A (zh) * 2017-09-22 2017-12-08 东莞安默琳机械制造技术有限公司 一种刀具冷却润滑系统
CN107378129A (zh) * 2017-09-22 2017-11-24 东莞安默琳机械制造技术有限公司 一种刀具切削加工系统
CN108202271A (zh) * 2018-03-14 2018-06-26 广东技术师范学院 一种基于超临界二氧化碳的低温微量润滑装置
CN108202271B (zh) * 2018-03-14 2024-04-19 广东技术师范大学 一种基于超临界二氧化碳的低温微量润滑装置
CN109333144A (zh) * 2018-10-29 2019-02-15 广州汇专工具有限公司 一种超临界二氧化碳的传输工艺
WO2020087918A1 (zh) * 2018-10-29 2020-05-07 汇专科技集团股份有限公司 一种超临界二氧化碳供给调控系统及工艺
CN109955116A (zh) * 2019-04-18 2019-07-02 厦门理工学院 一种冷却用混合物及其发生装置、发生方法和冷却方法
CN109955116B (zh) * 2019-04-18 2023-09-08 厦门理工学院 一种冷却用混合物及其发生装置、发生方法和冷却方法

Also Published As

Publication number Publication date
WO2006119047A2 (en) 2006-11-09
PL1885827T3 (pl) 2016-12-30
JP2008539096A (ja) 2008-11-13
US7414015B2 (en) 2008-08-19
PT1885827T (pt) 2016-07-19
EP1885827A2 (en) 2008-02-13
DK1885827T3 (en) 2016-08-29
US8167092B2 (en) 2012-05-01
US20060247139A1 (en) 2006-11-02
WO2006119047A3 (en) 2007-08-09
ES2581763T3 (es) 2016-09-07
US20080293599A1 (en) 2008-11-27
HUE06751815T2 (hu) 2017-04-28
JP5113040B2 (ja) 2013-01-09
CN101208415B (zh) 2012-04-04
EP1885827A4 (en) 2010-09-08
EP1885827B1 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
CN101208415B (zh) 基于超临界二氧化碳的金属加工润滑制剂
CA2708595C (en) Formulation of a metalworking fluid
Alves et al. Development of new cutting fluid for grinding process adjusting mechanical performance and environmental impact
Lawal et al. Developments in the formulation and application of vegetable oil-based metalworking fluids in turning process
CA2835019C (en) Amine-free voc-free metal working fluid
Alves et al. Vegetable based cutting fluid-an environmental alternative to grinding process
JP4996872B2 (ja) 金属加工用油剤組成物、金属加工方法及び金属加工品
EP2520639A1 (en) Environmental friendly cutting fluid
MX2011002295A (es) Emulsionantes para fluidos de metalurgia.
US7060199B2 (en) Biodegradable functional fluid for mechanical drives
JP2002294272A (ja) 水分散型温間熱間鍛造用潤滑剤及び鍛造加工方法
Clarens et al. Experimental comparison of vegetable and petroleum base oils in metalworking fluids using the tapping torque test
US20060270569A1 (en) Emulsions and products thereof
CN101155901A (zh) 用于金属材料加工的润滑剂及对金属材料进行压力加工的方法
JP2004256771A (ja) 水溶性切研削油剤組成物及びその使用方法
EP3508560A1 (en) Micellar emulsions useful for metalworking applications
RU2404232C2 (ru) Триботехническая добавка
Clarens Carbon Dioxide Based Metal Working Fluids.
Kumar et al. 4 Lubricant Performance
Kandile et al. 13 Stability of Cutting Fluids
Pedišić et al. OCJENA RADNIH SVOJSTAVA SINTETIČKE TEKUĆINE ZA OBRADBU METALA PRI OPERACIJAMA BRUŠENJA
Pedisic et al. PERFORMANCE EVALUATION OF SYNTHETIC METALWORKING FLUID AT GRINDING OPERATIONS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant