CN101203948A - 通过化学喷雾热解在基材上制备氧化锌纳米棒的方法 - Google Patents

通过化学喷雾热解在基材上制备氧化锌纳米棒的方法 Download PDF

Info

Publication number
CN101203948A
CN101203948A CNA2006800170468A CN200680017046A CN101203948A CN 101203948 A CN101203948 A CN 101203948A CN A2006800170468 A CNA2006800170468 A CN A2006800170468A CN 200680017046 A CN200680017046 A CN 200680017046A CN 101203948 A CN101203948 A CN 101203948A
Authority
CN
China
Prior art keywords
base material
zinc oxide
solution
yue
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800170468A
Other languages
English (en)
Other versions
CN101203948B (zh
Inventor
马勒·克朗克斯
伊洛纳·奥加
泰特加纳·德多瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tallinn University of Technology
Original Assignee
Tallinn University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tallinn University of Technology filed Critical Tallinn University of Technology
Publication of CN101203948A publication Critical patent/CN101203948A/zh
Application granted granted Critical
Publication of CN101203948B publication Critical patent/CN101203948B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1258Spray pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明公开了一种在350℃-600℃的适宜沉积温度下通过化学喷雾热解,在基材上制备纳米结构氧化锌层的方法。制备包含作为前体的氯化锌或醋酸锌的水溶液或含水醇溶液,并将其喷雾至预热的基材上,以使得前体反应,从而在基材上形成氧化锌层。还可向溶液中加入硫脲或脲。可使用玻璃、硅或覆盖有金属氧化物的玻璃作为基材。

Description

通过化学喷雾热解在基材上制备氧化锌纳米棒的方法
本申请要求2005年4月14日提交的美国临时申请第60/671232号的优先权,其全部内容在此引入作为参考。
技术领域
本发明涉及氧化锌(ZnO)纳米结构(如纳米棒和纳米针)及其制备方法,更具体地,涉及在各种基材上以适宜的基材沉积温度(约400-600℃),通过化学喷雾热解(CSP)制备包含氧化锌纳米棒或纳米针的高度结构化氧化锌层的方法。
这类纳米棒为高纯度独立单晶。CSP是一种工艺简单的沉积技术,不需要昂贵的设备。从而,相对于可选的方法,本发明提供了一种非常廉价且简单的生产氧化锌纳米结构的方法。
由于具有3.37eV的宽带隙和60meV的大激子结合能,氧化锌成为光电应用中最有希望的材料之一。氧化锌纳米结构还在如太阳能电池、场致发射装置、化学和生物学传感器、光催化剂、发光装置(包括发光二极管和纳米尺度激光器)领域中具有广泛的潜在应用。
背景技术
平坦氧化锌层(即,与包括纳米棒、纳米针、纳米线等结构的层相对)不但广泛用于电子和光电装置,例如作为同时要求高透明度和低电阻的薄膜太阳能电池的透明电极,也应用于薄膜气体传感器、变阻器和表面声波装置中。
平坦氧化锌层可通过包括喷射、化学气相沉积、溶胶凝胶沉积、原子层沉积、分子束外延和不同喷雾热解技术(超声波喷雾、气动喷雾、压力喷雾)的几种技术常规地制备。与其它沉积技术相比,喷雾技术的优点在于其极其简单。从而相对于其它所有技术,高质量金属氧化物半导体薄膜的资本成本和生产成本被期望为最低。此外,该技术还非常适用于大批量生产体系。
化学喷雾热解是一种公知的制备用于电子和光电应用中的金属氧化物、硫化物和碲化物薄膜等的廉价和简单的沉积技术。Hill的生产导电薄膜方法的美国专利第3148084号(1964年9月8日)记载了一种生产均匀微晶半导体和光导电薄膜如硫化镉的方法。与前述公知的形成半导体层的方法相比,该方法操作更加简便,并更加有效、通用和经济。
喷雾技术已经由Chamberlin R.R等(Chemical Spray Deposition forInorganic film,J.Electrochemical Soc.113(1966)86-89)、Feigelson R.S.等(II-VISolid Solution Films By spray Pyrolysis,J.Appl.Phys.48(1977)3162-3164)、Aranovich J.等(Optical and Electrical Properties of ZnO Films Prepared by SprayPyrolysis for Solar Cell Application,J.Vac.Sci.Technol.16(1979)994-1003)、Turcotte R.L.(1982年7月6日提交的“Method to synthesize and Produce ThinFilms by Spray Pyrolysis”的美国专利第4338362号)、Major S.等(Thin SolidFilms,108(1983)333-340、Thin Solid Films,122(1984)31-43、Thin Solid Films,125(1985)179-185)、Ortiz S.等(J.of Non-Crystalline Solids,103(1988)9-13,Materials Chemistry and Physics,24(1990)383-388)、Caillaud F.等(J.EuropeanCeramic Society,6(1990)313-316)在不同材料和应用中使用。
为通过喷雾制备氧化锌平膜,通常可使用锌盐如醋酸锌、硝酸锌等作为前体材料。可将适宜的添加剂如铟盐、铝盐或铽盐加入喷雾溶液中,以使薄膜导电(Sener的关于制备透明导电氧化锌层的欧洲专利申请第336574号,其要求了1988年4月6日优先权),和在喷雾溶液中加入钴盐或乙酰丙酮化铬以促进在喷雾工艺中薄膜的生长(Platts的关于在基材上沉积氧化锌层方法的欧洲专利第490493号,其于1991年11月14日提交并要求1990年12月12日优先权;Banerjee的关于通过化学热解连续沉积透明氧化物材料方法的美国专利第5180686号,其于1993年1月19日出版)。
由于其吸收紫外线辐射的性质,氧化锌纳米粉末还广泛用于例如遮光剂、油漆、塑料、陶瓷中。可使用不同方法生产这类粉末。球形ZnO微晶可通过喷雾热解得到(参见,例如M.Andres-Verges等的J.Materials Science27(1992)3756-3762,Kikuo Okuyama等的Chemical Engineering Science58(2003)537-547,Kang,Y.C.等的Journal of Aerosol Science,26(1995)1131-1138)。在Lieber的关于制备金属氧化物纳米棒方法的美国专利第6036774号(1997年1月22日提交,2000年3月14日授权)中,记载了具有1-200nm直径、5-2000长宽比的金属氧化物纳米棒,该纳米棒通过在炉中的可控蒸汽-固体生长工艺,由金属蒸汽源(如大量金属氧化物粉末与碳粉的混合物)和低浓度的氧气生产。
不同尺寸的棒状氧化锌纳米微粒/晶体通过溶液沉积(M.Andres-Verges等,J.Materials Science 27(1992)3756-3762)、在溶液中的热液合成(Wei H.等的Materals Science and Engineering A,393(2005)80-82,Bai F.等的MaterialsLetters 59(2005)1687-1690,Guo M.等的Applied Surface Science,In Press,Corrected Proof,可于2005年1月7日在线获得,Kiwamu Sue等的MaterialsLetters,58(2004)3350-3352)、化学浴沉积(A.M.Peiró等的Thin Solid Films,InPress,Corrected Proof,可于2005年1月20日在线获得,Zhuo Wang的Journalof Solid State Chemistry,177(2004)2144-2149等)、热或物理气相沉积(Mardilovich P.等的US6770353B1;D.W.Zeng等的Journal of Crystal Growth,266(2004)511-518)、化学气相沉积(G.Z.Wang等的Materials Letters,58(2004)2195-2198,Jae Young Park等的Journal of Crystal Growth,In Press,Corrected Proof,可于2004年12月15日在线获得,X.Lu等的美国专利申请第2003/0213428A1号,Yi G.C.等的US2004/0127130A1和2004/0252737A1及PCT申请WO2004/114422A1)制备。
然而,这些背景技术没有建议将化学喷雾热解用于制备在各种基材上的高度结构化氧化锌,即包含ZnO纳米棒或纳米针的纳米结构层。
发明内容
根据本发明在基材上生长纳米结构氧化锌(ZnO)多个层(layers)的方法,包括加热基材至预定温度,采用喷雾热解将包含前体(如氯化锌(ZnCl2)或醋酸锌(Zn(CH3COO)2))和溶剂的溶液雾化成微小离散液滴的步骤;和采用预定的溶液供给速率向基材上沉积所述雾化溶液的步骤。当所述液滴到达基材时,溶剂蒸发,且前体反应,从而在所述基材上形成大量氧化锌纳米棒(或在一些情况下形成纳米针)。
使用氯化锌或醋酸锌的水溶液或含水醇溶液。通过借助于超声或气动喷雾技术对溶液进行雾化来生产所述溶液的细小液滴。沉积工艺在使用空气、压缩空气、氮气或氩气作为载气下实施。
氯化锌的水溶液或含水醇溶液可另外包含硫脲(thiourea)(硫脲(thiocarbamide)SC(NH2)2)或脲(尿素(carbamide),OCN2H4)。向醋酸锌的水溶液或含水醇溶液中加入硫脲或脲在一些情况下也是有益的。
基材可以是例如玻璃、硅或石英(石英载片)。所述基材可由不同金属氧化物(如氧化铟锡、氧化锡、氧化钛、氧化锌)的扁平层覆盖。
纳米柱氧化锌层可由具有50nm至6-7(six-seven)微米长度的良好生长的单晶氧化锌六边形纳米棒组成,所述棒的直径可在几十纳米-1微米之间变化。
氧化锌晶体的形状和尺寸受几个参数控制,该参数包括生长温度、储液组成、储液中前体的浓度、溶液供给速率、基材类型、金属氧化物扁平层的类型(也称作底层)和载气流速。
附图说明
图1为纳米结构氧化锌层的SEM横截面,该氧化锌层由氯化锌水溶液(0.05mol/l)以2.4毫升/分钟的溶液供给速率,沉积在置于加热至高达600℃的熔化(soldered)锡浴上的玻璃基材上;
图2为纳米结构氧化锌层的SEM横截面,该氧化锌层由氯化锌水溶液(0.1mol/l)以2.4毫升/分钟的溶液供给速率沉积在使用导电氧化铟锡(ITO)层覆盖的玻璃基材上,其中所述玻璃基材放置在加热至高达600℃的熔化锡浴上;
图3为纳米结构氧化锌层表面的SEM显微图片,该氧化锌层由氯化锌水溶液(0.1mol/l)以2.4毫升/分钟的溶液供给速率,沉积在覆盖有具有约300nm厚度的ZnO∶In致密薄膜的玻璃基材上,其中所述玻璃基材放置在加热至600℃的熔化锡浴上;
图4为纳米结构氧化锌层的SEM横截面,该氧化锌层通过将浓度为0.2mol/l的氯化锌溶液以1.7毫升/分钟的溶液供给速率,沉积在置于加热至高达600℃的熔化锡浴上的玻璃基材上制备;
图5为纳米结构氧化锌层的SEM横截面,该氧化锌层通过将浓度为0.2mol/l的氯化锌溶液以3.3毫升/分钟的溶液供给速率,沉积在置于加热至高达600℃的熔化锡浴上的玻璃基材上制备;
图6A为纳米结构氧化锌层的SEM显微图片,该氧化锌层通过将浓度为0.1mol/l的氯化锌溶液以2.3毫升/分钟的溶液供给速率,沉积在置于加热至高达525℃的熔化锡浴上的玻璃基材上制备;
图6B为纳米结构氧化锌层的SEM横截面,该氧化锌层通过将浓度为0.1mol/l的氯化锌溶液以2.3毫升/分钟的溶液供给速率,沉积在置于加热至高达525℃的熔化锡浴上的玻璃基材上制备;
图7为纳米结构氧化锌层的SEM横截面视图,该氧化锌层由以Zn∶S=1∶1的摩尔比包含氯化锌(0.05mol/l)和硫脲(tu)的水溶液,沉积在置于加热至高达620℃的熔化锡浴上的玻璃基材上;
图8为纳米结构氧化锌层的SEM横截面视图,该氧化锌层由以Zn∶S=3∶1的摩尔比包含氯化锌(0.05mol/l)和硫脲的水溶液,沉积在置于加热至高达620℃的熔化锡浴上的玻璃基材上;
图9为纳米结构氧化锌层的SEM横截面视图,该氧化锌层由浓度为0.1mol/l的具有氯化锌的异丙醇和水的溶液(体积比为1∶1)以2.0毫升/分钟溶液供给速率,沉积在置于加热至高达525℃的熔化锡浴上的玻璃基材上;
图10为纳米结构氧化锌层的SEM横截面视图,该氧化锌层由以1∶1的摩尔比包含氯化锌(0.1mol/l)和脲的溶液以2.2毫升/分钟的溶液供给速率,沉积在置于加热至高达580℃的熔化锡浴上的玻璃基材上;
图11为在样品储液(在620℃恒定锡浴温度下制备,基材表面温度(生长温度)约500℃)中对于具有不同量硫脲(tu)的层,在XRD图形中氧化锌(002)峰强度与(101)平面强度之比(I(002)/I(101));
图12为图1所示样品的XRD图形;
图13为图2所示样品的XRD图形;
图14为图3所示样品的XRD图形;
图15为氧化锌纳米棒的RHEED图形;
图16为氧化锌纳米棒的近带边缘(near band edge)PL光谱;
图17为纳米结构氧化锌层的SEM横截面视图,该氧化锌层由醋酸锌的含水醇溶液(0.2mol/l)沉积在置于加热至高达450℃的熔化锡浴上的玻璃基材上;
图18为纳米结构氧化锌层表面的SEM显微图片,该氧化锌层由醋酸锌的含水醇溶液(0.2mol/l)沉积在置于加热至高达450℃的熔化锡浴上的玻璃基材上;
图19为包含氧化锌纳米针的纳米结构氧化锌层的近带边缘PL光谱。
具体实施方式
本发明的在基材上制备包含纳米棒或纳米针的纳米结构氧化锌层的方法需要包含前体如锌盐即氯化锌(ZnCl2)或醋酸锌(Zn(CH3COO)2)的溶液。可使用水溶液或含水醇溶液,其中溶液中氯化锌的浓度可为约10mmol-约0.4mol/升,优选约0.05mol/l-0.2mol/l。
适用于该纳米结构氧化锌层的基材为玻璃、硅、石英、或金属氧化物(如氧化铟锡、氧化钛、氧化锌)覆盖的玻璃。该基材在沉积前必须加热,其中其表面(在其上将制备纳米结构ZnO层-下文中也称作第一表面)温度对于硅和石英为约400-约650℃,对于玻璃和覆盖有金属氧化物的玻璃为400℃-600℃。该温度也称作生长温度。
可使用不同方法加热该基材。例如,为保证基材的均匀温度,将基材置于熔化金属浴上(面向熔化金属的表面在下文中也称作第二表面),并通过控制所述熔化金属的温度间接控制基材第一表面的温度。可使用具有低蒸气压的金属如锡(Sn)作为所述熔化金属。
此外,可使用热板作为加热元件代替熔化金属浴。
显而易见在加热元件(如熔化金属)与基材第一表面的温度间存在温差,而该温差对于类似玻璃和覆盖有金属氧化物的玻璃的基材是实质性的,对于硅则近似为零。例如如果使用熔化金属浴,则与具有约1mm厚度玻璃/石英基材的约400℃-600℃生长温度范围的生长温度相比,熔化金属的温度高出约70-约130℃。
也可使用其它本领域公知的方法加热所述基材。
由于需要使用更少的能量预热基材和维持该预热的温度,从而较低的生长温度是优选的。
然后实施雾化,即生产所需尺寸的溶液小液滴喷雾。可使用任何适宜的方法,如超声喷雾器、气动喷雾器。
随后将溶液的小液滴喷雾指向基材,从而在基材上形成包括纳米棒或纳米针的纳米结构氧化锌层。纳米棒或纳米针的取向不依赖于施加在基材上的喷雾蒸汽的方向,而是取决于基材的性质(或在可能的情况下,取决于基材上的金属氧化物层的性质)。
沉积可在开放体系中实施。可使用压缩空气(2-3巴)作为所述沉积工艺的载气。然而,如果需要还可使用氮气或氩气。载气的流速优选约5-约9升/分钟。
根据本发明另一个实施方式,氯化锌溶解在包含例如比例为1∶1-2∶3(体积比)的水和适宜的醇(如丙醇、异丙醇、乙醇或甲醇)的溶剂中。与使用水溶液时相比,含水醇溶液使得所述工艺可在加热元件的较低温度下实施。
根据本发明的另一个实施方式,溶液可另外包含硫脲。选择硫脲的量,以使得前体Zn∶S的摩尔比为1∶1-4∶1。
向该溶液中加入硫脲使得能够生长由高度c轴取向的ZnO柱组成的薄膜(图8)。
根据本发明的另一个实施方式,溶液可另外包含作为前体的脲(尿素,OC(NH2)2),其中该溶液中前体比例ZnCl2∶OC(NH2)2为约1∶1-约4∶1。
根据本发明的另一个实施方式,使用醋酸锌作为前体,即将二水合醋酸锌溶解在水溶液或含水醇溶液中。可制备在中间及在叶状(leaf-like)颗粒上/在ZnO薄膜表面上包含纳米针(具有锥形和尺寸:底部直径为5-10至50nm,长度高达200nm)的氧化锌层。沉积温度可在约350-450℃之间变化,优选370-400℃。溶液浓度可在约0.1mol/l-约0.4mol/l之间变化。
实施例
制备氧化锌纳米柱层的几个样品,其中改变以下参数:生长温度、储液组成、储液中前体浓度、溶液供给速率、基材类型、底层(金属氧化物)类型和载气流速。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和光致发光(PL)技术研究样品。结果示于图1-19中。
溶液在室温(约18-约25℃)下制备,但通常溶液温度不是关键的。
使用氯化锌(pro analysis,Merck)或二水合醋酸锌(pro analysis,Merck)、硫脲(pro synthesis,Merck)、脲(pro synthesis,Merck)、2-丙醇(pro analysis,Merck)、乙醇(pro analysis,Merck)、去离子水(具有18MΩ·cm的比电阻)作为原料。
使用熔化金属浴作为加热元件。该浴为定做的不锈钢圆筒,直径80mm、深20mm,中间具有用于热电偶的空腔。该浴的温度使用直接与该浴接触的热电偶和温度控制计(Dwyer Instruments的Love 16010)进行设定和电子控制。采用空气雾化喷嘴(Spraying Systems的W/O SU 1/4JN-SS;能够设定不同溶液的流速)对溶液进行雾化,其包括流体盖PF1650-SS和空气盖PA64-SS。载气流速可通过EK-4AR流量计(Kytl Incorporated)控制。
所述层由良好生长的氧化锌六边形棒组成,具有500-800nm至高达7000nm的长度,棒直径可在20nm-1000nm间变化。晶体的长宽比(长度对直径)为1.5-20。
X射线衍射(XRD)研究
记录制备的沉积在不同基材上的层的XRD衍射图形。衍射图上沉积层的复制品(replica)属于在400-600℃沉积温度下独立于所述基材的六边形氧化锌(PDF 36-1451)(如果所述溶液含有硫脲,则当在溶液中形成的氯化锌硫脲复合物的分解为放热过程时,温度将会上升,这将是适宜的(Krunks M.等的Journal Thermal analysis and Calorimetry,72(2003)497-506))。如果在玻璃和导电氧化物覆盖的基材上生长(图12和13),薄膜中的微晶在(002)方向(垂直于基材的c轴)取向。当ZnO纳米棒在玻璃或ITO基材上制备时,峰强度比例(I(002)/I(101))约为10。在薄的ZnO平膜上沉积所述溶液,该层中的晶体显示出优选的在(101)方向的取向(图14)。ZnO平膜具有50-200nm厚度,并通过喷雾热解溶解在去离子水中的二水合醋酸锌溶液而进行制备。向该溶液中以1at%的量加入铟(来自氯化铟),以使得平膜导电。(显而易见,ZnO平膜也可采用其它方法制备,例如采用RF磁控管溅射技术)。可以发现在溶液中使用硫脲使得能够生长高度c轴取向的ZnO棒/晶体,通过溶液中Zn∶S摩尔比的优选的取向演变示于图11中。
透射电子显微镜(TEM)研究
在TEM EMV-100BR上研究喷雾纳米棒结构。对明视场(B.F.)和暗视场(D.F.)图像均进行研究。在100kV加速电压下实施TEM和反射高能电子衍射(RHEED)研究。采用标准C(Pt)复制法。纳米棒的RHEED图案示于图15中。TEM研究证实生长的棒为ZnO单晶。
光致发光(PL)研究
在10K下测量的氧化锌纳米棒的近带边缘光致发光(PL)光谱(激光激发波长325nm)示于图16中。PL光谱在3.356eV处表现出非常尖锐的发射峰,在3.361和3.376eV处具有两个伴线(sattelite)。该记录的近带边缘光致发光光谱和PL绿色发射带的缺失证实了氧化锌纳米棒的高纯度和完美的结晶度。在表面上包含纳米针的样品在UV区域的PL光谱示于图19中,表明氧化锌纳米针同样具有高纯度和完美的结晶度。
本文所示的示例性实施方式阐述了本发明的原理,但不用于将本发明穷举或限制于该公开的形式;本发明的范围应由权利要求及其等价形式定义。

Claims (25)

1.一种在具有第一表面和第二表面的基材上制备纳米结构氧化锌(ZnO)层的方法,该方法包括下列步骤:
加热所述基材至预定温度;
采用喷雾技术使包含前体和溶剂的溶液雾化成微小离散的液滴,其中所述前体选自氯化锌(ZnCl2)和醋酸锌(Zn(CH3COO)2);和
在所述基材的第一表面上采用预定的溶液供给速率沉积所述雾化溶液,其中当所述溶剂到达所述基材时,所述溶剂蒸发,且所述前体反应形成纳米结构氧化锌层。
2.根据权利要求1的方法,其中所述溶剂为H2O。
3.根据权利要求1或2的方法,其中所述溶剂包含醇。
4.根据权利要求3的方法,其中H2O和所述醇的体积比为约1∶1-约2∶3。
5.根据权利要求3或4的方法,其中所述醇选自丙醇、异丙醇、乙醇和甲醇。
6.根据权利要求2或3的方法,其中所述溶液另外包含硫脲(SC(NH2)2)。
7.根据权利要求6的方法,其中所述溶液中的前体摩尔比ZnCl2∶SC(NH2)2为约1:1-约4∶1。
8.根据权利要求2或3的方法,其中所述溶液另外包含脲(OC(NH2)2)。
9.根据权利要求8的方法,其中所述溶液中的前体摩尔比ZnCl2∶OC(NH2)2为约1∶1-约4∶1。
10.根据权利要求1的方法,其中所述基材第一表面的预定温度为约350℃-约600℃。
11.根据权利要求6的方法,其中所述基材第一表面的预定温度为约400℃-约600℃。
12.根据权利要求8的方法,其中所述基材第一表面的预定温度为约400℃-约600℃。
13.根据权利要求2的方法,其中氯化锌的浓度为约0.01摩尔/升-约0.4摩尔/升。
14.根据权利要求1的方法,其中所述预定溶液供给速率为约1毫升/分钟-约5毫升/分钟。
15.根据权利要求1的方法,其中所述基材为玻璃。
16.根据权利要求1的方法,其中所述基材为覆盖有金属氧化物的玻璃。
17.根据权利要求16的方法,其中所述金属氧化物选自氧化铟锡、氧化锡、氧化钛和氧化锌。
18.根据权利要求1的方法,其中所述基材选自硅和石英。
19.根据权利要求18的方法,其中所述基材第一表面的预定温度为约350℃-约650℃。
20.根据权利要求1的方法,其中所述沉积在开放体系中实施,使用空气或压缩空气作为载气。
21.根据权利要求20的方法,其中所述载气流速为约5升/分钟-约9升/分钟。
22.根据权利要求1的方法,其中使用氮气或氩气作为载气。
23.根据权利要求1的方法,其中所述基材的加热通过使加热元件与所述基材的第二表面接触来实施,且所述基材第一表面的温度通过控制所述加热元件的温度来间接控制。
24.权利要求23的方法,其中使用熔化金属浴作为所述加热元件,使用具有约1mm厚度的玻璃作为所述基材,且在所述金属浴中所述熔化金属的温度为约400℃-约650℃。
25.根据权利要求2的方法,其中醋酸锌的浓度为约0.1摩尔/升-约0.4摩尔/升。
CN2006800170468A 2005-04-14 2006-04-13 通过化学喷雾热解在基材上制备氧化锌纳米棒的方法 Expired - Fee Related CN101203948B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67123205P 2005-04-14 2005-04-14
US60/671,232 2005-04-14
PCT/EE2006/000002 WO2006108425A1 (en) 2005-04-14 2006-04-13 Method of preparing zinc oxide nanorods on a substrate by chemical spray pyrolysis

Publications (2)

Publication Number Publication Date
CN101203948A true CN101203948A (zh) 2008-06-18
CN101203948B CN101203948B (zh) 2010-06-16

Family

ID=36649423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800170468A Expired - Fee Related CN101203948B (zh) 2005-04-14 2006-04-13 通过化学喷雾热解在基材上制备氧化锌纳米棒的方法

Country Status (6)

Country Link
US (2) US20080280058A1 (zh)
EP (1) EP1880413B1 (zh)
CN (1) CN101203948B (zh)
AU (1) AU2006233503A1 (zh)
CA (1) CA2649200C (zh)
WO (1) WO2006108425A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283412A (zh) * 2012-11-19 2016-01-27 凯密特尔有限责任公司 用纳米晶氧化锌层涂布金属表面的方法、用于此目的的含水组合物以及这类涂布表面的用途
CN106814113A (zh) * 2017-03-02 2017-06-09 吉林大学 一种基于ZnO/CuO异质结结构纳米材料的H2S传感器及其制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2788095B1 (fr) * 1998-12-30 2001-03-02 Valeo Cylindre hydraulique emetteur d'embrayage comportant des moyens perfectionnes de retenue axiale de la tige de piston
EP2190577A4 (en) * 2007-08-31 2011-06-22 Univ Washington SYNTHESIS OF NANOSTRUCTURED PHOTOACTIVE FILMS WITH CONTROLLED MORPHOLOGY WITH THE HELP OF A FLAMMEDAEROSOL REACTOR
US20100144088A1 (en) * 2008-12-05 2010-06-10 Electronics And Telecommunications Research Institute Method for forming metal oxide and method for forming transistor structure with the same
US8790614B2 (en) * 2009-01-09 2014-07-29 Colorado School Of Mines ZnO structures and methods of use
WO2011036999A1 (en) 2009-09-24 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9048142B2 (en) * 2010-12-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102644100B (zh) * 2011-02-18 2014-07-16 中国科学院合肥物质科学研究院 棒-针状纳米氧化锌阵列及其制备方法
CN102181850B (zh) * 2011-03-29 2012-07-04 北京化工大学 一种氧化锌纳米薄膜的原位合成方法
WO2014078423A1 (en) * 2012-11-13 2014-05-22 Ndsu Research Foundation Nanostructured materials
JP2014195243A (ja) 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd 半導体装置
US9612795B2 (en) 2013-03-14 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Data processing device, data processing method, and computer program
CN103303965B (zh) * 2013-05-14 2015-04-01 上海交通大学 顶端多尖型氧化锌纳米棒结构的制备方法
US9349418B2 (en) 2013-12-27 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
GB2528908A (en) * 2014-08-04 2016-02-10 Isis Innovation Thin film semiconductor
JP6689062B2 (ja) 2014-12-10 2020-04-28 株式会社半導体エネルギー研究所 半導体装置
ES2629446B1 (es) * 2015-10-02 2018-05-29 Universitat Politécnica de Catalunya Método de control para sensores químicos de gases y sistema de detección de gases
US10008502B2 (en) 2016-05-04 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Memory device
CN109628910B (zh) * 2017-10-07 2023-06-30 株式会社Flosfia 形成膜的方法
CN109930135A (zh) * 2019-03-28 2019-06-25 广东省测试分析研究所(中国广州分析测试中心) 梯度自掺杂多元金属氧化物半导体薄膜的喷雾热解制备方法
CN112133638B (zh) * 2020-04-28 2023-06-16 北京环境特性研究所 一种基于前驱溶液控制ZnO膜成膜厚度的方法及其应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL130859C (zh) * 1961-08-30 1900-01-01
LU56578A1 (zh) * 1968-07-24 1970-01-26
US4338362A (en) * 1981-02-03 1982-07-06 Radiation Monitoring Devices, Inc. Method to synthesize and produce thin films by spray pyrolysis
US5180686A (en) * 1988-10-31 1993-01-19 Energy Conversion Devices, Inc. Method for continuously deposting a transparent oxide material by chemical pyrolysis
US6036774A (en) * 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
US6979489B2 (en) * 2002-05-15 2005-12-27 Rutgers, The State University Of New Jersey Zinc oxide nanotip and fabricating method thereof
KR20040059300A (ko) * 2002-12-28 2004-07-05 학교법인 포항공과대학교 자성체/나노소재 이종접합 나노구조체 및 그 제조방법
US6770353B1 (en) * 2003-01-13 2004-08-03 Hewlett-Packard Development Company, L.P. Co-deposited films with nano-columnar structures and formation process
US20040252737A1 (en) * 2003-06-16 2004-12-16 Gyu Chul Yi Zinc oxide based nanorod with quantum well or coaxial quantum structure
CN1235808C (zh) * 2004-01-19 2006-01-11 上海交通大学 纳米管定向排列的硫化锌纳米材料的制备方法
CN1234611C (zh) * 2004-01-19 2006-01-04 上海交通大学 纳米管定向排列的氧化锌纳米材料的制备方法
SG136949A1 (en) * 2004-04-15 2007-11-29 Agency Science Tech & Res A biomimetic approach to low-cost fabrication of complex nanostructures of metal oxides by natural oxidation at low-temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283412A (zh) * 2012-11-19 2016-01-27 凯密特尔有限责任公司 用纳米晶氧化锌层涂布金属表面的方法、用于此目的的含水组合物以及这类涂布表面的用途
CN106814113A (zh) * 2017-03-02 2017-06-09 吉林大学 一种基于ZnO/CuO异质结结构纳米材料的H2S传感器及其制备方法

Also Published As

Publication number Publication date
EP1880413B1 (en) 2017-10-18
US20080280058A1 (en) 2008-11-13
WO2006108425A1 (en) 2006-10-19
US20130236646A1 (en) 2013-09-12
EP1880413A1 (en) 2008-01-23
CA2649200A1 (en) 2006-10-19
US8808801B2 (en) 2014-08-19
CA2649200C (en) 2015-06-30
CN101203948B (zh) 2010-06-16
AU2006233503A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
CN101203948B (zh) 通过化学喷雾热解在基材上制备氧化锌纳米棒的方法
US7767140B2 (en) Method for manufacturing zinc oxide nanowires and device having the same
Lokhande et al. Studies on cadmium oxide sprayed thin films deposited through non-aqueous medium
Li et al. Sol–gel preparation of transparent zinc oxide films with highly preferential crystal orientation
Shewale et al. Preparation of fluorine-doped tin oxide films at low substrate temperature by an advanced spray pyrolysis technique, and their characterization
US9236157B2 (en) Transparent electrically conducting oxides
Ogi et al. Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis
Mahajan et al. Intermittent spray pyrolytic growth of nanocrystalline and highly oriented transparent conducting ZnO thin films: Effect of solution spray rate
Hsu et al. Deposition of transparent and conductive ZnO films by an atmospheric pressure plasma-jet-assisted process
Periasamy et al. Effect of annealing on the characteristics of nanocrystalline ZnO thin films
AU2009316769A1 (en) Conductive film formation on glass
CN104540777A (zh) 用于形成透明导电膜的核-壳纳米颗粒及使用其的透明导电膜的制造方法
Shahul Hameed et al. Effect of silver doping on optical properties of nanoflower ZnO thin films prepared by spray pyrolysis technique
US20140251666A1 (en) Laminated body and manufacturing process therefor
Gaikwad et al. Nanocrystalline ZnO films deposited by spray pyrolysis: Effect of gas flow rate
Abdul-Hamead Properties of SnO2 thin films deposited by chemical spray pyrolysis using different precursor solutions
Gallage et al. On‐Site Fabrication of Crystalline Cerium Oxide Films and Patterns by Ink‐Jet Deposition Method at Moderate Temperatures
Yilmaz et al. Fabrication of ZnO nanorods by simplified spray pyrolysis
Kim Parametric dependence of CsPbI2Br perovskite film growth using a mist chemical vapor deposition method
Kashif et al. ZnO nanoporous structure growth, optical and structural characterization by aqueous solution route
Rameshkumar et al. Structural Studies of ZnO: Al Thin Film Synthesized by Low Cost Spray Pyrolysis for Optoelectronic Applications
Bendahmane et al. Growth and properties of SnO 2 thin films obtained by spray pyrolysis technique
Narwade et al. Spray-pyrolysis technique for the synthesis of metal oxide nanostructures
Ukoba et al. Optimising Aged Nanostructured Nickel Oxide Thin Films for Solar Cells Fabrication.
Hussein et al. Effect of capillary tube on structural and Optical Properties of SnO2 Thin Films Prepared by APCVD

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100616

Termination date: 20160413