CN101203603B - 凝集素样蛋白激酶胁迫相关多肽和在植物内使用的方法 - Google Patents

凝集素样蛋白激酶胁迫相关多肽和在植物内使用的方法 Download PDF

Info

Publication number
CN101203603B
CN101203603B CN2006800217407A CN200680021740A CN101203603B CN 101203603 B CN101203603 B CN 101203603B CN 2006800217407 A CN2006800217407 A CN 2006800217407A CN 200680021740 A CN200680021740 A CN 200680021740A CN 101203603 B CN101203603 B CN 101203603B
Authority
CN
China
Prior art keywords
plant
lpksrp
nucleic acid
stress
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800217407A
Other languages
English (en)
Other versions
CN101203603A (zh
Inventor
D·艾伦
L·V·米尔斯
P·普恩特
N·范蒂伦
O·柯斯塔·E·赛尔瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Plant Science GmbH
Original Assignee
BASF Plant Science GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Plant Science GmbH filed Critical BASF Plant Science GmbH
Publication of CN101203603A publication Critical patent/CN101203603A/zh
Application granted granted Critical
Publication of CN101203603B publication Critical patent/CN101203603B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Abstract

本发明提供由编码凝集素样蛋白激酶胁迫相关多肽(LPKSRP)的核酸转化的转基因植物,其中在植物内该核酸序列的表达导致与植物的野生型品种相比,增加的植物生长和/或环境胁迫耐受性。还提供农产品,包括由该转基因植物产生的种子。还提供分离的LPKSRP和编码LPKSRP的分离的核酸、载体以及包含载体的宿主细胞。

Description

凝集素样蛋白激酶胁迫相关多肽和在植物内使用的方法
发明背景 
发明领域:本发明一般地涉及编码与植物内非生物性胁迫应答和非生物性胁迫耐受性有关的多肽的核酸序列。具体地,本发明涉及编码赋予植物增加的生长和/或赋予植物增加的干旱耐受性、炎热耐受性、寒冷耐受性和/或盐耐受性的多肽的核酸序列。 
背景技术:非生物性环境胁迫如干旱胁迫、盐胁迫、热胁迫和寒胁迫是植物生长和生产力的主要限制性因素。因这些胁迫所致的主要作物如大豆、稻、玉蜀黍(玉米)、棉花和小麦的作物损失和作物产量损失代表重要的经济和政治因素并且是多个欠发达国家中食品短缺的原因。植物在其生活周期中经常暴露于环境水含量降低的条件。大多数植物已经对这些条件演化了自我保护策略。然而,当干旱条件过于严重并且持续时间太长,则严重影响多数作物植物的植物发育、生长和产量。持续暴露于干旱条件造成植物代谢的重大改变,这最终导致细胞死亡并且因此造成产量损失。 
开发胁迫耐受性植物是有可能解决或至少促进这些问题中的某些问题解决的策略。然而,开发对这些类型胁迫表现抗性(耐受性)的新植物品系的传统植物育种策略进展相对缓慢并且需要用于与所需的品系杂交的特定抗性品系。有限的胁迫耐受性的种质资源和在远缘相关植物物种间杂交的不兼容性是传统育种中所遭遇的严重问题。此外,在干旱、寒冷和/或盐耐受性模式植物内引起干旱、寒冷和盐耐受性的细胞过程本身是复杂的并涉及细胞性适应的多种机制和众多代谢途径。胁迫抗性的这种多因素性质不仅造成对耐受性的育种基本不成功,而且还限制使用生物技术方法遗传改造耐受性植物的能力。 
干旱胁迫、热胁迫、寒胁迫和盐胁迫对植物生长具有重要的共同主题, 即水的可获得性。如上所讨论,大多数植物已经对脱水条件演化了自我保护策略;然而,当干旱条件太严重性并且持续时间太长,则严重影响大多数作物植物的植物发育、生长和产量。此外,大多数作物植物对土壤内的较高盐浓度极其敏感。因为某些土壤内的高盐含量导致由细胞摄取可得到的水更少,因此高盐含量对植物的影响与干旱对植物的影响类似。此外,在冰冻温度下,植物细胞因始于质外体并从共质体内抽取水分的冰形成而失水。通常,植物对每种这类胁迫条件的分子应答机制是相同的,并且蛋白激酶如凝集素样蛋白激酶在这些分子机制中发挥重要作用。 
蛋白激酶代表一个超家族,这个超家族的成员催化ATP的磷酸基团可逆地转移至靶多肽内的丝氨酸、苏氨酸和酪氨酸氨基酸侧链上。蛋白激酶是植物内信号过程中的基本元件并且据报道在感知并转导允许细胞(和植物)对环境刺激做出应答的信号中发挥关键作用。 
一种类型的蛋白激酶是凝集素样蛋白激酶(LLPK)或凝集素受体激酶。这种类型蛋白激酶的结构特征包括氨基末端的膜靶向信号序列、豆科植物的凝集素样胞外结构域、单次跨膜结构域和特征性丝氨酸/苏氨酸蛋白激酶催化结构域。据报道该家族的成员参与细胞与细胞通讯、防御捕食者和病原体以及植物发育和繁殖(Barre等,2002,Crit.Rev.Plant Sci.21:379-399)。已经在拟南芥(Arabidopsis)内鉴定出42种推定的凝集素受体激酶和9种可溶性豆科植物凝集素序列。 
虽然已经表征了植物内参与胁迫应答和水利用效率的一些基因,但是对赋予胁迫耐受性及水利用效率的植物基因的表征和克隆大多仍不完整并且零散。例如,某些研究已经表明在一些植物内的干旱胁迫和盐胁迫可以归咎于基因累加效应,相反,另外的研究表明特定基因在渗透胁迫条件下在植物营养组织内被转录性激活。虽然通常假定胁迫诱导性蛋白在耐受性中有作用,然而仍缺乏直接证据,并且众多胁迫应答性基因的功能是未知的。 
在全部陆生光合生物内CO2吸收与水丢失之间存在重要的受生理化学限制的平衡(Taiz和Zeiger 1991 Plant Physiology,Benjamin/Cummings Publishing Co.,第94页)。CO2需要在水溶液内存在以便CO2固定酶如Rubisco(核酮糖1,5-二磷酸羧化酶/加氧酶)和PEPC(磷酸烯醇式丙酮酸羧化酶)发挥作用。因为CO2扩散需要潮湿的细胞表面,当湿度低于100%时,蒸发必定发生(Taiz和Zeiger 1991 Plant Physiology,Benjamin/CummingsPublishing Co.,第257页)。植物具有多种减少水丢失的生理机制(例如蜡质角质层、气孔关闭、叶毛、下陷的气孔窝)。由于这些障碍物不区分水流和CO2流,这些水保存措施将也起到增加CO2摄取阻力的作用(Kramer1983 Water Relations of Plants,Academic Press第305页)。光合作用性CO2摄取对光能自养植物内的植物生长和生物量累积是绝对必需的。水利用效率(WuE)是估计水消耗与CO2摄取/生长之间平衡的常用参数(Kramer 1983 Water Relations of Plants,Academic Press第405页)。WUE已经以多种方式定义并度量。一种方法是计算完整植物干重对植物在整个生活期间消耗的水重量的比率(Chu等1992 Oecologia 89:580)。另一种变体在对生物量累积和水利用测量时使用较短的时间间隔(Mian等1998Crop Sci.38:390)。经常使用来自受限制的植物部分的度量值,例如,仅测量地上部分生长物和水利用(Nienhuis等1994 Amer J Bot 81:943)。WUE又定义为来自叶或叶部分的CO2摄取与水蒸气损失的比例,该比例往往在非常短的时间段(秒/分钟)范围内测量(Kramer 1983 Water Relations ofPlants,Academic Press第406页)。还使用固定于植物组织内并用同位素比率质谱仪测量的13C/12C比率来估计使用C3光合作用的植物内的WUE(Martin等1999 Crop Sci.1775)。 
WUE的增加大体说明生长和水消耗相对改进的效率,但是本身并没有描述这两个过程中哪个一过程(或这两个过程)已经变化。在选择改良作物的性状中,在生长不改变时因水利用减少所致的WUE的增加对于输入水成本高的灌溉农业特别有利。在水利用没有明显上扬时,由生长增加主要推动的WUE增加将可应用于全部农业系统。在水供应不是限制性的众多农业系统中,生长的增加,即便以增加使用水为代价(即WUE不变)也能够增加产量。因此需要同时增加WUE和生物量累积的新方法以改进 农业生产力。由于WUE整合了与重要代谢和水利用有关的众多生理过程,因此WUE通常是因环境相互作用而具有庞大种类基因型的高度多基因性性状(Richards等2002 Crop Sci.42:111)。出于这些原因和其它原因,传统育种计划中选择WUE变化的尝试很少成功。 
因此,需要鉴定在胁迫耐受性植物和有效利用水的植物内所表达的具有对其宿主植物及其它植物物种赋予胁迫耐受性和水利用效率的能力的基因。新产生的胁迫耐受性植物将具有很多优势,例如因减少植物物种的水需要而增加可栽培作物植物的范围。其它受欢迎的优势包括抗倒伏(即幼苗或茎应答于风、雨、害虫或疾病而弯曲)增加。 
发明简述 
本发明部分地满足对鉴定能够在过量表达时赋予植物胁迫耐受性的新的独特序列的需要。本发明描述了新种类的凝集素样蛋白激酶胁迫相关多肽(LPKSRP)和编码LPKSRP的核酸,它们对调节植物的环境胁迫应答是重要的。更具体地,这些编码LPKSRP的核酸在植物内的过量表达导致植物增加的生长和/或增加的环境胁迫耐受性。 
因此,本发明包括包含编码LPKSRP的核酸的分离的植物细胞,其中植物细胞内核酸序列的表达导致与该植物细胞的野生型品种相比,增加的生长和/或增加的环境胁迫耐受性。优选地,LPKSRP来自展叶剑叶藓(Physcomitrella patens)。即本文中描述的是展叶剑叶藓凝集素样蛋白激酶-1(PpLLPK-1)。 
在一些实施方案内,本发明提供的LPKSRP和编码性核酸是在剑叶藓属(Physcomitrella)成员内存在的那些LPKSRP和编码性核酸。在另一个优选的实施方案中,核酸和多肽来自展叶剑叶藓植物。在一个实施方案中,本发明提供过量表达LPKSRP的植物显示生长的增加。在优选的实施方案中,植物生长的增加归因于与该植物的野生型品种相比,植物的水利用效率(WUE)增加。在另一个优选的实施方案中,本发明提供与植物的野生型品种相比,过量表达LPKSRP的植物显示增加的植物干重(DW)。在另一 个实施方案中,本发明提供与植物的野生型品种相比,过量表达LPKSRP的植物显示增加的环境胁迫耐受性。本发明提供环境胁迫可以是盐度胁迫、干旱胁迫、温度胁迫、金属胁迫、化学品胁迫、病原体和氧化胁迫或其组合。在优选的实施方案中,环境胁迫可以选自干旱、高盐和低温中的一种或多种。 
本发明还提供由编码LPKSRP的核酸转化的转基因植物所产生的种子,其中与植物的野生型品种相比,植物对增加的生长和/或增加的环境胁迫耐受性是不分离的。在优选的实施方案中,编码LPKSRP的核酸如下文所述。 
本发明还提供由下文所述任意的转基因植物、植物部分或种子所产生的农产品。本发明还提供如下文所述分离的LPKSRP。本发明还提供编码LPKSRP的分离的核酸,其中编码LPKSRP的核酸编码如下文所述的LPKSRP。 
本发明还提供分离的重组表达载体,该载体包含编码如下文所述LPKSRP的核酸,其中宿主细胞内载体的表达导致与宿主细胞的野生型品种相比,植物增加的生长和/或增加的环境胁迫耐受性。本发明还提供含有载体的宿主细胞和含有这种宿主细胞的植物。本发明还提供用编码LPKSRP的核酸产生转基因植物的方法,其中植物内该核酸的表达导致与植物的野生型品种相比,植物增加的生长和/或增加的环境胁迫耐受性,所述方法包括:(a)用包含编码LPKSRP的核酸的表达载体转化植物细胞;和(b)从植物细胞中产生与植物的野生型品种相比,具有增加的生长和/或增加的环境胁迫耐受性的转基因植物。在优选的实施方案中,LPKSRP和编码LPKSRP的核酸如下文所述。 
本发明还提供鉴定新LPKSRP的方法,包括(a)如下文所述产生对LPKSRP反应的特异性抗体或其片段;(b)用该抗体筛选推定的LPKSRP材料,其中抗体对材料的特异性结合表示存在潜在的新LPKSRP;和(c)从已结合的材料内鉴定与已知的LPKSRP相比新的LPKSRP。或者,可以使用如下文所述的用核酸探针的杂交鉴定新LPKSRP核酸。 
本发明还提供调节植物生长和/或胁迫耐受性的方法,包括调节植物内LPKSRP核酸的表达,其中LPKSRP如下文所述。本发明提供可以开展该方法以至于增加或减少植物的生长和/或胁迫耐受性。优选地,植物的生长和/或胁迫耐受性因植物内LPKSRP核酸表达增加而增加。 
附图简述 
图1显示来自展叶剑叶藓的PpLLPK-1的cDNA序列。 
图2显示来自展叶剑叶藓的PpLLPK-1的推导的氨基酸序列。 
图3显示所公开的展叶剑叶藓凝集素样蛋白激酶PpLLPK-1氨基酸序列与五种已知蛋白激酶的氨基酸序列的比对。该图还显示以比对的序列为基础的凝集素样蛋白激酶的共有序列。黑底白字是从给定位置处的一组相似残基内衍生的共有残基。灰底黑字是在至少50%的序列中具有残基共有性的位置内的共有氨基酸或相似氨基酸,在给定位置处的不相似残基为白底黑字。 
图4显示所公开展叶剑叶藓凝集素样蛋白激酶PpLLPK-1氨基酸序列与在专利序列数据库搜索中鉴定的5个氨基酸序列的比对。该图还显示以比对的序列为基础的凝集素样蛋白激酶的共有序列。黑底白字是从给定位置处的一组相似残基内衍生的共有残基。灰底黑字是在至少50%的序列中具有残基共有性的位置内的共有氨基酸或相似氨基酸,在给定位置处的不相似残基为白底黑字。 
图5显示表7,在充分浇水及干旱循环条件下仅有载体的对照植物。 
图6显示用于稻内组成型表达的启动子DNA序列。 
图7显示用于稻内组成型表达的表达载体pO74。 
发明详述 
可以通过参考如下对本发明优选的实施方案及本文内所包括实施例的详细描述,更容易地理解本发明。然而,在公开并描述本发明化合物、组合物和方法之前,应当理解本发明不限于具体核酸、具体多肽、具体细胞 类型、具体宿主细胞、具体条件或具体方法等,因为这些当然可以变化,并且本文中众多的修改和变例对于本领域技术人员将是显而易见的。还应当理解本文中所用术语仅意在描述具体实施方案并且不意图是限制性的。尤其,将氨基酸序列命名为多肽“凝集素样蛋白激酶胁迫相关性多肽”(LPKSRP),无论如何不限制这些序列的功能性。 
本发明描述新种类的凝集素样蛋白激酶胁迫相关多肽(LPKSRP)和编码LPKSRP的核酸,它们对调节植物的生长和/或环境胁迫应答是重要的。更具体地,在植物内这些编码LPKSRP的核酸过量表达导致植物增加的生长和/或增加的环境胁迫耐受性。LPKSRP种类的代表性成员是PpLLPK-1。在优选的实施方案中,该种类的全部成员是有生物活性的凝集素样蛋白激酶。 
因此,本发明包含LPKSRP多核苷酸和多肽序列及它们用于增加植物生长和/或环境胁迫耐受性的用途。在一个实施方案中,LPKSRP序列来自植物、优选是剑叶藓属植物并且更优选是展叶剑叶藓植物。在另一个实施方案中。LPKSRP序列包括PpLLPK-1(SEQ ID NO:1和2)。如下文所示,已公开的展叶剑叶藓LPKSRP氨基酸序列与已知的凝集素样蛋白激酶具有显著的同一性百分数。本发明提供由编码LPKSRP的核酸转化的转基因植物细胞,其中植物细胞内核酸序列的表达导致与植物细胞的野生型品种相比,植物增加的生长和/或增加的环境胁迫耐受性。本发明还提供含有本文中所述的植物细胞的转基因植物部分和转基因植物。植物部分包括但不限于茎、根、胚珠、雄蕊、叶、胚、分生组织区、愈伤组织、配子体、孢子体、花粉、小孢子等。在一个实施方案中,转基因植物是雄性不育的。还提供由编码LPKSRP的核酸转化的转基因植物所产生的植物种子,其中种子含有编码LPKSRP的核酸,并且其中与植物的野生型品种相比,植物对增加的生长和/或增加的环境胁迫耐受性是不分离的。本发明还提供由表达LPKSRP的转基因植物产生的种子,其中种子含有LPKSRP,并且其中与植物的野生型品种相比,植物对增加的生长和/或增加的环境胁迫耐受性是不分离的。本发明还提供以下所述转基因植物,植物部分和植物种子中 任意一种所产生的农产品。农产品包括但不限于植物提取物、蛋白质、氨基酸、糖类、脂肪、油、聚合物、维生素等。 
如本文中所用,术语“品种”指物种内的一组植物,其中所述的植物共有使它们与该物种内的典型形式及与其它可能品种相区别的稳定特征。在拥有至少一种明显性状的同时,一个品种的特征还在于品种内个体间的某些变异,这主要基于后续世代的子代间性状的孟德尔分离。若品种对特定性状是如此程度的遗传纯合以至于不分离的品种自我授粉时,观察不到子代间明显量的性状独立分离,则认为品种对该性状是“不分离的”。在本发明中,性状因导入植物品种的一个或多个DNA序列的转基因性表达而产生。本发明首次描述展叶剑叶藓LPKSRP PpLLPK-1用于增加植物的生长和/或环境胁迫耐受性。如本文中所用,术语“多肽”指由肽键连接的至少4个氨基酸的链。该链可以是直链的、支链的、环状的或其组合。因此,本发明提供选自PpLLPK-1的分离的LPKSRP及其同系物。在优选的实施方案中,LPKSRP包括如SEQ ID NO:2内定义的展叶剑叶藓凝集素样蛋白激酶-1(PpLLPK-1)多肽;及其同系物和直向同系物。在下文定义了氨基酸序列的同系物和直向同系物。 
本发明的LPKSRP优选地通过重组DNA技术产生。例如,将编码该多肽的核酸分子克隆至表达载体(如下文所述),将表达载体导入宿主细胞(如下文所述)并在宿主细胞内表达LPKSRP。LPKSRP随后可以使用标准多肽纯化技术,通过适宜纯化方案从细胞中分离。为本发明的目的,术语“重组的多核苷酸”指已经通过遗传工程被改变、重排或修饰的多核苷酸。实例包括任何已克隆的多核苷酸和与异源序列连接或接合的多核苷酸。术语“重组的”不涉因天然存在事件,如自发突变所致的多核苷酸改变。作为对重组表达的替代,可以使用标准肽合成技术化学地合成LPKSRP或其肽。此外,可以从细胞(例如展叶剑叶藓细胞)分离天然LPKSRP,例如使用抗LPKSRP抗体,其中所述的抗体可以通过标准术利用LPKSRP或其片段产生。 
如本文中所用,术语“环境胁迫”指与盐度胁迫、干旱胁迫、温度胁迫、 金属胁迫、化学品胁迫、病原体胁迫和氧化胁迫或其组合有关的次优条件。在优选的实施方案中,环境胁迫可以选自盐度、干旱或温度或其组合中的一种或多种,并且尤其可以选自高盐度、低水含量或低温中的一种或多种。还应当理解如在说明书和权利要求书中所用,“a”或“an”可以意指一个或多个,这取决于使用的上下文。例如,提到“一种细胞”时可以意指可以利用至少一种细胞。还如本文中所用,术语“水利用效率”指植物所产生有机物质的量除以植物在产生该量有机物质时所使用的水的量,即相对于植物的水利用量的植物干重。如本文中所用,术语“干重”指植物内除水之外的任何物质,并包括例如糖类、蛋白质、油和矿质营养素。 
还如本文中所用,术语“核酸”和“多核苷酸”指呈直链或支链的、单链或双链的RNA或DNA,或其杂交体。该术语还包含RNA/DNA杂交体。这些术语还包含位于基因编码区的3′和5′端的非翻译序列:在基因编码区5′端上游至少约1000个核苷酸的序列和在基因编码区3′端下游至少约200个核苷酸的序列。较不常见的碱基如肌苷、5-甲基胞嘧啶、6-甲基腺嘌呤、次黄嘌呤和其它碱基也可以用于反义RNA、dsRNA和核酶配对。例如,已经证实含有尿苷和胞苷的C-5丙炔类似物的多核苷酸以高亲和力结合RNA并且是基因表达的有效反义抑制物。还可以作其它修饰,如对磷酸二酯主链或核糖基团内2’-羟基修饰。反义多核苷酸和核酶可以完全由核糖核苷酸组成,或可以含有混合的核糖核苷酸与脱氧核糖核苷酸,本发明的多核苷酸可以通过任何方法产生,包括基因组制备、cDNA制备、体外(in vitro)合成、RT-PCR和体外或体内(in vivo)转录。 
“分离的”核酸分子是基本上与存在于该核酸天然来源内的其它核酸分子(即编码其它多肽的序列)分开的核酸分子。优选地,“分离的”核酸不含在该核酸的天然存在复制子内天然分布于核酸两侧的某些序列(即位于核酸5′和3′末端的序列)。例如,认为克隆的核酸是分离的。在多种实施方案种,分离的LPKSRP核酸分子可以含有在衍生其的细胞(例如展叶剑叶藓细胞)的基因组DNA内天然分布于该核酸分子侧翼的小于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的核苷酸序列。如果核酸已经因 人工干预被改变,或位于不是该核酸天然位点的基因座或位置内,或如果它通过农杆菌感染导入细胞,则也认为该核酸是分离的。此外,“分离的”核酸分子如cDNA分子,在通过重组技产生时,可以不含与其天然结合的某些其它细胞材料或培养基,或当由化学合成时,不含化学前体或其它化学品。特别从“分离的”核酸的定义中排除:作为体外核酸制备物或作为转染/转化的宿主细胞制备物而存在的天然存在的染色体(如染色体扩散)、人工染色体文库、基因组文库和cDNA文库,其中宿主细胞是体外异质的制备物或铺板为单个集落的异源群体。还特别排除其中所述核酸占载体分子内核酸插入物的数目小于5%的以上文库。进一步特别排除全细胞基因组性DNA制备物或全细胞RNA制备物(包括受机械剪切或酶消化的全细胞制备物)。更进一步特别排除通过电泳分离的作为体外制备物或作为异质混合物存在的全细胞制备物,其中本发明的核酸没有在电泳介质内进一步从异源核酸中进行分离(例如通过从琼脂糖凝胶或尼龙膜印迹中的异质条带群体内裁下单个条带而进一步分离)。 
本发明的核酸分子,例如具有SEQ ID NO:1的核苷酸序列的核酸分子或其部分可以使用标准分子生物学技术和本文中提供的序列信息加以分离。例如,展叶剑叶藓LPKSRP cDNA可以使用本文中所公开的全部或部分序列从展叶剑叶藓文库中分离。此外,包含全部或部分的SEQ ID NO:1的序列的核酸分子可以使用基于这些序列所设计的寡核苷酸引物,通过聚合酶链式反应分离。例如,mRNA可以从植物细胞中分离(例如通过Chirgwin等,1979,Biochemistry 18:5294-5299的异硫氰酸胍提取法),并且cDNA可以使用逆转录酶(例如Moloney MLV逆转录酶,可从Gibco/BRL,Bethesda,MD获得;或AMV逆转录酶,可从Seikagaku America,Inc.,St.Petersburg,FL获得)制备。用于聚合酶链式反应扩增的合成性寡核苷酸引物可以基于SEQ ID NO:1内所示的核苷酸序列设计。本发明的核酸分子可以根据标准PCR扩增使用cDNA或备选地使用基因组DNA作为模板以及合适寡核苷酸引物进行扩增。如此扩增的核酸分子可以克隆至适宜的载体并通过DNA测序分析进行表征。此外,与编码LPKSRP的核苷酸序列 对应的寡核苷酸可以通过标准合成技术制备,例如使用自动化DNA合成仪。 
在一个实施方案中,本发明的分离的核酸分子包含SEQ ID NO:1内所示的核苷酸序列。本发明的核酸分子可以包含编码LPKSRP的序列(即“编码区”),以及5′非翻译序列和3′非翻译序列。备选地,本发明的核酸分子可以仅包含SEQ ID NO:1内序列的编码区,或可以含有分离自基因组DNA的完整基因组片段。本发明还包括编码如本文中所述LPKSRP的LPKSRP编码性核酸。在优选的实施方案中,编码LPKSRP的核酸编码如SEQ IDNO:2内所定义的PpLLPK-1。此外,本发明的核酸分子可以包含SEQ IDNO:1的编码区的部分,例如可以用作探针或引物的片段或编码LPKSRP的生物活性部分的片段。从展叶剑叶藓的LPKSRP基因的克隆中测定的核苷酸序列允许产生探针和引物,其中设计所述的探针和引物以鉴定并克隆其它细胞类型及生物内的LPKSRP同系物以及来自其它藓类或相关物种内的LPKSRP同系物。编码区的部分也可以编码LPKSRP有生物活性的片段。如本文中所用,术语LPKSRP的“生物活性部分”意图包括LPKSRP内参与调节植物内植物的生长和/或胁迫耐受性的部分,例如结构域/基序。为本发明的目的,调节植物的生长和/或胁迫耐受性指与非转基因性对照植物的生长和/或胁迫耐受性相比,增加或减少包含LPKSRP表达盒(或表达载体)的转基因植物的生长和/或胁迫耐受性至少10%。用于定量生长和/或胁迫耐受性的方法至少在下文实施例7内提供。在优选的实施方案中,LPKSRP的生物活性部分增加植物的生长和/或环境胁迫耐受性。 
LPKSRP的生物活性部分包括包含如此氨基酸序列的肽,其中所述氨基酸序列衍生自LPKSRP(例如SEQ ID NO:2的氨基酸序列)的氨基酸序列或与LPKSRP完全相同并显示至少一种LPKSRP活性的多肽(包含比全长LPKSRP少的氨基酸或包含与LPKSRP相同的全长多肽)的氨基酸序列。通常,生物活性部分(例如具有例如5、10、15、20、30、35、36、37、38、39、40、50、100或更多个氨基酸长度的肽)包含具有至少一种LPKSRP活性的结构域或基序。此外,可以通过重组技术制备其中缺失多肽内其它 区域的有生物活性的其它部分并对其评估本文中所述的一种或多种活性。优选地,LPKSRP的生物活性部分包括具有生物活性的一个或多个所选的结构域/基序或其部分,如图3内所示的保守性中央激酶结构域。在一个实施方案中,“中央激酶结构域”包含在SEQ ID NO:2的位置235-546内的残基。在优选的实施方案中,保守性中央激酶结构域包含4个保守的区域,其中第一区域始于位置1处的酪氨酸残基并具有在位置3的亮氨酸、在位置4的甘氨酸残基、在位置8的甘氨酸残基、在位置10的甘氨酸残基、在位置12的苯丙氨酸残基、在位置13的甘氨酸残基和在位置15的苏氨酸残基;第二区域位于第一区域的下游,始于位置1的丙氨酸残基并具有在位置3的赖氨酸残基、在位置5的异亮氨酸残基、在位置7的赖氨酸残基、在位置17的谷氨酸残基、在位置18的天冬氨酸残基、在位置19的缬氨酸残基、在位置21的精氨酸残基、在位置22的谷氨酸残基、在位置25的异亮氨酸残基、在位置29的亮氨酸残基、在位置31的甘氨酸残基、在位置34的天冬酰胺残基、在位置36的缬氨酸残基、在位置43的谷氨酸残基、在位置44的天冬氨酸残基、在位置48和51的缬氨酸残基、在位置52的甲硫氨酸残基、在位置53的谷氨酸残基、在位置54的亮氨酸残基、在位置55的半胱氨酸残基、在位置57和58的甘氨酸残基、在位置59的谷氨酸残基、在位置60的亮氨酸残基、在位置62的天冬氨酸残基、在位置63的精氨酸残基和在位置64的异亮氨酸残基;第三区域位于第二区域的下游,始于位置1的酪氨酸残基并具有在位置2的丝氨酸残基、在位置3的谷氨酸残基、在位置6的丙氨酸残基、在位置11的精氨酸残基、在位置16的缬氨酸残基、在位置20的半胱氨酸残基、在位置21的组氨酸残基、在位置24的甘氨酸残基、在位置25的缬氨酸残基、在位置27的组氨酸残基、在位置28的精氨酸残基、在位置29的天冬氨酸残基、在位置31的赖氨酸残基、在位置32的脯氨酸残基、在位置33的谷氨酸残基、在位置34的天冬酰胺残基、在位置35的苯丙氨酸残基、在位置36和46的亮氨酸残基、在位置47的赖氨酸残基、在位置50的天冬氨酸残基、在位置51的苯丙氨酸残基、在位置52的甘氨酸残基、在位置53的亮氨酸残基、在位 置54的丝氨酸残基、在位置59的脯氨酸残基、在位置65的天冬氨酸残基、在位置67的缬氨酸残基、在位置68的甘氨酸残基、在位置69的丝氨酸残基、在位置71和72的酪氨酸残基、在位置73的缬氨酸残基、在位置74的丙氨酸残基、在位置75的脯氨酸残基、在位置76的谷氨酸残基、在位置77的缬氨酸残基、在位置78的亮氨酸残基、在位置85的谷氨酸残基、在位置87的天冬氨酸残基、在位置88的缬氨酸残基、在位置89的色氨酸残基、在位置90的丝氨酸残基、在位置92的甘氨酸残基、在位置93的缬氨酸残基、在位置94的异亮氨酸残基、在位置96的酪氨酸残基、在位置97的异亮氨酸残基、在位置98和99的亮氨酸残基、在位置101的甘氨酸残基、在位置104的脯氨酸残基、在位置105的苯丙氨酸残基、在位置106的色氨酸残基、在位置109的苏氨酸残基、在位置110的谷氨酸残基、在位置113的异亮氨酸残基、在位置114的苯丙氨酸残基、在位置128的脯氨酸残基、在位置129的色氨酸残基、在位置130的脯氨酸残基、在位置132的异亮氨酸残基、在位置133的丝氨酸残基、在位置136的丙氨酸残基、在位置137的赖氨酸残基、在位置138的天冬氨酸残基、在位置144的亮氨酸残基、在位置151的精氨酸残基、在位置154的丙氨酸残基、在位置158的亮氨酸残基、在位置160的组氨酸残基、在位置161的脯氨酸残基和在位置162的色氨酸残基;并且第四区域位于第三区域的下游,始于位置1的脯氨酸残基并具有在位置3的天冬氨酸残基、在位置6的缬氨酸残基、在位置23的丙氨酸残基、在位置31和39的亮氨酸残基、在位置43的苯丙氨酸残基、在位置52的甘氨酸残基、在位置63的亮氨酸残基和在位置65的赖氨酸残基。 
本发明还提供LPKSRP嵌合多肽或融合多肽。如本文中所用,LPKSRP“嵌合多肽”或“融合多肽”包含与非LPKSRP有效连接的LPKSRP。LPKSRP指具有对应于LPKSRP的氨基酸序列的多肽,而非LPKSRP指具有如此氨基酸序列的多肽,其中所述的氨基酸序列对应于同LPKSRP基本不相同的多肽,例如与LPKSRP不同并衍生自相同生物或不同生物的多肽。就融合多肽而言,术语“有效连接的”意图说明LPKSRP 和非LPKSRP彼此融合以至于两种序列均充分实现已提出的赋予所用序列的功能。非LPKSRP可以融合于LPKSRP的氨基末端或羧基末端。例如,在一个实施方案中,融合多肽是其中LPKSRP序列融合于GST序列羧基末端的GST-LPKSRP融合多肽。此类融合多肽可以促进纯化重组LPKSRP。在另一个实施方案中,融合多肽是在其氨基末端含有异源信号序列的LPKSRP。在某些宿主细胞(例如哺乳动物宿主细胞)中,可以通过使用异源信号序列增加LPKSRP的表达和/或分泌。优选地,本发明的LPKSRP嵌合多肽或融合多肽通过标准重组DNA技术产生。例如,编码不同多肽序列的DNA片段按照常规技术(例如通过使用平末端或交错末端以便连接、提供适宜末端的限制性酶消化、根据需要补平粘末端、避免不想要的接合的碱性磷酸酶处理和酶连接)以符合读码框方式被连接在一起。在另一个实施方案中,融合基因可以由常规技术合成,包括自动DNA合成仪。备选地,可以使用锚式引物实施基因片段的PCR扩增,其中所述的锚式引物产生在两个连续基因片段间互补的突出端,突出段在随后可以被复性并再扩增以产生嵌合基因序列(见,例如,Current Protocols inMolecular Biology,编者.Ausubel等John Wiley&Sons:1992)。此外,可商业地获得已经编码融合部分的众多表达载体(例如,GST多肽)。编码LPKSRP的核酸可以克隆至此种表达载体以至于融合部分以符合读码框方式与LPKSRP连接。 
除本文中所述LPKSRP的片段和融合多肽之外,本发明还包括植物内天然存在的LPKSRP和编码LPKSRP的核酸的同系物和类似物。“同系物”在本文中定义为分别具有相似或“相同”的核苷酸序列或氨基酸序列的两种核酸或多肽。同系物包括如本文以下定义的LPKSRP的等位基因变体、直向同系物、旁向同系物、激动剂和拮抗物。术语“同系物”还包含这样的核酸分子(及其部分),其因遗产密码子简并性而不同于SEQ ID NO:1内所示的核苷酸序列并且因此编码与如SEQ ID NO:1内所示的核苷酸序列所编码LPKSRP相同的LPKSRP。如本文中所用,“天然存在的”LPKSRP指在自然界中存在的LPKSRP氨基酸序列。优选地,天然存在的LPKSRP 包含如SEQ ID NO:2内所定义的氨基酸序列。 
LPKSRP的激动剂可以基本上保留相同或部分的LPKSRP生物活性。LPKSRP的拮抗物可以抑制天然存在形式的LPKSRP的一种或多种活性。 
对应于LPKSRP cDNA的天然等位基因变体和类似物、直向同系物,和旁向同系物的核酸分子可以基于它们与本文中所述展叶剑叶藓LPKSRP核酸的同一性,使用LPKSRP cDNA或其部分作为杂交探针,根据标准杂交技术在严格性杂交条件下分离。在又一个实施方案种,LPKSRP的同系物可以通过对LPKSRP的突变体(例如截短突变体)组合文库筛选LPKSRP激动剂活性或拮抗物活性进行鉴定。在一个实施方案中,LPKSRP变体的混杂文库通过在核酸水平上的组合性诱变而产生并且由混杂的基因文库编码。可以如此产生LPKSRP变体的混杂文库,例如,将合成性寡核苷酸的混合物用酶连接成基因序列,以至于一套简并性有效LPKSRP序列可以表达为单个多肽,或备选地,表达为一套较大的含有本文中LPKSRP序列的融合多肽(例如对于噬菌体展示)。存在可以用来从简并寡核苷酸序列内产生有效LPKSRP同系物文库的多种方法。简并基因序列的化学合成可以在自动DNA合成仪上开展,并且随后将合成性基因连接至适宜表达载体内。使用一套简并基因允许在一种混合物内提供编码所需要的有效LPKSRP序列组的全部序列。本领域内已知用于合成简并寡核苷酸的方法(见,例如Narang,S.A.,1983,Tetrahedron 39:3;Itakura等,1984,Annu.Rev.Biochem.53:323;Itakura等,1984,Science 198:1056;Ike等,1983,NucleicAcid Res.11:477)。 
此外,LPKSRP编码区片段的文库可以用来产生LPKSRP片段混杂群体以筛选并随后选择LPKSRP的同系物。在一个实施方案中,可以如此产生编码性序列片段的文库,即通过用核酸酶在每分子仅发生一次切割的条件下处理LPKSRP编码序列的双链PCR片段、使双链DNA变性、使DNA复性以形成可以包括来自不同切割产物的有义/反义配对的双链DNA、从再形成的双螺旋中通过S1核酸酶处理而除去单链部分、并且将得到的片段文库连接至表达载体内。通过该方法,可以衍生编码多种大小 的LPKSRP氨基末端片段、羧基末端片段和内部片段的表达文库。本领域内已知用于筛选由点突变或截短作用产生的组合文库的基因产物和用于对cDNA文库筛选具有所选择特性的基因产物的数种技术。此类技术适应于快速筛选由组合性诱变LPKSRP同系物所产生的基因文库。对高通量分析可操作的最广泛地用于筛选大型基因文库的技术通常包括将基因文库克隆至复制型表达载体、用得到的载体文库转化适宜细胞并在检测所需的活性有助于分离如此载体的条件下表达组合性基因,其中所述的载体编码其产物被检测的基因。递归总体诱变(REM)(一种提高文库内功能性突变体的频率的技术)可以与筛选分析法组合地使用以鉴定LPKSRP同系物(Arkin和Yourvan,1992,PNAS 89:7811-7815;Delgrave等,1993,PolypeptideEngineering 6(3):327-331)。在另一个实施方案中,可以利用基于细胞的分析法以使用本领域内众所周知的方法分析混杂的LPKSRP文库。本发明还提供鉴定新LPKSRP的方法,包括(a)如本文中所述,产生对LPKSRP反应的特异性抗体或其片段;(b)用该抗体筛选推定的LPKSRP材料,其中抗体对材料的特异性结合表示存在潜在的新LPKSRP;和(c)与已知LPKSRP比较,分析结合的材料以确定它的新颖性。 
如上所述,本发明包括LPKSRP及其同系物。为确定两种氨基酸序列(例如,SEQ ID NO:2的序列及其突变形式)的序列同一性百分数,将序列为优化比较目的进行比对(例如,可以在一种多肽的序列内导入空位以便与另一种多肽或核酸优化比对)。随后比较对应位置内的氨基酸残基。当在一个序列(例如SEQ ID NO:2的序列)内的位置作为另一个序列(例如,SEQID NO:2的序列的突变形式)内相应位置由相同氨基酸残基占据时,则两个分子在该位置是相同的。可以在两种核酸序列之间进行相同类型的比较。 
两种序列间的序列同一性百分数是序列所共有的相同位置数的函数(即序列同一性百分数=相同位置数/总位置数×100)。优选地,本发明内所包含的分离的氨基酸同系物与SEQ ID NO:2内所示的全部氨基酸序列至少约50-60%、优选至少约60-70%并更优选至少约70-75%、75-80%、80-85%、85-90%或90-95%以及最优选至少约96%、97%、98%、99%或 更高程度相同。在另一个实施方案中,本发明内所包含的分离的氨基酸同系物与由SEQ ID NO:1内所示核酸序列编码的全部氨基酸序列至少约50-60%、优选至少约60-70%和更优选至少约70-75%、75-80%、80-85%、85-90%或90-95%以及最优选至少约96%、97%、98%、99%或更高程度相同。在其它实施方案中,LPKSRP氨基酸同系物具有在SEQ ID NO:2的至少15个连续氨基酸残基、更优选至少25个连续氨基酸残基和最优选至少35个连续氨基酸残基范围内的序列同一性。优选地,本发明内所包含的分离的氨基酸同系物与公开的氨基酸序列的中央蛋白激酶结构域至少约50-60%、优选至少约60-70%并且更优选至少约70-75%、75-80%、80-85%、85-90%或90-95%并且最优选至少约96%、97%、98%、99%或更高程度相同,其中所述的中央蛋白激酶结构域显示为SEQ ID NO:2的残基235至546。在另一个实施方案中,本发明的分离的氨基酸同系物由SEQ ID NO:1内位置736至1671的核苷酸所定义的核酸编码。 
在另一个优选的实施方案中,本发明的分离的核酸同系物包含这样的核苷酸序列,该核苷酸序列与SEQ ID NO:1内所示的核苷酸序列或其包含至少60个连续核苷酸的部分至少约40-60%、优选至少约60-70%、更优选至少约70-75%、75-80%、80-85%、85-90%或90-95%并且甚至更优选至少约95%、96%、97%、98%、99%或更高程度相同。对于核酸的序列比较优选长度是至少75个核苷酸、更优选至少100个核苷酸并且最优选是全长的编码区。更优选核酸同系物编码与SEQ ID NO:2在中央激酶结构域范围内具有同源性的多肽。 
还优选本发明的分离的核酸同系物编码LPKSRP或其部分,其与SEQID NO:2内所示的全部氨基酸序列至少约50-60%、优选至少约60-70%,和更优选至少约70-75%、75-80%、80-85%、85-90%,或90-95%并且最优选至少约96%、97%、98%、99%或更高程度相同,并作为植物内植物生长和/或环境胁迫应答的调节剂发挥作用。在更优选的实施方案中,植物内核酸同系物的过量表达增加植物的生长和/或植物对环境胁迫的耐受性。在又一个优选的实施方案中,核酸同系物编码作为凝集素样蛋白激酶发挥作 用的LPKSRP。 
为本发明的目的,两种核酸或多肽序列之间的序列同一性百分数使用Vector NTI 6.0(PC)软件包(InforMax,7600 Wisconsin Ave.,Bethesda,MD 20814)确定。使用空位开口罚分15和空位延伸罚分6.66来确定两种核酸的同一性百分数。使用空位开口罚分10和空位延伸罚分0.1来确定两种多肽的同一性百分数。全部其它的参数设定成默认设置。为了多重比对目的(Clustal W算法),空位开口罚分是10并且空位延伸罚分是0.05,具有blosum62矩阵。将理解的是为确定序列同一性的目的,在DNA序列与RNA序列比较时,胸腺嘧啶核苷酸等同于尿嘧啶核苷酸。 
在另一个方面,本发明提供分离的核酸,该核酸包含与SEQ ID NO:1的多核苷酸在严格条件下杂交的多核苷酸。更具体地,本发明的分离的核酸分子是至少15个核苷酸长度并与包含SEQ ID NO:1的核苷酸序列的核酸分子在严格条件下杂交。在其它实施方案中,核酸是至少30、50、100、250个或更多个核苷酸长度。优选地,本发明的分离的核酸同系物包含这样的核苷酸序列,该核苷酸序列与SEQ ID NO:1内所示的核苷酸序列在高严格性条件下杂交并且作为植物内生长和/或胁迫耐受性的调节剂发挥作用。在更优选的实施方案中,植物内分离的核酸同系物的过量表达增加植物的生长和/或环境胁迫耐受性。在甚至更优选的实施方案中,分离的核酸同系物编码作为凝集素样蛋白激酶发挥作用的LPKSRP。 
如本文中就DNA对DNA印迹的杂交所用,术语“严格条件”指在60℃在10×Denhart′s溶液、6×SSC、0.5%SDS和100μg/ml变性鲑精DNA内杂交过夜。印迹物在62℃依次在3×SSC/0.1%SDS、随后在1×SSC/0.1%SDS并且最后在0.1×SSC/0.1%SDS内洗涤,每次30分钟。在另一个实施方案中,短语“严格条件”指在6×SSC溶液中于65℃杂交。还如本文中所用,“高严格性条件”指在65℃在10×Denhart′s溶液、6×SSC、0.5%SDS和100μg/ml变性鲑精DNA内杂交过夜。印迹物在65℃依次在3×SSC/0.1%SDS、随后在1×SSC/0.1%SDS,并且最后在0.1×SSC/0.1%SDS内洗涤,每次30分钟。用于核酸杂交的方法在Meinkoth和Wahl,1984,Anal. Biochem.138:267-284;Current Protocols in Molecular Biology,第2章,编者Ausubel等,Greene Publishing and Wiley-lnterscience,New York,1995;和Tijssen,1993,Laboratory Techniques in Biochemistry and MolecularBiology:Hybridization with Nucleic Acid Probes,第I部分,第2章,Elsevier,New York,1993内描述。优选地,与SEQ ID NO:1的序列在严格性或高严格性条件下杂交的本发明的分离的核酸分子对应于天然存在的核酸分子。如本文中所用,“天然存在的”核酸分子指具有在自然界中存在的核苷酸序列(例如编码天然多肽)的RNA或DNA分子。在一个实施方案中,核酸编码天然存在的展叶剑叶藓LPKSRP。 
使用上述方法和本领域技术人员已知的其它方法,本领域普通技术人员可以分离包含如SEQ ID NO:2内所示氨基酸序列的展叶剑叶藓LPKSRP的同系物。这些同系物的一个亚类是等位基因变体。如本文中所用,术语“等位基因变体”指含有在LPKSRP氨基酸序列内造成改变并存在于天然群体(例如植物物种或品种)内的多态性的核苷酸序列。此类天然的等位基因变异一般可以在LPKSRP核酸内产生1-5%差异。等位基因变体可以通过对多种不同植物内目的核酸序列进行测序而鉴定,其中所述的测序可以通过使用鉴定这些植物内相同LPKSRP遗传基因座的杂交探针而容易地实施。本发明的范围意图包括在LPKSRP内作为天然等位基因变异的结果并且不改变LPKSRP功能性活性的任何及全部这类的核酸变异和所得的氨基酸多态性或变异。 
此外,本发明的范围意图包括编码来自相同物种或其它物种的LPKSRP如LPKSRP类似物、直向同系物和旁向同系物的核酸分子。如本文中所用,术语“类似物”指具有相同或相似的功能而在不相关的生物内独立进化的两种核酸。如本文中所用,术语“直向同系物”指来自不同物种,但通过物种形成从共同先祖基因中演化的两种核酸。通常,直向同系物编码具有相同或相似功能的蛋白质。还如本文中所用,术语“旁向同系物”指因在基因组内因重复作用而相关的两种核酸。旁向同系物通常具有不同功能,不过这些功能可能相关(Tatusov,R.L.等,1997,Science 278(5338): 631-637)。天然存在的LPKSRP的类似物、直向同系物和旁向同系物可以因翻译后修饰、因氨基酸序列差异或这两种原因而不同于天然存在的LPKSRP。翻译后修饰包括多肽在体内和体外的化学衍生作用,如乙酰化作用、羧化作用、磷酸化作用和糖基化作用,并且此类修饰可以在多肽合成及加工期间或在使用分离的修饰酶处理后发生。本发明的直向同系物通常显示与天然存在的LPKSRP的全部或部分氨基酸序列至少80-85%、更优选85-90%或90-95%并且最优选95%、96%、97%、98%或甚至99%的同一性或100%序列同一性,并且显示类似于LPKSRP的功能。优选地,本发明的LPKSRP直向同系物作为植物内植物生长和/或环境胁迫应答的调节剂发挥作用和/或作为凝集素样蛋白激酶发挥作用。更优选地,LPKSRP直向同系在水受限制的条件下增加植物生长和/或增加植物的胁迫耐受性。 
除可能存在于群体内的LPKSRP序列的天然存在的变体之外,技术人员还认识到可以如此导入改变,即通过在SEQ ID NO:1的核苷酸序列内突变,因而在所编码的LPKSRP的氨基酸序列内造成改变,同时不改变LPKSRP的功能性活性。例如,可以在SEQ ID NO:1的序列内开展在“非关键性”氨基酸残基处导致氨基酸置换的核苷酸置换。“非关键性”氨基酸残基是可以从一种LPKSRP的野生型序列中被改变而不改变所述LPKSRP的活性的残基,而“关键性”氨基酸残基对LPKSRP的活性是必需的。然而,其它氨基酸残基(例如在具有LPKSRP活性的结构域内为非保守或仅为半保守的那些氨基酸残基)对活性可能不是必需的,并且因此有可能通过操作进行改变,同时不改变LPKSRP活性。 
因此,本发明另一个方面涉及编码LPKSRP的核酸分子,其中所述的LPKSRP在对LPKSRP的活性是非必需的氨基酸残基内含有变化。此类LPKSRP在氨基酸序列上与来自SEQ ID NO:2内所包含的序列的氨基酸序列不同,然而仍保留至少一种本文中所述的LPKSRP活性。在一个实施方案中,分离的核酸分子包含编码多肽的核苷酸序列,其中该多肽包含与SEQ ID NO:2的氨基酸序列的中央蛋白激酶区至少约50%相同的氨基酸 序列。优选地,由该核酸分子编码的多肽与SEQ ID NO:2的序列之一的中央蛋白激酶区至少约50-60%相同、更优选与SEQ ID NO:2的序列之一的中央蛋白激酶区至少约60-70%相同、甚至更优选与SEQ ID NO:2的序列之一的中央蛋白激酶区至少约70-75%、75-80%、80-85%、85-90%或90-95%相同并且最优选与SEQ ID NO:2的序列的中央蛋白激酶区至少约96%、97%、98%或99%相同。在另一个实施方案中,由该核酸分子编码的多肽与SEQ ID NO:2的序列至少约50-60%相同、更优选与SEQ ID NO:2的序列至少约60-70%相同、甚至更优选与SEQ ID NO:2的序列至少约70-75%、75-80%、80-85%、85-90%或90-95%相同并且最优选与SEQ IDNO:2的序列至少约96%、97%、98%或99%相同。本发明优选的LPKSRP同系物优选地参与植物内植物生长和/或胁迫耐受性应答,或更具体地,作为凝集素样蛋白激酶发挥作用。 
可以如此产生编码与SEQ ID NO:2多肽序列具有序列同一性的LPKSRP的分离的核酸分子,即通过分别将一个或多个核苷酸置换、添加或缺失导入SEQ ID NO:1的核苷酸序列,以至于将一个或多个氨基酸置换、添加或缺失导入所编码的多肽。突变可以通过标准技术如位点定向诱变和PCR-介导性诱变而导入SEQ ID NO:1的序列。优选地,在一个或多个预测为非关键性氨基酸残基处开展保守性氨基酸置换。“保守性氨基酸置换”是其中将氨基酸残基替换为具有相似侧链的氨基酸残基的氨基酸置换。 
具有相似侧链的氨基酸残基家族在本领域已进行定义。这些家族包括具有碱性侧链的氨基酸(例如赖氨酸、精氨酸、组氨酸)、具有酸性侧链的氨基酸(例如天冬氨酸、谷氨酸)、具有不带电荷的极性侧链的氨基酸(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸)、带非极性侧链的氨基酸(例如丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸)、具有β分支侧链的氨基酸(例如苏氨酸、缬氨酸、异亮氨酸)和具有芳香侧链的氨基酸(例如酪氨酸、苯丙氨酸、色氨酸、组氨酸)。因此将LPKSRP中预测的非关键氨基酸基优选地替换为来自相同侧链家族的另一种基酸残基。备选地,在另一个实 施方案中,突变可以沿LPKSRP编码序列的全部或其部分随机地导入,例如通过饱和诱变,并且可以对得到的突变体筛选如本文中所述的LPKSRP活性,以鉴定保留LPKSRP活性的突变体。对SEQ ID NO:1的序列之一诱变后,可以重组地表达编码的多肽并且可以通过如实施例7中所述对表达所述多肽的植物的生长和/或胁迫耐受性分析而测定该多肽的活性。 
此外,可以产生优化的LPKSRP核酸。优化的LPKSRP核酸优选地编码在植物内过量表达时调节植物生长和植物的环境胁迫耐受性,并且更优选增加植物生长和植物的环境胁迫耐受性的LPKSRP。如本文中所用,“优化的”指核酸经遗传工程改造以增加其在给定植物或给定动物内的表达。为提供植物优化的LPKSRP核酸,可以修饰该基因的DNA序列以1)包含高表达植物基因所偏好的密码子;2)在核苷酸碱基组成上包含在植物内大量存在的A+T含量;3)形成植物起始序列;或4)消除导致RNA不稳定化、不适宜地聚腺苷酸化、降解和终止的序列,或消除形成次级发夹结构或RNA剪接点的序列。植物内LPKSRP核酸增加的表达可以通过利用在常见植物或在特定植物内的密码子使用分布频率而实现。用于优化植物内核酸表达的方法可以在EPA 0359472;EPA 0385962;PCT申请号WO91/16432;美国专利号5,380,831;美国专利号5,436,391;Per-lack等,1991,Proc.Natl.Acad.Sci.USA 88:3324-3328;以及Murray等,1989,NucleicAcids Res.17:477-498中找到。 
如本文中所用,“优选的密码子使用频率”指特定宿主细胞在使用指示给定氨基酸的核苷酸密码子中所表现的偏好。为测定基因内特定密码子的使用频率,将基因内该密码子的出现数除以基因内编码相同氨基酸的全部密码子的总出现数。类似地,该宿主细胞所表现的优选密码子使用频率可以通过将宿主细胞已表达的大量基因内的优选密码子使用频率平均化进行计算。优选该分析应当限于宿主细胞的高度表达的基因。如此计算用于合成性基因的优选密码子使用频率距离宿主细胞所用的优选密码子使用频率的偏离百分数,首先通过确定单个密码子使用频率对宿主细胞的单个密码子使用频率的偏离百分数,随后得到全部密码子范围内的平均偏离。如本 文中定义,该计算包括独特密码子(即ATG和TGG)。通常而言,使用等式1A=n=1 ZXn-YnXn乘以100Z来计算优化基因的密码子使用频率距离宿主细胞的密码子使用频率的整体平均偏离,其中Xn对于宿主细胞内密码子的使用频率;Yn对于合成性基因内密码子的使用频率;n代表指示氨基酸的单个密码子;并且密码子的总数是Z。对全部氨基酸,A即密码子使用频率的整体偏离应当优选地小于大约25%并且更优选小于大约10%。 
因此,可以如此优化LPKSRP核酸,以至它的密码子分布频率偏离于高度表达的植物基因的密码子分布频率优选不超过25%并且更优选不超过约10%。此外,考虑简并的第三碱基的G+C百分含量(单子叶植物基因似乎在该位置上偏好G+C,而双子叶植物基因则不是如此情况)。还认识到XCG(其中X是A、T、C或G)核苷酸是双子叶植物中最不偏好的密码子,而在单子叶植物和双子叶植物中均应当避开XTA密码子。本发明优化的LPKSRP核酸还优选地具有如此的CG和TA双联体避开指数(avoidance index),其非常接近所选择宿主植物(展叶剑叶藓、欧洲油菜(Brassica napus)、大豆(Glycine max)和稻(Oryza sativa))的CG和TA双联体避开指数。更优选地,这些指数对宿主指数的偏离不超过约10-15%。 
除了编码以上所述LPKSRP的核酸分子之外,本发明另一方面涉及对所述核酸分子而言是反义的分离的核酸分子。据认为反义多核苷酸通过特异性结合靶多核苷酸并干扰靶多核苷酸的转录、剪接、转运、翻译和/或稳定性而抑制靶多核苷酸的基因表达。在现有技术领域内描述了用于使反义多核苷酸靶向至染色体DNA、至初级RNA转录物或至已加工的mRNA的方法。优选地,靶区域包括剪接位点、翻译起始密码子、翻译终止密码子和在可读框内的其它序列。 
为本发明目的,术语“反义”指这样的核酸,其包含与全部或部分的基因、初级转录物或加工的mRNA充分互补以至干扰表达内源性基因的多核苷酸。“互补性”多核苷酸是能够根据Watson-Crick互补原则发生碱基配对的那些多核苷酸,具体地,嘌呤将与嘧啶碱基配对,以形成鸟嘌呤与胞嘧啶配对(G:C)以及在DNA的例子内腺嘌呤与胸腺嘧啶配对(A:T),或在RNA 的例子内腺嘌呤与尿嘧啶配对(A:U)的组合。应当理解两种多核苷酸可以相互杂交,即便它们彼此不完全互补,只要每种多核苷酸具有基本上与另一种多核苷酸互补的至少一个区域即可。术语“反义核酸”包括可以被转录以产生反义RNA的单链RNA和双链DNA表达盒。“活性”反义核酸是能够与编码多肽的初级转录物或mRNA选择性杂交的反义RNA分子,其中所述多肽与SEQ ID NO:2的多肽具有至少80%的序列同一性。 
反义核酸可以与完整的LPKSRP编码链互补或仅与其部分互补。在一个实施方案中,反义核酸分子对编码LPKSRP的核苷酸序列的编码链的“编码区”是反义的。术语“编码区”指核苷酸序列中包含被翻译成氨基酸残基的密码子的区域。在另一个实施方案中,反义核酸分子对编码LPKSRP的核苷酸序列的编码链的“非编码区”是反义的。术语“非编码区”指不被翻译成氨基酸的分布在编码区侧翼的5′和3′序列(即也称作5′和3′非翻译区)。反义核酸分子可以对LPKSRP mRNA的整个编码区是互补的,但是更优选仅对LPKSRP mRNA的编码区或非编码区的部分是反义的寡核苷酸。例如,反义寡核苷酸可以对LPKSRP mRNA的翻译起点周围的区域是互补的。反义寡核苷酸可以是例如约5、10、15、20、25、30、35、40、45或50个核苷酸长度。通常,本发明的反义分子包含这样的RNA,该RNA与SEQ ID NO:1的至少14个连续核苷酸或编码SEQ ID NO:2的多肽的多核苷酸具有60-100%序列同一性,优选地,序列同一性将是至少70%、更优选至少75%、80%、85%、90%、95%或98%并且最优选是99%。 
可以使用本领域已知的方法,利用化学合成和酶连接反应来构建本发明的反义核酸。例如,反义核酸(例如反义寡核苷酸)可以使用天然存在的核苷酸或多种修饰的核苷酸而化学地合成,其中设计修饰的核苷酸以增加分子的生物学稳定性或增加在反义核酸与有义核酸间形成的双链体的物理稳定性,例如可以使用硫代磷酸酯衍生物和吖啶取代的核苷酸。可用于产生反义核酸的修饰核苷酸的实例包括5-氟尿嘧啶、5-溴尿嘧啶、5-氯尿嘧啶、5-碘尿嘧啶、次黄嘌呤、黄嘌呤、4-乙酰基胞嘧啶、5-(羧基羟甲基)尿嘧啶、5-羧甲基氨甲基-2-硫代尿苷、5-羧甲基氨甲基尿嘧啶、二氢尿嘧啶、 β-D-galactosylqueosine、肌苷、N6-异戊烯基腺嘌呤、1-甲基鸟嘌呤、1-甲基次黄嘌呤、2,2-二甲基鸟嘌呤、2-甲基腺嘌呤、2-甲基鸟嘌呤、3-甲基胞嘧啶、5-甲基胞嘧啶、N6-腺嘌呤、7-甲基鸟嘌呤、5-甲基氨甲基尿嘧啶、5-甲氧基氨甲基-2-硫代尿嘧啶、β-D-mannosylqueosine、5′-甲氧基羧甲基尿嘧啶、5-甲氧基尿嘧啶、2-甲硫代-N6-异戊烯基腺嘌呤、尿嘧啶-5-乙醇酸(v)、wybutoxosine、假尿嘧啶、queosine、2-硫代胞嘧啶、5-甲基-2-硫代尿嘧啶、2-硫代尿嘧啶、4-硫代尿嘧啶、5-甲基尿嘧啶、尿嘧啶-5-乙醇酸甲基酯、尿嘧啶-5-乙醇酸(v)、5-甲基-2-硫代尿嘧啶、3-(3-氨基-3-N-2-羧丙基)尿嘧啶、(acp3)w和2,6-二氨基嘌呤。备选地,反义核酸可以使用其中已经将核酸在反义方向上亚克隆的表达载体以生物方式产生(即RNA自插入的与目的靶核酸处于反义方向的核酸转录,这在如下部分中进一步描述)。 
在又一个实施方案。本发明的反义核酸分子是α-异头核酸分子。α-异头核酸分子与互补性RNA形成特异的双链杂交体,其中与常见的β单位相反,链彼此呈平行分布(Gaultier等,1987,Neuleic Acids.Res.15:6625-6641)。反义核酸分子也可以包含2′-O-甲基核糖核苷酸(Inoue等,1987,Nucleic acids Res.15:6131-6148)或嵌合的RNA-DNA类似物(Inoue等,1987,FEBS Lett.215:327-330)。 
本发明的反义核酸分子通常施用至细胞或在原位(in situ)产生,以至它们与编码LPKSRP的细胞mRNA和/或基因组DNA杂交,例如通过抑制转录和/或翻译因而抑制LPKSRP多肽表达。杂交可以由于形成稳定双链体的常规核苷酸互补性,或例如在结合至DNA双链体的反义核酸分子例子中,通过在双螺旋大沟内的特异性相互作用而进行。可以如此修饰反义分子以至于它特异性结合至选择的细胞表面受体或抗原,例如通过将反义核酸分子连接到与细胞表面受体或抗原结合的肽或抗体。反义核酸分子也可以使用本文中所述的载体而被送递至细胞。为在细胞内实现反义分子的足够浓度,优选其中反义核酸分子受原核、病毒或真核(包括植物)强启动子控制的载体。 
作为反义多核苷酸的替代,可以使用核酶、有义多核苷酸或双链RNA(dsRNA)来减少LPKSRP多肽的表达。“核酶”意指具有核糖核酸酶活性的能够切割单链核酸(如mRNA)的基于催化性RNA的酶,其中所述的单链核酸与核酶具有互补性区域。可以使用核酶(例如在Haselhoff和Gerlach,1988,Nature 334:585-591内所述的锤头核酶)来催化性地切割LPKSRPmRNA转录物以便因此抑制LPKSRP mRNA的翻译。对编码LPKSRP的核酸具有专一性的核酶可以基于如本文中所公开的LPKSRP cDNA的核苷酸序列(即SEQ ID NO:1)或基于将根据本发明中所教授方法进行分离的异源序列而设计。例如,可以构建四膜虫(Tetrahymena)L-19 IVS RNA的衍生物,其中活性部位的核苷酸序列与编码LPKSRP的mRNA内待切割的核苷酸序列是互补的。参见例如Cech等美国专利号4,987,071和5,116,742。备选地,LPKSRP mRNA可以用来从RNA分子库内选择具有特定核糖核酸酶活性的催化性RNA。参见例如Bartel,D.和Szostak,J.W.,1993,Science 261:1411-1418。在优选的实施方案中,核酶将含有与靶RNA的部分具有100%互补性的具备至少7、8、9、10、12、14、16、18或20个核苷酸并且更优选7或8个核苷酸的部分。本领域技术人员已知用于产生核酶的方法。例如参见美国专利号6,025,167;5,773,260和5,496,698。 
术语“dsRNA”,如本文中所用,指包含两条RNA链的RNA杂交体。dsRNA可以在结构上是直链的或环状的。在优选的实施方案中,dsRNA对编码SEQ ID NO:2的多肽的多核苷酸或对编码与SEQ ID NO:2的多肽在中央蛋白激酶结构域范围内具有至少80%序列同一性的多肽的多核苷酸是特异性的。杂交性RNA可以是基本上或完全互补的。“基本上互补”意指当两种杂交性RNA使用如上所述的BLAST程序加以优化比对时,杂交部分是至少95%互补的。优选地,dsRNA是至少100个碱基对长度。通常,杂交性RNA具有相同长度,没有突出的5′或3′端并且无空位。然而,在本发明方法中可以使用具有多达100个核苷酸的5′或3′突出端的dsRNA。 
dsRNA可以包含核糖核苷酸或核糖核苷酸类似物如2′-O-甲基核糖基 或其组合。例如,参见美国专利号4,130,641和4,024,222。在美国专利4,283,393中描述了dsRNA聚核糖次黄苷酸:聚核糖胞苷酸。本领域内已知用于产生并使用dsRNA的方法。一个方法包括在体内或在体外的单个反应混合物内同时转录两条互补性DNA链。例如,参见美国专利号5,795,715。在一个实施方案中,dsRNA可以直接通过标准技术导入植物或植物细胞。或者,dsRNA可以在植物细胞中通过转录两种互补性RNA得到表达。 
用于抑制内源基因表达的其它方法,如三重螺旋的形成(Moser等,1987,Science 238:645-650和Cooney等,1988,Science 241:456-459)和共抑制(Napoli等,1990,The Plant Cell 2:279-289)是本领域内已知的。部分长度和全长的cDNA已用于对内源性植物基因的共抑制。例如,参见美国专利号4,801,340、5,034,323、5,231,020和5,283,184;Van der Kroll等,1990,ThePlant Cell 2:291-299;Smith等,1990,Mol.Gen.Genetics 224:477-481和Napoli等,1990,The Plant Cell 2:279-289。 
对于有义抑制,据信有义多核苷酸的导入封闭相应靶基因的转录。有义多核苷酸将与靶植物基因或靶RNA具有至少65%序列同一性。优选地,同一性百分数是至少80%、90%、95%或更高。导入的有义多核苷酸不必要是相对于靶基因或转录物的全长。优选地,有义多核苷酸与SEQ ID NO:1的至少100个连续核苷酸具有至少65%序列同一性。同一性的区域可以包含内含子和/或外显子和非翻译区。导入的有义多核苷酸可以短暂地存在于植物细胞内,或可以稳定地整合至植物染色体或染色体外复制子内。 
备选地,LPKSRP基因表达可以通过与LPKSRP核苷酸序列的调节区(例如LPKSRP启动子和/或增强子)互补以形成防止靶细胞内LPKSRP基因转录的靶向性核苷酸序列来抑制。通常,见Helene,C,1991,AnticancerDrug Des.6(6):569-84;Helene,C.等,1992,Ann.N.Y.Acad.Sci.660:27-36和Maher,LJ.,1992,Bioassays 14(12):807-15。 
除以上所述的LPKSRP核酸和多肽之外,本发明包含与部分连接的那些核酸和多肽。这些部分包括但不限于检测部分、杂交部分、纯化部分、送递部分、反应部分、结合部分等。具有所连接部分的常见类型核酸是探 针和引物。探针和引物通常包含基本上分离的寡核苷酸。寡核苷酸一般包含具有如此核苷酸序列的区域,其中所述的核苷酸序列与SEQ ID NO:1内所述序列之一的有义链的至少约12个、优选约25个、更优选约40、50或75个连续核苷酸;与SEQ ID NO:1内所述的序列之一的反义序列;或其天然存在突变体在严格条件下杂交。基于SEQ ID NO:1的核苷酸序列的引物可以在克隆LPKSRP同系物的PCR反应内使用。基于LPKSRP核苷酸序列的探针可以用来检测编码相同或基本上相同的多肽的转录物或基因组序列。在优选的实施方案中,探针还包含与探针连接的标记基团,例如标记基团可以是放射性同位素、荧光化合物、酶或酶辅助因子。此类探针可以作为基因组标记检测试剂盒的部分用于鉴定细胞样品内表达LPKSRP的细胞,如通过测量编码LPKSRP的核酸的水平,例如检测LPKSRPmRNA水平或确定基因组LPKSRP基因是否被突变或缺失。尤其,用于确定基因转录水平(可用于翻译成基因产物的mRNA量的指示)的方法是开展RNA印迹(参考文献见例如,Ausubel等,1988,Current Protocols inMolecular Biology,Wiley:New York)。来自RNA印迹的信息至少部分地说明已转化基因的转录程度。可以通过数种方法从细胞、组织或器官中制备细胞总RNA,其中所述的方法是本领域内众所周知的,如那些在Bormann,E.R.等,1992 Mol.Microbiol.6:317-326中描述的方法。为了评估从这种mRNA内翻译的蛋白质的存在或相对量,可以使用标准技术,如蛋白质印迹。本领域技术人员众所周知这些技术(例如参见Ausubel等,1988Current Protocols in Molecular Biology,Wiley:New York)。 
本发明还提供包含如以上所述的LPKSRP核酸的分离的重组表达载体,其中与宿主细胞的野生型品种相比,宿主细胞内载体的表达导致增加的生长和/或环境胁迫耐受性。如本文中所用,术语“载体”指这样的核酸分子,该核酸分子能够转运已经与其连接的另一种核酸分子。一个类型的载体实例是“质粒”,其中所述质粒指可向其中连入额外的DNA区段的环状双链DNA环。另一类型的载体是病毒载体,其中额外的DNA区段可以连接到病毒基因组内。某些载体能够在导入载体的宿主细胞内自主复制(例如 具有细菌复制起点的细菌载体和附加体性哺乳动物载体)。其它载体(例如非附加体性哺乳动物载体)在导入宿主细胞时整合至宿主细胞的基因组内,并且因此随宿主基因组一起得以复制。此外,某些载体能够指导与载体有效连接的基因表达。此类载体在本文中称为“表达载体”。通常,在DNA重组技术内使用的表达载体通常是质粒形式。在本说明书中,“质粒”和“载体”可互换使用,因为质粒是载体的最常用形式。然而,本发明意图包含其它形式的表达载体,如病毒载体(例如复制缺陷型逆转录病毒、腺病毒和腺相关病毒),其起到等效功能。 
本发明的重组表达载体包含处于适合在宿主细胞内表达核酸的形式下的本发明核酸,这意指重组表达载体包含基于待用于表达的宿主细胞而选择的与待表达核酸序列有效连接的一种或多种调节序列。如本文中所用,就重组表达载体而言,“有效地连接”意指目的核苷酸序列以允许核苷酸序列(例如在体外转录/翻译系统内或在载体导入宿主细胞时的宿主细胞内)表达的方式与调节序列连接。术语“调节序列”意图包括启动子、增强子和其它表达控制元件(例如聚腺苷酸化信号),此类调节序列例如在Goeddel,Gene Expression Technology:Methods in Enzymology 185,AcademicPress,San Diego,CA(1990)以及Gruber和Crosby在Methods in PlantMolecular Biology and Biotechnology,编者Glick和Thompson,第7章,89-108,CRC Press:Boca Raton,Florida(包括其中参考文献)内描述。调节序列包括指导核苷酸序列在众多类型宿主细胞内组成型表达的那些调节序列和指导核苷酸序列仅在某些宿主细胞内或在某些条件下表达的那些调节序列。本领域技术人员将理解表达载体的设计取决于此类因素,如选择待转化细胞、所需的多肽的表达水平等。本发明的表达载体可以导入宿主细胞,以便因而产生由本文中所述核酸编码的多肽或肽,包括融合多肽或融合肽(例如,LPKSRP、LPKSRP的突变形式、融合多肽等)。 
本发明的重组表达载体可以设计用于在原核细胞或真核细胞中表达LPKSRP。例如,LPKSRP基因可以在如下细胞中表达:细菌细胞如谷氨酸棒杆菌(C.glutamicum)、昆虫细胞(使用杆状病毒表达载体)、酵母细胞或 其它真菌细胞(Romanos,M.A.等,1992,Foreign gene expression in yeast:areview,Yeast 8:423-488;van den Hondel,C.A.M.J.J.等,1991,Heterologousgene expression in filamentous fungi在:More Gene Manipulations inFungi,编者J.W.Bennet和L.L.Lasure,第396-428页:Academic Press:San Diego和van den Hondel,C.A.M.J.J.&Punt,P.J.,1991,GeneTransfer systems and vector development for filamentous fungi在:AppliedMolecular Genetics of Fungi,编者Peberdy,J.F.等,第1-28,CambridgeUniversity Press:Cambridge)、藻类(Falciatore等,1999,MarineBiotechnology 1(3):239-251)、如下类型的纤毛虫:全毛亚纲(Holotrichia)、缘毛亚纲(Peritrichia)、旋毛亚纲(Spirotrichia)、吸管亚纲(Suctoria)、四膜虫、草履虫属(Paramecium)、豆形虫属(Colpidium)、瞬目虫属(Glaucoma)、匙口虫属(Platyophrya)、Potomacus、伪康纤虫属(Pseudocohnilembus)、游仆虫属(Euplotes)、Engelmaniella和尾棘虫属(Stylonychia),其中尤其用载体按照如PCT申请号WO 98/01572中所述的转化方法在浮萍棘尾虫(Stylonychia lemnae),以及在多细胞植物的细胞(参见Schmidt,R.和Willmitzer,L.,1988,High efficiency Agrobacterium tumefaciens-mediatedtransformation of Arabidopsis thaliana leaf and cotyledon explants.PlantCell Rep.583-586;Plant Molecular Biology and Biotechnology,C Press,Boca Raton,Florida,第6/7章,S.71-119(1993);F.F.White,B.Jenes等,Techniques for Gene Transfer,在:Transgenic Plants,第1卷,Engineeringand Utilization,编者Kung和R.Wu,128-43,Academic Press:1993;Potrykus,1991,Annu.Rev.Plant Physiol.Plant Molec.Biol.42:205-225及其中引用的参考文献)或哺乳动物细胞。合适的宿主细胞在Goeddel,GeneExpression Technology:Methods in Enzymology 185,Academic Press,SanDiego,CA(1990)内进一步讨论。备选地,重组表达载体可以在体外转录和翻译,例如使用T7-启动子调节序列和T7聚合酶。 
多肽在原核生物中的表达最经常地使用包含指导融合或非融合多肽表达的组成型启动子或诱导型启动子的载体实施。融合载体将多个氨基酸添 加至载体中所编码的多肽上,通常添加在重组多肽的氨基末端,也可添加至其羧基末端,或融合至多肽内合适的区域范围中。此类融合载体通常具有三种目的:1)增加重组多肽的表达;2)增加重组多肽的可溶性并且3)通过充当亲和纯化内的配体而有助于纯化重组多肽。在融合表达载体中,通常在融合部分与重组多肽的接合处导入蛋白酶剪切位点以便能够在纯化融合多肽后,使重组多肽与融合部分分开。此类酶以及它们的天然识别序列包括因子Xa、凝血酶和肠激酶。 
常见的融合表达载体包括pGEX(Pharmacia Biotech Inc;Smith,D.B.和Johnson,K.S.,1988,Gene 67:31-40)、pMAL(New England Biolabs,Beverly,MA)和pRIT5(Pharmacia,Piscataway,NJ),所述载体分别将谷胱甘肽S-转移酶(GST)、麦芽糖E结合多肽或多肽A与靶重组多肽融合。在一个实施方案中,将LPKSRP的编码序列克隆至pGEX表达载体以产生编码融合多肽的载体,其中所述的融合多肽从氨基末端至羧基末端包含GST-凝血酶切割位点-X多肽。该融合多肽可以使用谷胱甘肽-琼脂糖树脂通过亲和层析纯化。可以通过用凝血酶切割融合多肽而回收不与GST融合的重组LPKSRP。 
合适的诱导型非融合大肠杆菌表达载体的实例是pTrc[Amann等,(1988)Gene 69:301-315]和pET 11d(Studier等,Gene ExpressionTechnology:Methods in Enzymology 185,Academic Press,San Diego,California(1990)60-89)。来自pTrc载体的靶基因表达依赖于宿主RNA聚合酶自杂合trp-lac融合启动子的转录。来自pET11d载体的靶基因表达依赖于共表达的病毒RNA聚合酶(T7 gn1)所介导的从T7 gn10-lac融合启动子的转录。这种病毒聚合酶由宿主菌株BL21(DE3)或HMS174(DE3)从定居λ原噬菌体中提供,其中所述的定居λ原噬菌体携带受lacUV 5启动子转录性控制的T7 gn1基因。 
旨在使重组多肽表达最大化的一个策略是使多肽在蛋白水解性切割重组多肽的能力受损的宿主细菌内表达(Gottesman,S.,Gene ExpressionTechnology:Methods in Enzymology 185,Academic Press,San Diego, California(1990)119-128)。另一个策略是改变待插入表达载体的核酸序列以至于对于每个氨基酸的单个密码子均是在选则用于表达的细菌如谷氨酸棒杆菌内受到偏好性利用的那些密码子(Wada等,1992,Nucleic acids Res.20:2111-2118)。可以通过标准DNA合成技术开展对本发明核酸序列的这种改变。 
在另一个实施方案中,LPKSRP表达载体是酵母表达载体。用于酿酒酵母(S.cerevisiae)内表达的载体实例包括pYepSec1(Baldari,等,1987,Embo J.6:229-234)、pMFa(Kurjan和Herskowitz,1982,Cell 30:933-943)、pJRY88(Schultz等,1987,Gene 54:113-123)和pYES2(InvitrogenCorporation,San Diego,CA)。用于构建适用于其它真菌(如丝状真菌)的载体和方法包括在van den Hondel,C.A.M.J.J.和Punt,P.J.,1991,“GeneTransfer system and vector development for filamentous fungi”在:Applied Molecular Genetics of Fungi,编者J.F.Peberdy等,第1-28页,Cambridge University Press:Cambridge内详述的那些载体和方法。 
备选地,本发明的LPKSRP可以使用杆状病毒表达载体在昆虫细胞内表达。可用于在培养的昆虫细胞(例如Sf 9细胞)内表达多肽的杆状病毒载体包括pAc系列(Smith等,1983,Mol.Cell Biol.3:2156-2165)和pVL系列(Lucklow和Summers,1989,Virology 170:31-39)。 
在又一个实施方案中,使用哺乳动物表达载体在哺乳动物细胞内表达本发明的LPKSRP。哺乳动物表达载体的实例包括pCDM8(Seed,B.,1987,Nature 329:840)和pMT2PC(Kaufman等,1987,EMBO J.6:187-195)。当在哺乳动物细胞内使用时,表达载体的控制功能常由病毒调节元件提供。例如,常用的启动子衍生自多瘤病毒、腺病毒2、细胞巨化病毒或猴病毒40。对用于原核细胞和真核细胞的其它合适表达系统,见Sambrook,J.,Fritsh,E.F.,和Maniatis,T.Molecular Cloning:A Laboratory Manual,最新版,Cold Spring Harbor Laboratory,Cold Spring Harbor LaboratoryPress,Cold Spring Harbor,NY,1989的第16和17章。在另一个实施方案中,重组哺乳动物表达载体能够指导核酸在特定细胞类型内偏好性地表达 (例如,使用组织特异性调节元件来表达核酸)。组织特异性调节元件是本领域内已知的,合适的组织特异性启动子的非限制性实例包括白蛋白启动子(肝脏特异性;Pinkert等,1987,Genes Dev.1:268-277)、淋巴特异性启动子(Calame和Eaton,1988,Adv.Immunol.43:235-275),尤其T细胞受体启动子(Winoto和Baltimore,1989,EMBO J.8:729-733)和免疫球蛋白启动子(Banerji等,1983,Cell 33:729-740;Queen和Baltimore,1983,Cell33:741-748)、神经元特异性启动子(例如,神经丝启动子;Byrne和Ruddle,1989,PNAS 86:5473-5477)、胰脏特异性启动子(Edlund等,1985,Science230:912-916)和乳腺特异性启动子(例如乳清启动子;美国专利号4,873,316和欧洲申请公开号264,166)。还包含发育调节性启动子,例如小鼠hox启动子(Kessel和Gruss,1990,Science 249:374-379)和甲胎多肽(fetopolypeptide)启动子(Campes和Tilghman,1989,Genes Dev.3:537-546)。 
对了稳定转染哺乳动物细胞,已知取决于所用的表达载体和转染技术,仅少部分的细胞可以整合外来DNA至细胞的基因组内。为了鉴定并选择这些整合子,编码选择标记(例如对抗生素或杀虫剂的抗性)的基因通常随目的基因一起导入宿主细胞。优选的选择标记包括那些赋予药物(如G418、潮霉素和甲氨蝶呤)抗性或在植物内赋予杀虫剂(如草甘膦、草铵膦或咪唑啉酮)抗性的那些选择标记。编码选择标记的核酸分子可以在编码LPKSRP的同一载体内导入宿主细胞或可以在分开的载体内被导入。以导入的核酸分子稳定转染的细胞可以通过例如杀虫剂选择进行鉴定(例如,已经整合选择标记基因的细胞将存活,而其它细胞死亡)。 
在本发明优选的实施方案中,LPKSRP在植物和植物细胞如单细胞植物的细胞(例如藻类)(参见Falciatore等,1999,Marine Biotechnology1(3):239-251及其中参考文献)和来自高等植物的植物细胞(例如种子植物,如作物植物)内表达。LPKSRP可以通过任何方法“导入”植物细胞,所述方法包括转染、转化或转导、电穿孔、粒子轰击、农杆菌感染法等。本领域技术人员所知的一种转化方法是将正在开花的植物浸入农杆菌溶液,其中 农杆菌含有LPKSRP核酸,随后培育转化的配子。 
适用于转化或转染宿主细胞(包括植物细胞)的其它方法可以在Sambrook,等,Molecular Cloning:A Laboratory Manual.最新版,ColdSpring Harbor Laboratory,Cold Spring Harbor Laboratory Press,ColdSpring Harbor,NY,1989和其它实验手册如Methods in MolecularBiology,1995,第44卷,Agrobacterium Protocols,Gartland和Davey编辑,Humana Press,Totowa,New Jersey中找到。由于增加的植物生长和/或生物性及非生物性胁迫耐受性是希望遗传至多种植物如玉米、小麦、黑麦(rye)、燕麦(oat)、黑小麦(triticale)、稻、大麦(barley)、大豆、花生(peanut)、棉花、欧洲油菜和卡诺拉油菜(canola)、木薯(manihot)、胡椒(pepper)、向日葵(sunflower)和万寿菊(tagetes)、茄科(solanaceous)植物如马铃薯(potato)、烟草(tobacco)、茄子(egg plant)和番茄(tomato)、野豌豆属(Vicia)物种、豌豆(pea)、紫花苜蓿(alfalfa)、灌木植物(咖啡(coffee)、可可(cacao)、茶(tea))、柳属(Salix)物种、树(油棕榈(oil palm)、椰子(coconut))、多年生禾草和饲料作物的常见性状,因此这些作物植物也是作为本发明的又一个实施方案的用于遗传工程的优选靶植物。饲料作物包括但不限于小麦草(Wheat-grass)、虉草(Canarygrass)、雀麦草(Bromegrass)、披碱草(WildryeGrass)、早熟禾(Bluegrass)、鸭茅(Orchardgrass)、紫花苜蓿、Salfoin、百脉根(Birdsfoot Trefoil)、杂三叶(Alsike clover)、红车轴草(red clover)和草木樨(Sweet clover)。 
在本发明的一个实施方案中,通过农杆菌介导性基因转移实现LPKSRP转染至植物。农杆菌介导性植物转化可以使用例如GV3101(pMP90)(Koncz和Schell,1986,Mol.Gen.Genet.204:383-396)或LBA4404(Clontech)根癌农杆菌(Agrobactrium tumefaciens)菌株开展。转化可以通过标准转化和再生技术开展(Deblaere等,1994,Nucl.Acids.Res.13:4777-4788;Gel-vin,Stanton B.和Schilperoort,Robert A,PlantMolecular Biology Manual,第二版-Dordrecht:Kluwer Academic Publ.,1995.-在部分Ringbuc Zentrale Signatur:BT11-P ISBN 0-7923-2731-4; Glick,Bernard R.;Thompson,J ohn E.,Methods in Plant MolecularBiology and Biotechnology,Boca Raton:CRC Press,1993 360 S.,ISBN0-8493-5164-2)。例如,欧着油菜可以通过子叶或下胚轴转化法转化(Moloney等,1989,Plant cell Report 8:238-242;De Block等,1989,PlantPhysiol.91:694-701)。用于农杆菌和植物选择的抗生素取决于用于转化的二元载体和农杆菌。通常使用作为植物可选择标志的卡那霉素开展欧洲油菜的选择。可以使用例如由Mlynarova等,1994,Plant Cell Report13:282-285描述的技术开展农杆菌介导基因转移至亚麻(flax)内。此外,可以使用如欧洲专利号0424 047、美国专利号5,322,783、欧洲专利号0397687、美国专利号5,376,543或美国专利号5,169,770中所述的技术实施大豆的转化。可以通过粒子轰击、聚乙二醇介导的DNA摄取或通过碳化硅纤维法技术(见,例如Freeling和Walbot“The maize handbook”SpringerVerlag:New York(1993)ISBN 3-540-97826-7)完成玉米的转化。玉米转化的具体实例在美国专利号5,990,387内找得到,并且小麦转化的具体实例可以在PCT申请号WO93/07256内找得到。 
根据本发明,如果导入的LPKSRP整合入非染色体自主复制子内或整合至植物染色体内,则它可以在植物细胞内稳定维持。或者,导入的LPKSRP可以存在于染色体外的非复制型载体内并且可以被瞬时表达或具有瞬时活性。 
在一个实施方案中,可以产生其中LPKSRP整合至染色体内的同源重组微生物,制备含有LPKSRP基因的至少部分的载体,在所述的LPKSRP基因中已导入缺失、添加或置换以便因而改变(例如功能性地破坏)LPKSRP基因。LPKSRP基因优选地是展叶剑叶藓LPKSRP基因,但是LPKSRP基因可以是来自相关植物或甚至具有哺乳动物、酵母或昆虫来源的同系物。在一个实施方案中,设计载体以至于同源重组时,内源LPKSRP基因被功能性地破坏(即不再编码功能性多肽;也称作敲除载体)。或者,可以设计载体以至于同源重组时,内源LPKSRP基因被突变或改变,但仍编码功能性多肽(如上游调节区可以被改变,因而改变内源LPKSRP的表 达)。为了通过同源重组产生点突变,可以在称作嵌合修复法的技术内使用DNA-RNA杂交体(Cole-Strauss等,1999,Nucleic acids Research27(5):1323-1330和Kmiec,1999,Gene therapy American Scientist.87(3):240-247)。展叶剑叶藓内同源重组方法也是本领域内众所周知并且考虑用于本文内。在位于同源重组载体内的同时,LPKSRP基因的已改变部分在其5′和3′端侧翼分布有LPKSRP基因的额外核酸分子,以允许在微生物或植物内在载体所携带的外源LPKSRP基因与内源LPKSRP基因之间发生同源重组。这种侧翼分布的额外LPKSRP核酸分子具有足够的长度,以便成功地与内源基因同源重组。一般,在载体内包含(同时在5′端和3′端)数百碱基对至数千碱基对的侧翼DNA(参见例如Thomas,K.R.和Capecchi,M.R.,1987,Cell 51:503对同源重组载体的描述或Strepp等,1998,PNAS,95(8):4368-4373对展叶剑叶藓中基于cDNA的重组的描述)。载体导入微生物或植物细胞(例如通过聚乙二醇介导的DNA),并且使用本领域已知的技术选择其中导入的LPKSRP基因已经与内源LPKSRP基因同源重组的细胞。 
在另一个实施方案中,可以产生这样的重组微生物,该重组微生物含有允许调节已导入基因表达的系统。例如,将LPKSRP基因置于Iac操纵子控制下的载体内允许LPKSRP基因仅在IPTG存在时才表达。本领域内众所周知此类调节系统。 
无论是在染色体外的非复制型载体内或在整合至染色体中的载体内存在,LPKSRP多核苷酸优选地位于植物表达盒内。植物表达盒优选地含有能够驱动植物细胞内的基因表达的调节序列,这些调节序列有效连接以至于每一序列可充分实现它的功能,如通过聚腺苷酸化信号终止转录。优选的聚腺苷酸化信号是源自根癌农杆菌t-DNA如Ti质粒pTiACH5的称作章鱼碱合酶的基因3(Gielen等,1984,EMBO J.3:835)或其功能等效物内的那些聚腺苷酸化信号,在植物内有功能性活性的全部其它终止子也是适合的。由于植物基因表达往往不在转录水平上受限制,因而植物表达盒优选地包含有效连接的其它序列,如翻译增强子,如含有来自烟草花叶病毒5’非翻 译前导序列的增强多肽与RNA比率的过量驱动序列(Gallie等,1987,Nucl.Acids Research 15:8693-8711)。植物表达载体的实例包括那些在Becker,D.,Kemper,E.,Schell,J.和Masterson,R.,1992,New plant binary vectorswith selectable markers located proximal to the left border,Plant Mol.Biol.20:1195-1197和Bevan,M.W.,1984,Binary Agrobacterium vectors forplant transformation,Nucl.Acid.Res.12:8711-8721;以及Vectors for GeneTransfer in Higher Plants在:Transgenic Plants,第一卷,Engineering andUtilization,编者Kung和R.Wu,Academic Press,1993,S.15-38中详述的植物表达载体。 
植物基因表达应当有效连接于以时间特异性、细胞特异性或组织特异性方式赋予基因表达的适宜启动子。用于本发明表达盒内的启动子包括能够启动植物细胞内转录的任意启动子。此类启动子包括但不限于可以从植物、植物病毒或含有在植物内表达的基因的细菌(农杆菌和根瘤菌(Rhizobium))内获得的那些启动子。 
启动子可以是组成型、诱导型、发育阶段优选性、细胞类型优选性、组织优选性、或器官优选性启动子。组成型启动子在大部分条件下有活性。组成型启动子的实例包括CaMV 19S和35 S启动子(Odell等,1985,Nature313:810-812)、sX CaMV 35S启动子(Kay等,1987,Science 236:1299-1302)、Sep1启动子、稻肌动蛋白启动子(McEI-roy等,1990,Plant Cell2:163-171)、拟南芥肌动蛋白启动子、遍在蛋白启动子(Christensen等,1989,Plant Molec.Biol.18:675-689)、pEmu(Last等,1991,Theor.Appl.Genet.81:581-588)、玄参花叶病毒35S启动子、Smas启动子(Velten等,1984,EMBO J 3:2723-2730)、GRP1-8启动子、肉桂醇脱氢酶启动子(美国专利号5,683,439),来自农杆菌T-DNA如甘露氨酸合酶、胭脂碱合酶和章鱼碱合酶的启动子、核酮糖二磷酸羧化酶小亚基(ssuRU-BISCO)启动子等。 
诱导型启动子在下某些环境条件(如营养素或代谢物的存在或不存在、热或寒冷、光、病原体侵袭、厌氧条件等)下偏好性地有活性。例如,来自芸苔属(Brassica)的hsp80启动子受热休克诱导;PPDK启动子受光诱导; 来自烟草、拟南芥和玉米的PR-1启动子是受病原体感染诱导的;并且Adh1启动子受低氧胁迫和寒冷胁迫诱导。植物基因表达也可以通过诱导型启动子促进(对于综述见Gatz,1997,Annu.Rev.Plant Physiol.Plant Mol.Biol.48:89-108)。当需要基因表达以时间特异性方式发生时,化学诱导型启动子是特别适合的。此类启动子的实例是水杨酸诱导型启动子(PCT申请号WO95/19443)、四环素诱导型启动子(Gatz等,1992,Plant J.2:397-404)和乙醇诱导型启动子(PCT申请号WO 93/21334)。在本发明的一个优选实施方案中,诱导型启动子是胁迫诱导型启动子。为本发明的目的,胁迫诱导型启动子在一种或多种如下胁迫:与盐度胁迫、干旱胁迫、温度胁迫、金属胁迫、化学品胁迫、病原体胁迫和氧化胁迫有关的次优条件下偏好性地活跃。胁迫诱导型启动子包括但不限于Cor78(Chak等,2000,Planta210:875-883;Hovath等,1993,Plant Physiol.103:1047-1053)、Cor15a(Artus等,1996,PNAS 93(23):13404-09)、Rci2A(Medina等,2001,PlantPhysiol.125:1655-66;Nylander等,2001,Plant Mol.Biol.45:341-52;Navarre和Goffeau,2000,EMBO J.19:2515-24;Capel等,1997,PlantPhysiol.115:569-76)、Rd22(Xiong等,2001,Plant Cell 13:2063-83;Abe等,1997,Plant Cell 9:1859-68;Iwasaki等,1995,Mol.Gen.Genet.247:391-8)、cDet6(Lang和Palve,1992,Plant Mol.Biol.20:951-62)、ADH1(Hoeren等,1998,Genetics 149:479-90)、KAT1(Nakamura等,1995,Plant Physiol.109:371-4)、KST1(Miiller-R
Figure 2006800217407_0
ber等,1995,EMBO 14:2409-16)、Rha1(Terryn等,1993,Plant Cell 5:1761-9;Terryn等,1992,FEBS Lett.299(3):287-90)、ARSK1(Atkinson等,1997,GenBank登录号L22302和PCT申请号WO 97/20057)、PtxA(Plesch等,GenBank登录号X67427)、SbHRGP3(Ahn等,1996,Plant Cell 8:1477-90)、GH3(Liu等,1994,PlantCell 6:645-57)、病原体诱导型PRP1基因启动子(Ward等,1993,Plant.Mol.Biol.22:361-366)、来自番茄的热诱导型hsp80启动子(美国专利号5187267)、来自马铃薯的寒冷诱导型α-淀粉酶启动子(PCT申请号WO96/12814或损伤诱导型pinII启动子(欧洲专利号375091)。对于干旱、寒冷 和盐诱导型启动子的其它实例如RD29A启动子,见Yamaguchi-Shinozalei等,1993,Mol.Gen.Genet.236:331-340。 
发育阶段优选的启动子在发育的某个时期偏好性地表达。组织和器官优选的启动子包括在某些组织或器官如叶、根、种子或木质部内偏好性表达的那些启动子。组织优选性和器官优选性启动子的实例包括但不限于果实优选性、胚珠优选性、雄性组织优选性、种子优选性、珠被优选性、块茎优选性、柄优选性、果皮优选性和叶优选性、柱头优选性、花粉优选性、花药优选性、花瓣优选性、萼片优选性、花梗优选性、长角果优选性、茎优选性、根优选性启动子等。种子优选性启动子在种子发育或萌发期间偏好性地表达。例如,种子优选性启动子可以是胚优选性、胚乳优选性和种皮优选性启动子。见Thompson等,1989,BioEssays 10:108。种子优选性启动子的实例包括但不限于纤维素合酶(celA)、Cim1、γ-玉米醇溶蛋白、球蛋白-1、玉米19 kD玉米醇溶蛋白(cZ19B1)等启动子。 
其它合适的组织优选或器官优选的启动子包括来自欧洲油菜的油菜籽蛋白基因启动子(美国专利号5,608,152)、来自蚕豆(Vicia faba)的USP启动子(Baeumlein等,1991,Mol.Gen.Genet.225(3):459-67)、来自拟南芥的油质蛋白启动子(PCT申请号WO 98/45461)、菜豆(Phaseolus vulgaris)的菜豆蛋白启动子(美国专利号5,504,200)、来自芸苔属的Bce4启动子(PCT申请号WO 91/13980)或豆科植物的B4启动子(LeB4;Baeumlein等,1992,Plant Journal,2(2):233-9)以及在单子叶植物如玉米、大麦、小麦、黑麦、稻等内赋予种子特异性表达的启动子。所提到的合适启动子是来自大麦的IpT2或IpT1基因启动子(PCT申请号WO 95/15389和PCT申请号WO95/23230)或PCT申请号WO 99/16890内描述的那些启动子(来自大麦的大麦醇溶蛋白基因、稻的谷蛋白基因、稻的水稻素基因、稻的谷醇溶蛋白基因、小麦的麦醇溶蛋白基因、小麦的谷蛋白基因、燕麦的谷蛋白基因、高粱的kasirin基因和黑麦的裸麦醇溶蛋白基因的启动子)。 
用于本发明表达盒内的其它启动子包括但不限于主要叶绿素a/b结合蛋白启动子、组蛋白启动子、Ap3启动子、β-伴大豆球蛋白启动子、油菜 籽蛋白启动子、大豆凝集素启动子、玉米15kD玉米醇溶蛋白启动子、22kD玉米醇溶蛋白启动子、27kD玉米醇溶蛋白启动子、g-玉米醇溶蛋白启动子、蜡质、shrunken 1、shrunken 2和bronze启动子、Zm13启动子(美国专利号5,086,169)、玉米多聚半乳糖醛酸酶启动子(PG)(美国专利号5,412,085和5,545,546)和SGB6启动子(美国专利号5,470,359)以及合成性启动子或其它天然启动子。 
控制植物内异源基因表达的额外灵活性可以通过使用来自异源的DNA结合结构域和应答元件(即来自非植物来源的DNA结合结构域)获得。此种异源的DNA结合结构域的实例是LexA DNA结合结构域(Brent和Ptashne,1985,Cell 43:729-736)。 
本发明还提供包含本发明LPKSRP DNA分子的重组表达载体,其中所述的LPKSRP DNA分子以反义方向克隆至该表达载体内。即该DNA分子以允许对LPKSRP mRNA而言为反义的RNA分子表达(通过DNA分子转录)的方式与调节序列有效连接。可以选择指导反义RNA分子在多种细胞类型中持续表达的与以反义方向克隆的核酸分子有效连接的调节序列。例如,可以选择指导反义RNA组成型、组织特异性或细胞类型特异性表达的病毒启动子和/或增强子或调节序列。反义表达载体可以为重组质粒、噬菌粒或减毒病毒形式,其中在高效调节区域控制下产生反义核酸。调节区域的活性可以通过向其中导入载体的细胞类型得以确定。对于使用反义基因调节基因表达的讨论,参见Weintraub,H.等,1986,AntisenseRNA as a molecular tool for genetic analysis,Reviews-Trends in Genetics,第一卷(1),和MoI等,1990,FEBS Letters 268:427-430。 
本发明的另一方面涉及已导入本发明重组表达载体的宿主细胞。术语“宿主细胞”和“重组的宿主细胞”在本文中可互换使用。应当理解此类术语不仅指特定的主题细胞,它们还适用于此类细胞的子代或有活力的子代。由于某些修饰可以在后续世代内因突变或环境影响而出现,此类子代实际上可以与亲代细胞不完全相同,但是如本文中所用仍包含在本发明的范围内。宿主细胞可以是任何的原核细胞或真核细胞。例如,LPKSRP可以在 细菌细胞如谷氨酸棒杆菌、昆虫细胞、真菌细胞或哺乳动物细胞(如中国仓鼠卵巢细胞(CHO)或COS细胞)、藻类、纤毛虫、植物细胞、真菌或其它微生物如谷氨酸棒杆菌内表达。本领域技术人员已知其它合适的宿主细胞。 
本发明的宿主细胞如培养的原核宿主细胞或真核宿主细胞可以用来产生(即表达)LPKSRP。因此,本发明还提供用于使用本发明的宿主细胞产生LPKSRP的方法。在一个实施方案中,此方法包括在合适培养基内培养本发明的宿主细胞(其中已经导入编码LPKSRP的重组表达载体或其中已经将编码野生型或变异的LPKSRP的基因导入基因组)直至产生LPKSRP。在另一个实施方案中,该方法还包括从培养基或宿主细胞中分离LPKSRP。本发明的另一方面涉及分离的LPKSRP及其生物活性部分。“分离的”或“纯化的”多肽或其生物活性部分在通过重组DNA技术产生时,基本不含某些细胞性材料,或通过化学合成时,基本上不含化学前体或其它化学品。词组“基本上不含细胞性材料”包括这样的LPKSRP制品,在其中多肽与从其中天然或重组地产生该多肽的细胞的某些细胞成分是分开的。在一个实施方案中,词组“基本不含细胞材料”包括这样的LPKSRP制品,其具有小于约30%(干重)的非LPKSRP材料(本文中也称作“污染多肽”)、优选地小于约20%的非LPKSRP材料、仍更优选地小于约10%的非LPKSRP材料并且最优选地小于约5%的非LPKSRP材料。 
当重组地产生LPKSRP或其生物活性部分时,还优选地基本不含培养基,即培养基占多肽制品的体积小于约20%、更优选地小于约10%并且最优选地小于约5%。词组“基本不含化学前体或其它化学品”包括这样的LPKSRP制品,在其中多肽与参与合成该多肽的化学前体或其它化学品是分开的。在一个实施方案中,词组“基本不含化学前体或其它化学品”包括这样的LPKSRP制品,其具有小于约30%(干重)的化学性前体或非LPKSRP化学品、更优选地小于约20%的化学性前体或非LPKSRP化学品、仍更优选地小于约10%的化学性前体或非LPKSRP化学品并且最优选地小于约5%的化学性前体或非LPKSRP化学品。在优选的实施方案中,分离的多肽或其生物活性的部分没有来自衍生LPKSRP的相同生物内的 杂质多肽。一般,如此产生此类多肽,例如通过在除展叶剑叶藓的植物或微生物如谷氨酸棒杆菌、纤毛虫、藻类或真菌内重组地表达展叶剑叶藓LPKSRP。 
本文中所述的核酸分子、多肽、多肽同系物、融合多肽、引物、载体和宿主细胞可以在一种或多种如下方法内使用:鉴定展叶剑叶藓及相关生物;对展叶剑叶藓相关的生物的基因组作图;鉴定和定位展叶剑叶藓目的序列;演化研究;鉴定对功能所需要的LPKSRP区域;调节LPKSRP活性;调节一种或多种细胞功能的代谢;调节植物的生长或植物的水利用效率;调节胁迫抗性以及调节LPKSRP核酸的表达。在这些方法的一个实施方案中,LPKSRP作为凝集素样蛋白激酶发挥作用。 
展叶剑叶藓与能够在光不存在下生长的其它藓类如角齿藓(Ceratodonpurpureus)相关。苔藓如角齿藓和剑叶藓属在DNA水平和多肽水平上共有高度的序列统一性,这允许使用衍生自其它苔藓或生物的探针异源性地筛选DNA分子,因此能够推导出适用于异源筛选或功能性注释及预测在第三方物种内基因功能的共有序列。鉴定此类功能的能力可以因此具有重要意义,例如,预测酶的底物专一性。此外,这些核酸分子可以起到对苔藓基因组或相关生物基因组作图的参考点作用。 
本发明的LPKSRP核酸分子具有多种用途。最重要的是本发明的核酸和氨基酸序列可以用来转化植物,因而导入对胁迫如干旱、高盐度和寒冷的耐受性。本发明因此提供由LPKSRP核酸转化的转基因植物,其中植物内核酸序列的表达导致与植物的野生型品种相比增加的环境胁迫耐受性。转基因植物可以是单子叶植物或双子叶植物。本发明还提供转基因植物可以例如选自玉米、小麦、黑麦、燕麦、小黑麦、稻、大麦、大豆、花生、棉花、欧洲油菜、卡诺拉油菜、木薯、胡椒、向日葵、万寿菊、茄科植物、马铃薯、烟草、茄子、番茄、蚕豆属物种、豌豆、紫花苜蓿、咖啡、可可、茶、柳属植物、油棕榈、椰子、多年生禾草和饲料作物。 
尤其,本发明描述使用展叶剑叶藓PpLLPK-1的表达以改造水利用效率增加的植物和/或干旱、盐和/或寒冷耐受性增加的植物。这种策略在本文 中已经展示用于鼠耳芥(Arabidopsis thaliana),但是这种应用不限于该种植物。因此,本发明提供含有LPKSRP如SEQ ID NO:2内所定义的PpLLPK-1的转基因植物,其中植物具有增加的生长和/或增加的环境胁迫耐受性,其中所述的环境胁迫选自干旱胁迫、盐胁迫、热胁迫或冰冻胁迫中的一种或多种。在优选的实施方案中,环境胁迫是干旱。 
因此,本发明提供产生具有编码LPKSRP的核酸的转基因植物的方法,其中在植物内核酸的表达导致与植物的野生型品种相比增加的环境胁迫耐受性,所述方法包括:(a)将包含LPKSRP核酸的表达载体导入植物细胞,并(b)从该植物细胞产生与植物的野生型品种相比,具有增加的生长和/或增加的环境胁迫耐受性的转基因植物。植物细胞包括但不限于原生质体、产生配子的细胞和再生成完整植物的细胞。如本文中所用,术语“转基因性”指含有至少一种重组多核苷酸的全部或部分的任何植物、植物细胞、愈伤组织、植物组织或植物部分。在很多情况下,全部或部分的重组多核苷酸稳定地整合至染色体或至稳定的染色体外元件内,以至于它传递到后续世代内。在优选的实施方案中,LPKSRP核酸编码包含SEQ ID NO:2的多肽的蛋白质。 
本发明还提供调节植物的生长和/或环境胁迫耐受性的方法,包括调节植物内编码LPKSRP的核酸的表达。植物的生长和/或环境胁迫耐受性可以如分别通过增加或减少LPKSRP表达所实现的那样被增加或减少。优选地,植物的生长和/或环境胁迫耐受性因增加LPKSRP的表达而增加。可以通过本领域技术人员已知的任何方法调节LPKSRP的表达。可以使用增加LPKSRP表达的方法,其中植物是转基因植物或非转基因植物。在植物是转基因植物的例子中,植物可以用含有如上所述任何编码LPKSRP的核酸的载体加以转化,或植物例如可以用指导天然LPKSRP在植物内表达的启动子加以转化。本发明提供的此种启动子可以是组织优选性、发育调节性、胁迫诱导性启动子或其组合。或者,非转基因植物可以通过诱导天然启动子而改变天然LPKSRP的表达。靶植物内如SEQ ID NO:2内所定义的PpLLPK-1的表达可以通过但不限于如下之一的实例:(a)组成型启动 子、(b)胁迫诱导型启动子、(c)化学诱导型启动子和(d)的工程化启动子的过量表达与例如锌指衍生性转录因子(Greisman和Pabo,1997,Science275:657)实现。 
在优选的实施方案中,使用如Greisman和Pabo,1997,Science 275:657内所述并由Sangamo Biosciences,Inc.制造的锌指衍生性转录因子(ZFP)调节LPKSRP的转录。这些ZFP包含DNA识别结构域和导致激活或阻遏靶核酸如LPKSRP核酸的功能性结构域。因此,可以产生这样的激活性及阻遏性ZFP,其中所述ZFP特异性识别以上所述的LPKSRP启动子并被用来增加或减少植物内LPKSRP的表达,因而调节植物的生长和/或胁迫耐受性。本发明还包括鉴定靶植物内如SEQ ID NO:2内所定义的PpLLPK-1的同系物以及该同系物的启动子。本发明还提供与宿主细胞的野生型品种相比,增加表达对LPKSRP做出应答而被转录的目的基因的方法,所述方法包括:(a)宿主细胞由包含编码LPKSRP的核酸的表达载体转化,(b)表达宿主细胞内的LPKSRP,因而与宿主细胞的野生型品种相比,增加表达对LPKSRP做出应答而被转录的基因。除将LPKSRP核酸序列导入转基因植物之外,这些序列也可以用来鉴定生物,如展叶剑叶藓或其近亲。这些序列还可以用来在混合的微生物群体内鉴定展叶剑叶藓或其亲缘物种的存在。本发明提供多种展叶剑叶藓基因的核酸序列;通过用探针在严格条件下探测单独或混合的微生物群体的培养物的提取的基因组DNA,可以确定该种生物是否存在,其中所述的探针覆盖对展叶剑叶藓生物而言为独特的展叶剑叶藓基因区。 
此外,本发明的核酸分子和多肽分子可以当作基因组特定区域的标记。这不仅用于基因组作图,而且也用于展叶剑叶藓多肽的功能性研究内。例如为鉴定与特定的展叶剑叶藓DNA结合性多肽相结合的基因组区域,可以消化展叶剑叶藓基因组,并且将基因组片段与这种DNA结合性多肽温育。可以用本发明的核酸分子另外检测已结合多肽的片段,其中所述的核酸分子优选地具有容易检测的标记。核酸分子对基因组片段的结合能够将该片段在展叶剑叶藓基因组图内定位,并且,当用不同的酶多次开展时, 有利于迅速地确定与该多肽相结合的核酸序列。此外,本发明的核酸分子可以与相关物种的序列充分相同以至于这些核酸分子可以作为构建相关苔藓基因组图的标记使用。本发明的LPKSRP核酸分子还用于进化和多肽结构研究。本发明分子所参与的过程可以为多种原核细胞和真核细胞利用;通过本发明核酸分子的序列与来自其它生物的编码相似酶的核酸分子的序列进行比较,可以评估生物的进化相关性。类似地,此类比较允许评估序列中哪些区域保守而哪些区域不保守,这可能有助于确定多肽的哪个区域对酶的功能是必需的。这种类型的确定对于多肽工程研究极有意义并且可以提供多肽可耐受何种诱变而不丧失功能的线索。 
操作本发明的LPKSRP核酸分子可以导致产生具有不同于野生型LPKSRP的功能性差异的LPKSRP。这些多肽可以在效率或活性方面被改良,可以在细胞中以高于细胞内通常具有的量存在,或可以在效率或活性方面降低。 
在植物、谷氨酸棒杆菌、真菌、藻类或纤毛虫内的遗传修饰对植物生长和/或胁迫耐受性的影响可以如下评估,即在不适宜的环境下培育改良微生物或改良植物并且随后分析植物的生长特征和/或代谢。本领域技术人员众所周知此类分析技术,并且包括干重、湿重、多肽合成、糖类合成、脂类合成、蒸发蒸腾速率、总体植物和/或作物产量、开花、繁殖、结种、根生长、呼吸速率、光合作用速率等(Applications of HPLC in Biochemistry in:Laboratory Techniques in Biochemistry and Molecular Biology,第17卷;Rehm等,1993 Biotechnology,第3卷,第三章:Product recovery andpurification,第469-714页,VCH:Weinheim;Belter,P.A.等,1988,Bioseparations:downstream processing for biotechnology,John Wiley andSons;Kennedy,J.F.和Cabral,J.M.S.,1992,Recovery processes forbiological materials,John Wiley and Sons;Shaeiwitz,J.A.和Henry,J.D.,1988,Biochemsical separations,在Ulmann′s Encyclopedia of IndustrialChemistry中,第B3卷,第11章,第1-27页,VCH:Weinheim;和Dechow,F.J.,1989,Separation and purification techniques in biotechnology,Noyes Publications)。 
例如,可以构建包含本文中公开的核酸或其片段的酵母表达载体并使用标准方案将其转化至酿酒酵母内。随后可以对得到的转基因细胞分析其对生长及对干旱胁迫、盐胁迫和温度胁迫的耐受性是否有效或改变。类似地,可以构建包含本文中公开的核酸或其片段的植物表达载体并使用标准方案转化将其至适宜的植物细胞如拟南芥、大豆、油菜、玉米、小麦、蒺藜苜蓿(Medicago truncatula)等。随后对得到的转基因细胞和/或衍生自其中的植物分析其对生长及对干旱胁迫、盐胁迫和温度胁迫的耐受性是否有效或改变。 
对本发明的一种或多种LPKSRP基因的改造还可以产生具有变异活性的LPKSRP,这种LPKSRP间接地影响藻类、植物、纤毛虫或真菌或其它微生物如谷氨酸棒杆菌的生长、胁迫应答和/或胁迫耐受性。例如,代谢的正常生物化学过程导致产生可活跃地干扰这些相同代谢过程的多种产物(例如过氧化氢和其它活性氧类别)。例如已知过氧亚硝酸盐使酪氨酸侧链亚硝化,因而造成活性部位内具有酪氨酸的某些酶失活(Groves,J.T.,1999,Curr.Opin.Chem.Biol.3(2):226-235)。在通常排出这些产物的同时,可以遗传地改变细胞以转运出多于野生型细胞常见转运量的产物。通过优化参与输出特定分子如盐分子的一种或多种本发明LPKSRP的活性,有可能改良细胞的胁迫抗性。 
此外,本文中公开的序列或其片段可以用来在多种生物如细菌、哺乳动物细胞、酵母细胞和植物细胞的基因组内产生敲除突变(Girke,T.,1998,The Plant Journal 15:39-48)。得到的敲除细胞随后可以就其耐受多种胁迫条件的能力或潜能、它们对多种胁迫条件的应答以及突变对表型和/或基因型的影响进行评估。用于基因失活的其它方法,参见美国专利号6,004,804“Non-Chimeric Mutational Vectors”和Puttaraju等,1999,Spliceosome-mediated RNA trans-splicing as a tool for gene therapy,Nature Biotechnology 17:246-252。 
前述提及的引起生长增加和/或胁迫耐受性增加的对LPKSRP的诱变 策略不意图是限制性;本领域技术人员容易地明白这些策略的变例。利用此类策略并整合本文中所公开的机制,本发明的核酸和多肽分子可以用来产生表达突变的LPKSRP核酸分子和多肽分子以至于改进生长和/或胁迫耐受性的藻类、纤毛虫、植物、真菌或其它微生物如谷氨酸棒杆菌。 
本发明还提供与如本文中所述的核酸编码的LPKSRP或其部分特异性地结合的抗体。可以通过众多众所周知的方法(参见例如Harlow和Lane,“Antibodies;A Laboratory Manual”,Cold Spring Harbor Laboratory,Cold Spring Harbor,New York,(1988))产生抗体。简而言之,可以将纯化的抗原以足以激发免疫反应的量和间隔期注射至动物。可以直接纯化抗体,或可以从该动物中获得脾脏细胞。随后使脾脏细胞与永生细胞系融合并进行抗体分泌筛选。抗体可用来筛选核酸克隆文库以获得分泌抗原的细胞。随后可以对那些阳性克隆测序(参见例如,Kelly等,1992,Bio/Technology10:163-167;Bebbington等,1992,Bio/Technology 10:169-175)。 
短语与多肽的“选择性结合”和“特异性结合”指确定在异质多肽群体和其它生物内存在该多肽的结合反应。因此,在设计的免疫测定条件下,与特定多肽结合的指定抗体不以明显量与样品内存在的其它多肽结合。在如此条件下的抗体选择性结合可能需要因其对特定多肽的特异性而被选择的抗体。多种免疫测定模式可以用来选择与特定多肽选择性结合的抗体。例如固相ELISA免疫测定常规地用来选择与多肽发生选择性免疫反应的抗体。见Harlow和Lane,“Antibodies,A Laboratory Manual,”Cold SpringHarbor Publications,New York,(1988)对可以用来确定选择性结合的免疫测定模式和条件的描述。在某些情况下,需要制备来自多种宿主的单克隆抗体。对制备此类单克隆抗体的技术的描述可以在Stites等编辑,“Basicand Clinical Immunology,”(Lange Medical Publications,Los Altos,Calif.,第五版)和及其中引用的参考文献及在Harlow和Lane,“Antibodies,ALaboratory Manual,”Cold Spring Harbor Publications,New York,(1988)中找到。 
在本申请通篇范围内,参考多种公开文献。所有这些公开文献和这些 公开文献中所引用的参考文献的公开内容完整地在本申请中引用作为参考,以更充分地描述本发明所涉及技术的状态。 
还应当理解前述内容涉及本发明的优选实施方案并且可以在其中作出多种改变和变化而不脱离本发明的范围。本发明进一步通过如下实例说明,这些实例无论如何不得解释为限制本发明的范围。相反,应当清楚地理解在阅读本文中的描述后,多种其它的实施方案、修改及其等效物对本领域技术人员是显而易见的,但不脱离本发明精神和/或后附的权利要求书的范围。 
实施例 
实施例1:培育展叶剑叶藓培养物 
对于本研究,使用来自来自汉堡大学遗传研究部收藏中心的物种展叶剑叶藓(Hedw.)B.S.G.植物。它们源自亨廷顿郡(英格兰)Gransden Wood的H.L.K.Whitehouse收集的株系16/14,该株系由Engel(1968,Am.J.Bot.55,438-446)通过亚培养从孢子中产生。通过孢子方式和通过配子体再生方式实施植物的增殖。原丝体从单倍体孢子发育成叶绿体丰富的绿丝体和叶绿体含量低的茎丝体,约12日后在茎丝体上形成芽。这些丝体生长产生携带精子器和卵颈器的配子托。在受精后,产生具有短蒴柄和孢子荚膜的二倍体孢子体,减数孢子在所述的二倍体孢子体内成熟。培养在气候室内于25℃空气温度和55 micromols-1m2光强度(白色光;Philips TL 65W/25荧光灯管)和16/8小时的光照/黑暗变化条件下实施。苔藓在使用根据Reski和Abel(1985,Planta 165:354-358)的Knop培养基的液体培养基内被改变或在使用1%Oxoid琼脂(Unipath,Basingstoke,England)的Knop固体培养基上培养。在通气的液体培养基内培养原丝体用于RNA及DNA分离。每隔9日分割原丝体并将其转移至新鲜培养基内。 
实施例2:从植物中分离总DNA 
总DNA分离涉及1g鲜重的植物材料。所用的材料包含如下缓冲液:CTAB缓冲液:2%(w/v)N-十六烷基-N,N,N-三甲基溴化铵(CTAB);100mM Tris HCI pH 8.0;1.4M NaCl;20mM EDTA;N-月桂基肌氨酸缓冲液:10%(w/v)N-月桂基肌氨酸;100mM Tris HCI pH 8.0和20mMEDTA。 
于液氮下在研钵内研碎植物材料以产生精细粉末并转移到2mlEppendorf容器内。冷冻的植物材料随后用一层1ml分解缓冲液(1ml CTAB缓冲液、100μl的N-月桂基肌氨酸缓冲液、20μlβ-巯基乙醇和10μl 10mg/ml蛋白酶K溶液)覆盖并在60℃温育1小时,同时连续振摇。将获得的匀浆分配至2只Eppendorf容器(2ml)内并通过与等体积氯仿/异戊醇(24∶1)一起振摇而提取两次。为了相分离,在每一情况下,在8000×g并于室温离心15分钟。随后使用冰冷的异丙醇使DNA在-70℃沉淀30分钟。使沉淀的DNA在4℃和10,000×g沉积30分钟并重悬于180μl的TE缓冲液内(Sambrook等,1989,Cold Spring Harbor Laboratory Press:ISBN0-87969-309-6)。为进一步纯化,DNA用NaCl(1.2 M终浓度)处理并使用2倍体积无水乙醇在-70℃再次沉积30分钟。在用70%乙醇的洗涤步骤后,使DNA干燥并随后溶解于50μl的H2O+RNA酶(50mg/ml终浓度)内。DNA在4℃溶解过夜并且随后在37℃实施RNA酶消化1小时。在4℃贮藏DNA。 
实施例3:从展叶剑叶藓分离总RNA和poly-(A)+RNA和cDNA文库构建 
为研究转录物,分离总RNA和poly-(A)+RNA。按照GTC方法(Reski等,1994,Mol.Gen.Genet.,244:352-359)从9日龄野生型原丝体中获得总RNA。使用Dyna BeadsR(Dynal,Oslo,挪威)按照制造商方案的说明书分离Poly(A)+RNA。测定RNA的浓度或poly(A)+RNA的浓度后,通过添加1/10体积3M乙酸钠pH 4.6和2体积乙醇使RNA沉淀并在-70℃贮存。 
对于cDNA文库的构建,使用小鼠白血病病毒逆转录酶(Roche,Mannheim,德国)和oligo-d(T)引物实现第一链合成,通过与DNA聚合酶 I在12℃温育(2小时)、与Klenow酶在16℃温育(1小时)和与RNA酶H在22℃消化(1小时)实现第二链合成。反应通过在65℃(10分钟)温育终止并随后转移到冰上。双链DNA分子由T4-DNA聚合酶(Roche,Mannheim)在37℃(30分钟)平端化。通过酚/氯仿提取和Sephadex G50离心柱除去核苷酸。EcoRI接头(Pharmacia,Freiburg,德国)通过T4-DNA连接酶(Roche,12℃,过夜)连接到cDNA末端并通过与T4多核苷酸激酶(Roche,37℃,30分钟)温育进行磷酸化。这种混合物在低熔点琼脂糖上分离。将大于300碱基对的DNA分子从凝胶内洗脱、酚提取、在Elutip-D柱(Schleicher和Schuell,Dassel,德国)内浓缩,并且连接到载体臂内并用Gigapack Gold试剂盒(Stratagene,Amsterdam,荷兰)及按照制造商说明书,将所述DNA分子包装到λZAPII噬菌体或λZAP-Express噬菌体内。 
实施例4:展叶剑叶藓EST的测序和功能注释 
如实施例3内所述的cDNA文库用于根据标准方法进行DNA测序,并且尤其通过使用ABI PRISM Big Dye终止循环测序即用型反应试剂盒(Perkin-Elmer,Wei-terstadt,德国)的链终止方法测序。经体内大规模切割、再转化并随后在琼脂平板上涂布DH10B获得cDNA文库(材料和方案细节来自Stratagene,Amsterdam,荷兰),随后对来自该cDNA文库的制备性质粒回收物实施随机测序。在Qiagene DNA制备机器人(Qiagen,Hilden)上,根据制造商方案,从过夜培养的大肠杆菌培养物中制备质粒DNA,其中所述的大肠杆菌培养物在含有氨苄青霉素的Luria-Broth培养基(见Sambrook等,1989,Cold Spring Harbor Laboratory Press:ISBN0-87969-309-6)内生长。使用具有如下序列的测序引物: 
5′-CAGGAAACAGCTATGACC-3′SEQ ID NO:3 
5′-CTAAAGGGAACAAAAGCTG-3′SEQ ID NO:4 
5′-TGTAAAACGACGGCCAGT-3′SEQ ID NO:5 
使用由Bio-Max(Munich,德国)商业提供的软件包EST-MAX处理并注释序列。该程序实际上包含全部对功能性和结构性表征蛋白质序列重要 的全部生物信息学方法。参见网址:pedant.mips.biochem.mpg.de。EST-MAX内所包含的最重要算法是:FASTA(具有统计显著性估计的极其敏感的序列数据库搜索工具;Pearson W.R.,1990,Rapid and sensitivesequence comparison with FASTP and FASTA.Methods Enzymol.183:63-98);BLAST(具有统计显著性估计的极其敏感的序列数据库搜索工具。Altschul S.F.等,Basic local alignment search tool,Journal ofMolecular Biology 215:403-10);PREDATOR(从单个序列和多重序列中高度精确地预测二级结构。Frishman,D.和Argos,P.,1997,75%accuracy inprotein secondary structure prediction.Proteins,27:329-335);CLUSTALW:多重序列比对。Thompson,J.D.等,1994,CLUSTAL W(improving the sensitivity of progressive multiple sequence alignmentthrough sequence weighting,positions-specific gap penalties and weightmatrix choice,Nucleic Acids Research,22:4673-4680);TMAP(从多重比对的序列中预测跨膜区。Persson,B.和Argos,P.,1994,Prediction oftransmembrane segments in proteins utilizing multiple sequencealignments.J.Mol.Biol.237:182-192);ALOM2(从单个序列中预测跨膜区。Klein,P.等,Prediction of protein function from sequence properties:Adiscriminate analysis of a database.Biochim.Biophys.Acta 787:221-226(1984)。由Dr.K.Nakai提供的版本2);PROSEARCH(检测PROSITE蛋白质序列模式。Kolakowski L.F.Jr.,Leunissen J.A.M.,Smith J.E.,1992,ProSearch:fast searching of protein sequences with regular expressionpatterns related to protein structure and function.Biotechniques 13,919-921);BLIMPS(对非空位性区段的数据库的相似性搜索。J.C.Wallace和Henikoff S.,1992);PATMAT(用于序列、模式和区段询问和数据库的搜索和提取程序,CABIOS 8:249-254。由Bill Alford编制)。 
实施例5:鉴定对应于PpLLPK-1的展叶剑叶藓ORF 
使用程序EST-MAX在展叶剑叶藓EST测序计划内通过BLAST分析 鉴定了对应于部分PpLLPK-1的展叶剑叶藓部分cDNA。预测的PpLLPK-1氨基酸序列与如表1内所示凝集素样蛋白激酶共有显著序列同一性。 
表1 PpLLPK-1与同源蛋白质的氨基酸同一性和相似性程度 
Figure 2006800217407A00800521
实施例6:编码PpLLPK-1的全长展叶剑叶藓cDNA的克隆-全长扩增 
如下文所述,用基因特异性EST作为模板DNA,通过开展聚合酶链式反应(PCR)而获得对应于PpLLPK-1的全长序列(SEQ ID NO:1)。 
用于该反应的合成性寡核苷酸引物(MWG-Biotech)是:CCCGGGCACCACCAGTACCTTTGCGTATGTG(SEQ ID NO:6)和GTTAACAGCTCAAAGTAATCTTGCCGTTCC(SEQ ID NO:7)。所设计的引物在5′区含有Xma I位点并且在3′区域含有Hpa I位点用于克隆。用于该反应的条件是用PWO DNA聚合酶(Roche)的标准条件。根据标准条件并根据制造商方案(Sambrook等,1989,Biometra T3 Thermocycler)开展PCR。反应的参数是:在94℃ 5分钟,随后是5个循环:在94℃ 1 分钟、在50℃ 1分钟和在72℃ 4分钟的。随后是25个循环:在94℃ 1分钟、在65℃ 1分钟和在72℃ 4分钟。这些参数产生长度4.0千碱基的片段。按照制造商说明,将该片段用QIAquick凝胶提取试剂盒(Qiagen)从琼脂糖凝胶内提取并连接至TOPO pCR 2.1载体(Invitrogen)内。使用标准条件(Sambrook等,1989),将重组载体转化至Top10细胞(Invitrogen)内。转化的细胞在含有100μg/ml羧苄西林、0.8mg X-gal(5-溴-4-氯-3-吲哚基-β-D-半乳糖苷)和0.8mg IPTG(异丙基硫代-β-D-半乳糖苷)的LB琼脂上在37℃过夜培育进行选择。选择白色菌落并用来接种含有100μg/ml氨苄青霉素的3ml液体LB并在37℃过夜培育。使用QIAprep Spin微量制备试剂盒(Qiagen)按照制造商说明书提取质粒DNA。根据标准分子生物学技术开展对后续克隆的分析以及限制性酶作图(Sambrook等,1989,MolecularCloning,A Laboratory Manual,第二版,Cold Spring Harbor LaboratoryPress,Cold Spring Harbor,N.Y.)。 
表2用于克隆全长克隆的方案和引物 
Figure 2006800217407A00800531
展叶剑叶藓PpLLPK-1的全长cDNA序列(SEQ ID NO:1)在图1内显 示。展叶剑叶藓PpLLPK-1的推导氨基酸序列(SEQ ID NO:2)在图2内显示。PpLLPK-1用Biomax和Vector NTI分析。PpLLPK-1氨基酸序列与凝集素样蛋白激酶或凝集素受体激酶具有同源性(表1和图3)。使用PedantPro(<e-50),对专利序列数据库做PpLLPK-1蛋白质序列blast搜索,鉴定出与PpLLPK-1序列具有显著同源性的多个序列。在表3内显示PpLLPK-1序列与5个最相似序列的相似性和同一性百分数,并且这些序列的比对结果在图4内显示。 
表3 PpLLPK-1与公开的专利申请中的同源序列的 
氨基酸同一性和相似性百分数 
Figure 2006800217407A00800541
实施例7:通过过量表达基因PpLLPK-1而改造拟南芥植物 
亚克隆PpLLPK-1至双元载体。 
根据制造商说明书,通过用限制性酶双重消化(见表4)而从重组PCR2.1 TOPO载体中亚克隆含有展叶剑叶藓PpLLPK-1序列的片段。用QIAquick凝胶提取试剂盒(QIAgen)根据制造商说明书,将后续片段从琼脂糖凝胶提取出来并连接到用Xma I和Hpa I切割并且在连接前被脱磷酸化的双元载体内。得到的重组载体含有在组成型启动子控制下的处于有义方向的相应转录因子。 
表4所列是用于植物转化的构建体的名称 
Figure 2006800217407A00800542
Figure 2006800217407A00800551
农杆菌转化 
根据标准条件(Hoefgen和Willmitzer,1990),将重组载体转化至根癌农杆菌C58C1和PMP90内。 
植物转化 
根据标准条件(Bechtold 1993,Acad.Sci.Paris.316:1194-1199;Bent等1994,Science 265:1856-1860),培育并转化鼠耳芥生态型C24。 
生长筛选 
对T1植物筛选选择标记基因赋予的选择剂抗性,并收集种子。在平板上对T2和T3种子筛选选择标记基因赋予的选择剂抗性,并且阳性植物移植至土壤并在生长室内培育3周。在此期间维持土壤湿度在土壤最大持水容量的大约50%。 
测量在此期间植物的总体水损失(蒸腾)。在3周后,收集全部地上部分植物材料,在65℃干燥2日并称重。结果示于表5。地上部分植物干重对植物水利用的比率是水利用效率(WUE)。表5显示对过量表达PpLLPK-1的植物、野生型对照和仅有转基因载体对照的平均WUE、对WUE的标准误差、平均植物干重(DW)和对DW的标准误差。数据来自每种基因型的大约50株植物,10个独立转基因系的每个系5株植物和2个独立实验。 
表5 
Figure 2006800217407A00800552
Figure 2006800217407A00800561
通过显示过量表达PpLLPK-1的植物与仅有载体的对照和野生型对照的差异百分数而将以上数据汇总于表6。数据显示,与对照相比PpLLPK-1植物在DW和WUE方面具有显著性增加。表达PpLLPK-1的植物显示与对照相比,干重增加大约29-42%,并且与对照相比,水利用效率增加大约10-17%。 
表6 
Figure 2006800217407A00800562
过量表达PpLLPK-1的植物、野生型对照植物和仅有转基因载体的对照植物还接受充分浇水条件处理或数个干旱胁迫循环处理,并且测量植物地上部分的生物量。在表7内给出在充分浇水和干旱循环条件下,对于过量表达PpLLPK-1的植物、野生型对照植物和仅有载体的对照植物的平均干重值和标准误差,如表5显示。这种DW数据在表8内表述为与野生型对照的差异百分数,并且该数据表明,PpLLPK-1过量表达在充分浇水和重复干旱胁迫循环下均使DW增加25%: 
表8 
Figure 2006800217407A00800563
干旱耐受性筛选。 
将T1幼苗转移至培养皿内的干燥无菌滤纸上并允许在80%RH(相对 湿度)下,在Sanyo生长箱MLR-350H,micromols-1m2(白色光;Philips TL65W/25荧光灯管)内干燥2小时。随后降低RH至60%,并且使幼苗再干燥8小时。随后移动并将幼苗放置在补加2μg/ml苯菌灵(Sigma-Aldrich)的1/2 MS 0.6%琼脂平板上并于5日后评分。随后对转基因植物筛选改良的干旱耐受性,证实转基因赋予干旱耐受性。 
冷冻耐受性筛选 
将幼苗移至含有补加2%蔗糖和2μg/ml苯菌灵的1/2 MS 0.6%琼脂的培养皿内。4日后,将幼苗在4℃温育1小时并随后用碎冰覆盖。随后将幼苗放置在Environmental Specialist ES2000环境箱内并以-1.0℃为起点温育3.5小时,并且每小时降低-1℃。幼苗随后在-5.0℃温育24小时并随后允许在5℃融化12小时。倾去水并且在5日后对幼苗评分。对转基因植物筛选改良的寒冷耐受性,证实转基因赋予寒冷耐受性。 
盐耐受性筛选 
将幼苗转移至滤纸上,其中所述的滤纸浸泡于1/2 MS内并在盐耐受性筛选的前夜放置于补加2μg/ml苯菌灵的1/2 MS 0.6%琼脂上。为了盐耐受性筛选,将滤纸连同幼苗移动到培养皿内浸泡在50mM NaCl内的一叠无菌滤纸上。2小时后,将滤纸连同幼苗移动到培养皿内浸泡在200mM NaCl内的一叠无菌滤纸上。2小时后,将滤纸连同幼苗移动到培养皿内浸泡在600mM NaCl内的一叠无菌滤纸上。10小时后,将幼苗移动到含有补加2μg/ml苯菌灵的1/2 MS 0.6%琼脂的培养皿内。在5日后对幼苗评分。 
实施例8:检测转基因拟南芥系内的PpSCL转基因。 
将一片来自野生型拟南芥植物和转基因拟南芥植物的叶子在250μl十六烷基三甲基溴化铵(CTAB)缓冲液(2%CTAB、1.4 M NaCl、8mM EDTA和20mM Tris,pH 8.0)和1μl β-巯基乙醇内匀浆。样品在60-65℃温育30分钟并且随后向每一样品内添加250μl氯仿。对样品涡旋混合3分钟并在18,000×g离心5分钟。上清液从样品中取出并添加150μl异丙醇。样品在室温温育15分钟并在18,000×g离心10分钟。每份沉淀用70%乙醇洗涤、 干燥并重悬于20μlTE内。随后,将2.5μl上述混悬液用于50μl PCR反应液中,PCR反应使用Taq DNA聚合酶(Roche Molecular Biochemicals)并根据制造商说明书进行。在PCR反应中可以使用具有每种克隆基因的双元载体质粒作为阳性对照,并使用野生型C24基因组DNA作为阴性对照。随后,在0.8%琼脂糖/溴化乙啶凝胶上分析10μl每种PCR反应物。 
PCR程序可以是:94℃ 1分钟,62℃ 30秒和72℃ 1分钟,30个循环,随后72℃ 5分钟。基因特异性引物列于下文。 
实施例9:检测转基因拟南芥系内的PpLLPK-1转基因mRNA。 
使用RT-PCR检测转基因表达 
使用来自Verwoerd等(1989,NAR 17:2362)的改良方法,从胁迫处理的植物内分离总RNA。收集叶样品(50-100mg)并将其在液氮内研磨成细粉。将研磨的组织重悬于500μl的80℃的酚与提取缓冲液(100mM LiCl、100mM Tris pH8、10mM EDTA、1%SDS)的1∶1混合物内,随后短暂涡旋混合。在添加250μl氯仿后,短暂涡旋混合每份样品。随后将样品在12,000×g离心5分钟。移出上清水相至新eppendorf管内。RNA通过添加1/10体积3M乙酸钠和2体积95%乙醇沉淀。样品通过倒置进行混合并在冰上放置30分钟。RNA通过在12,000×g离心10分钟沉淀。取出上清液并且沉淀经短暂空气干燥。RNA样品沉淀重悬于10μl DEPC处理的水内。 
为从样品中除去杂质DNA,可以根据制造商推荐用无RNA酶的DNA酶(Roche)处理每份样品。使用用来RT-PCT的Superscript第一链cDNA合成系统(Gibco-BRL)按照制造商推荐从总RNA合成cDNA。在如下反应中,使用Taq DNA聚合酶(Roche)和基因特异性引物(见表13的引物)从合成性cDNA开展PCR扩增基因特异性片段:1×PCR缓冲液、1.5mMMgCl2、0.2μM每种引物、0.2μM dNTP、1单位聚合酶、5μl来自合成反应的cDNA。在如下条件下开展扩增:变性,95℃,1分钟;复性,62℃,30秒;延伸,72℃,1分钟,35个循环;72℃延伸5分钟;4℃保持。 PCR产物在1%琼脂糖凝胶上电泳,用溴化乙啶染色并在紫外线下使用Quantity-One凝胶记录系统(Bio-Rad)观察。 
实施例10:通过过量表达PpSCL-1基因而改造胁迫耐受性大豆植物 
大豆的种子用70%乙醇在室温(连续振摇)表面消毒4分钟,随后由补加0.05%(v/v)Tween的20%(v/v)Clorox(连续振摇)表面消毒20分钟。随后将种子用蒸馏水淋洗4次并在室温于培养皿内的润湿无菌滤纸上放置6小时至39小时。剥掉种皮,并将子叶与胚轴分离。检查胚轴以确保未损伤分生组织。将切碎的胚轴收集于半开口的无菌培养皿内并且在密封的培养皿内空气干燥至含湿量小于20%(鲜重)直至进一步利用。 
根癌农杆菌培养物如下制备,即添加适宜抗生素(例如100mg/l链霉素,50mg/l卡那霉素)的LB固体培养基内的单菌落在液体LB培养基内生长至600nm光强度0.8。随后,将细菌培养物在每分钟7000转于室温沉淀7分钟并重悬于补加100μM乙酰丁香酮的MS(Murashige和Skoog,1962)培养基内。细菌培养物在使用前于室温在这种预先诱导的培养基内温育2小时。含湿量为大约15%的大豆合子性种子胚的体轴在预诱导农杆菌悬浮培养物内于室温浸透2小时。将胚从浸透培养物内取出并转移至含有补加2%蔗糖的固体MS培养基的培养皿内并在室温于黑暗下温育2日。或者,将胚放置于培养皿内润湿(液体MS培养基)的无菌滤纸表面并在如上所述的相同条件下温育。在此时间后,将胚转移至固体或液体MS培养基,其中所述的MS培养基补加500mg/L羧苄西林或300mg/L头孢噻肟以杀死农杆菌。使用液体培养基来湿润无菌滤纸。使胚在4周期间在25℃于150μmolm-2sec-1和12小时光周期下温育。一旦幼苗生根,则将它们转移到无菌metro-mix土壤内。植物在转移至土壤之前,洗掉体外植物的培养基。植物在塑料罩下保持1周以促进适应过程。随后,将植物转移至生长室,在那里植物在25℃于150μmol m-2sec-1和12小时光周期下温育约80日。 
随后根据实施例7内所述的筛选方法,对转基因植物筛选其改良的生长和/或干旱耐受性、盐耐受性和/或寒冷耐受性,证实转基因表达赋予增加 的生长和/或增加的胁迫耐受性。 
实施例11:通过过量表达PpLLPK-1基因而改造胁迫耐受性欧洲油菜/卡诺拉油菜植物。 
本文中所述的植物转化方法还可应用于芸苔属和其它作物。卡诺拉油菜的种子用70%乙醇在室温(连续振摇)表面消毒4分钟,随后由补加0.05%(v/v)Tween的20%(v/v)Clorox(连续振摇)表面消毒20分钟。随后将种子用蒸馏水淋洗4次并在室温于培养皿内的润湿无菌滤纸上放置18小时。随后去除种皮并使种子在半开口的无菌培养皿内空气干燥。在此期间,种子丧失大约85%的含水量。随后将种子在密封的培养皿内在室温贮存直至进一步利用。DNA构建体和胚浸透如实施例10内描述。通过PCR分析原代转基因植物(T0)的样品以证实T-DNA的存在。这些结果由Southern杂交证实,其中DNA在1%琼脂糖凝胶上电泳并转移到带正电荷的尼龙膜上(Roche Diagnostics)。使用PCR DIG探针合成试剂盒(RocheDiagnostics)来通过PCR法制备地高辛标记的探针并如制造商推荐使用。随后根据实施例7内所述的筛选方法,对转基因植物筛选其改良的生长和/或胁迫耐受性,证实转基因表达赋予增加的生长和/或增加的胁迫耐受性。 
实施例12:通过过量表达PpLLPK-1基因而改造胁迫耐受性玉米植物。 
玉米(Zea mays L.)的转化用Ishida等1996.Nature Biotch 14745-50所述的方法开展。将未成熟的胚与携带“超级双元”载体的根癌农杆菌共培养,并且通过器官发生再生转基因植物。该方法提供2.5%至20%间的转化效率。随后根据实施例7内所述的筛选方法,对转基因植物筛选其改良的生长和/或干旱耐受性、盐耐受性和/或寒冷耐受性,证实转基因表达赋予增加的生长和/或增加的胁迫耐受性。 
实施例13:对胁迫耐受性玉米植物的温室筛选 
高通量干旱性能筛选 
在小花盆种植将对于转化事件分离的转基因玉米种子。将这些植物的每一株进行单独标记、采样和分析转基因拷贝数。标出转基因阳性和阴性植物并按相似的大小配对,以便一起移植到大花盆内。这为转基因阳性和阴性植物提供均一和竞争性的环境。对大花盆浇水至土壤的田间水容量的某个百分数,这取决于所需要的水胁迫严重程度。通过每隔一日浇水维持土壤水的水平。在生长期间测量植物生长性状和生理性状如高度、茎直径、叶翻卷、植物萎蔫、叶延伸率、叶水分状态、叶绿素含量和光合作用率。在生长时期后,收获植物的地上部分并获得每株植物的鲜重和干重。随后比较转基因阳性和阴性植物之间的表型。 
水利用效率(WUE)测定。 
转基因阳性和转基因阴性转化事件的玉米幼苗移植到具有给定量的土壤和水的花盆内。用罩盖住该花盆,其中所述的罩允许幼苗生长穿透但是使水丢失最小化。定期称重每个花盆并添加水以维持初始含水量。在实验结束时,测量每株植物的鲜重和干重,计算由每株植物所消耗的水并计算每株植物的WUE。在实验期间测量植物生长性状和生理性状如WUE、高度、茎直径、叶翻卷、植物萎蔫、叶延伸率、叶水分状态、叶绿素含量和光合作用率。随后比较转基因植物和对照植物之间的表型。 
脱水测定 
在小花盆种植转化事件分离的转基因玉米种子。将这些花盆保持在温室内具有均一环境条件的区域内,并进行最佳栽培。将这些植物的每一株进行单独标记、采样和分析转基因拷贝数。允许植物在这些条件下生长直至它们达到预定的生长阶段。随后停止浇水。当胁迫强度增加时,测量植物生长性状和生理性状如高度、茎直径、叶翻卷、植物萎蔫、叶延伸率、叶水分状态、叶绿素含量和光合作用率。随后比较转基因阳性植物和阴性植物之间的表型。 
循环性干旱测定 
在小花盆种植转化事件分离的转基因玉米种子。这些花盆保持在温室内具有均一环境条件的区域内,并进行最佳栽培。将这些植物的每一株进 行单独标记、采样和分析转基因拷贝数。允许植物在这些条件下生长直至它们达到预定的生长阶段。随后在固定的时间间隔上重复地对植物浇水至饱和。这种浇水/干旱循环在试验持续期间重复。在生长期期间测量植物生长性状和生理性状如高度、茎直径、叶翻卷、叶延伸率、叶水分状态、叶绿素含量和光合作用率。在实验结束时,收获植物用于计算地上部分的鲜重和干重。随后比较转基因阳性植物和阴性植物之间的表型。 
田间筛选玉米植物 
在无雨条件下筛选分离的玉米干旱耐受性 
在单个位置或多个位置利用受控的干旱胁迫。在这样的地点内通过滴灌带或喷灌控制作物的水分可获得性,其中所述的地点在平均5个月季节期间具有少于10cm的降雨和大于5℃的最低温度,或具有预期的当季降水量,但是这种降雨量被“自动挡雨保护罩”遮挡,其中所述的自动挡雨保护罩在不需要时缩回以提供开放的田间条件。遵循本地区内的标准农学习惯以整地、种植、施肥和害虫控制。每块试验区用对存在的单个转基因插入事件分离的种子播种。将Taqman转基因拷贝数测定法用于叶样品以区分转基因植物与零分离的对照植物。已经以此方式进行基因分型的植物还进行一系列与干旱耐受性、生长和产量相关的表型评分。这些表型包括植物高度、每株植物的谷粒重量、每株植物的谷粒数、每株植物的穗数、地上部分干重、叶对水蒸汽的导度、叶CO2摄取、叶的叶绿素含量、光合作用相关性叶绿素荧光参数、水利用效率、叶水势、叶的相对水含量、茎干液流率、茎导水率、叶温、叶反射比、叶的光吸收、叶面积、开花天数、雌雄穗开花间隔、谷粒灌浆持续期、渗透势、渗透调节、根大小、叶延伸率、叶片角度、叶翻卷和存活。以可商业获得的用于田间生理学的测量仪,使用制造商提供的标准方法获得全部度量值。使用单株植物作为每个事件的重复单元。 
在无雨条件下筛选非分离的玉米干旱耐受性 
在单个位置或多个位置利用受控的干旱胁迫。在如此地点内通过滴灌带或喷灌控制作物的水分可获得性,其中所述的地点在平均5个月季节期 间具有少于10cm的降雨和大于5℃的最低温度,或具有预期的当季降水量,但是这种降雨量被“自动挡雨保护罩”遮挡,其中所述的自动挡雨保护罩在不需要时缩回以提供开放的田间条件。遵循本地区内的标准农学习惯进行整地、种植、施肥和害虫控制。设计试验布局以便使含有非分离转基因事件的试验区与毗邻的具有零分离对照的试验区配对。零分离对照是因孟德尔分离而不含有转基因的转基因性植物的子代(或衍生自该子代的株系)。在试验田周围分布有额外重复的配对试验区。一系列与干旱耐受性、生长和产量相关的表型在配对试验区内进行评分并在试验区水平上进行估计。当测量技术仅可能适用于单个植物时,这些植物每次从试验区内随机地选择。这些表型包括植物高度、每株植物的谷粒重量、每株植物的谷粒数、每株植物的穗数、地上部分干重、叶对水蒸汽的导度、叶CO2摄取、叶的叶绿素含量、光合作用相关性叶绿素荧光参数、水利用效率、叶水势、叶的相对水含量、茎干液流率、茎导水率、叶温、叶反射比、叶的光吸收、叶面积、开花天数、雌雄穗开花间隔、谷粒灌浆持续期、渗透势、渗透调节、根大小、叶延伸率、叶片角度、叶翻卷和存活。以可商业获得的用于田间生理学的测量仪,使用制造商提供的标准方法获得全部度量值。使用单个试验区作为每个事件的重复单元。 
多地点的玉米干旱耐受性和产量筛选 
选择5至20个包括玉米主要生长区在内的地点。这些地点分布广泛,以提供基于平均温度、湿度、降水量和土壤类型的预期的作物水分可获得性。作物水分可获得性不进行超过标准农学实践的调整。设计试验布局以便使含有非分离转基因事件的试验区与毗邻的具有零分离对照的试验区配对。一系列与干旱耐受性、生长和产量相关的表型在配对试验区内进行评分并在试验区水平上进行估计。当测量技术仅可能适用于单个植物时,这些植物每次从试验区内随机地选择。这些表型包括植物高度、每株植物的谷粒重量、每株植物的谷粒数、每株植物的穗数、地上部分干重、叶对水蒸汽的导度、叶CO2摄取、叶的叶绿素含量、光合作用相关性叶绿素荧光参数、水利用效率、叶水势、叶的相对水含量、茎干液流率、茎导水率、 叶温、叶反射比、叶的光吸收、叶面积、开花天数、雌雄穗开花间隔、谷粒灌浆持续期、渗透势、渗透调节、根大小、叶延伸率、叶片角度、叶翻卷和存活。以可商业获得的用于田间生理学的测量仪,使用制造商提供的标准方法获得全部度量值。使用单个试验区作为每个事件的重复单元。 
实施例14:通过过量表达PpLLPK-1基因而改造胁迫耐受性小麦植物 
含有编码PpLLPK-1的展叶剑叶藓cDNA的登记克隆(entry clone)随后在LR反应内与用于稻转化的最终载体p0831一起使用。p0831载体在T-DNA边界内含有植物选择标记;可视标记表达盒以及Gateway盒作(旨在与已经克隆在登记克隆内的目的序列发生LR体内重组)为功能性元件。用于组成型表达的稻启动子(SEQ ID NO:11-见附图6)位于该Gateway盒上游。 
实施例15:通过过量表达PpLLPK-1基因而改造胁迫耐受性稻植物 
含有编码PpLLPK-1的展叶剑叶藓cDNA的登记克隆(entry clone)随后在LR反应内与用于稻转化的最终载体p0831一起使用。p0831载体在T-DNA边界内含有植物选择标记;可视标记表达盒以及Gateway盒作(旨在与已经克隆在登记克隆内的目的序列发生LR体内重组)为功能性元件。用于组成型表达的稻启动子(SEQ ID NO:8-见附图6)位于该Gateway盒上游。 
在LR重组步骤后,将得到的表达载体p074(附图7)转化至农杆菌菌株LBA4404并随后转化至稻植物内。已转化稻植物生长并随后对这种稻植物检查增加的生长和/或胁迫耐受性。 
产生大约15至20个独立PpLLPK-1转化子(T0)。将原代的转化子从组织培养室中转移至温室,以便生长并收获T1种子。保留5个事件,其中在这些事件中T1子代而3∶1分离因存在或不存在转基因。对于这些事件的每一事件,通过可视标记筛选来选择含有转基因的10株T1幼苗(杂合体和纯合体)和无转基因的10 T1幼苗(零合体(nullizygotes))。将所选的T1植物转移至温室。每株植物接受唯一的条码标记以便清楚地使表型数据与对 应植物关联。选择的T1植物在直径10cm的花盆内的土壤里在如下环境条件下生长:光周期=11.5小时,白昼光强度=30,000勒克斯或更高,白天温度=28℃或更高,夜晚温度=22℃,相对湿度=60-70%。 
在随机位置上并排地培育转基因植物和对应的零合体。从播种期直至成熟期,使植物数次通过数字成像室。每次从至少6个不同角度对每株植物拍摄点阵数字图像(2048×1536像素,1600万色彩)。 
在第一次实验内对PpLLPK-1获得的数据在第二个实验内用T2植物证实。选择具有正确表达方式的株系以进一步分析。通过监测标记表达筛选T1内来自阳性植物(杂合体和纯合体)的种子批。对每个选择的事件,保留杂合体种子批用于T2评估。在每个种子批次,在温室内培育同等数量的阳性植物和阴性植物用于评估。 
根据实施例7内所述的筛选方法,对转基因植物筛选其改良的生长和/或胁迫耐受性,证实PpLLPK-1基因的转基因表达赋予稻植物内增加的生长和/或胁迫耐受性。 
实施例16:同源基因和异源基因的鉴定 
基因序列可以用来从cDNA文库或基因组文库内鉴定同源基因或异源基因。同源基因(例如全长cDNA克隆)可以使用例如cDNA文库通过核酸杂交进行分离。取决于目的基因丰度,将100,000直至1,000,000个重组噬菌体铺板并转移至尼龙膜。用碱变性后,通过例如紫外线交联而使DNA固定在尼龙膜上。在高严格条件下实施杂交。在水溶液内,使杂交和洗涤在1M NaCl离子强度和68℃温度开展。杂交探针通过例如放射性(32p)切口转录标记法(High Prime,Roche,Mannheim,德国)产生。通过放射自显影法检测信号。可以以类似于如上所述的方法,使用低严格性条件和洗涤条件鉴定相关但不相同的部分同源或异源的基因。对于水相杂交,通常保持离子强度在1M NaCl,而同时将温度从68℃渐进性降低至42℃。 
可以通过使用合成性放射标记的寡核苷酸探针实施分离仅在明显结构域(例如10-20个氨基酸)内具有同源性(或序列同一性/相似性)的基因序列。 放射标记的寡核苷酸通过用T4多核苷酸激酶使两个互补的寡核苷酸的5′末端磷酸化而制备。将互补的寡核苷酸复性并连接以形成连环体。双链的连环体随后通过例如切口转录进行放射标记。杂交通常在低严格性条件,使用高寡核苷酸浓度实施。 
寡核苷酸杂交溶液: 
6×SSC 
M磷酸钠 
mM EDTA(pH 8) 
0.5%SDS 
100μg/ml变性鲑精DNA 
%脱脂乳 
在杂交期间,温度逐步降低到比估计的寡核苷酸Tm低5-10℃或降低至室温,随后进行洗涤步骤和放射自显影。以低严格性开展洗涤,如使用4×SSC洗涤3次。更详细的内容由Sambrook,J.等,1989,“MolecularCloning:A Laboratory Manual,”Cold Spring Harbor Laboratory Press或Ausubel,F.M.等,1994,”Current Protocols in Molecular Biology,”JohnWiley&Sons描述。 
实施例17:通过用抗体筛选表达文库而鉴定同源基因 
cDNA克隆可以用来例如在大肠杆菌(例如Qiagen QIAexpress pQE系统)内产生重组蛋白。通常随后经Ni-NTA亲和层析(Qiagen)使重组蛋白亲和纯化。重组蛋白随后用来产生特异性抗体,例如通过使用兔免疫的标准技术。如Gu等,1994,BioTechniques 17:257-262所述,使用以重组抗原饱和的Ni-NTA柱,对抗体进行亲和纯化。这种抗体可以用来筛选表达cDNA文库以通过免疫筛选来鉴定同源基因或异源基因(Sambrook,J.等,1989,“Molecular Cloning:A Laboratory Manual,”Cold Spring HarborLaboratory Press或Ausubel,F.M.等,1994,”Current Protocols in Molecular Biology,″John Wiley&Sons)。 
实施例18:体内诱变 
可以通过在维持遗传信息完整性的能力已破坏的大肠杆菌或其它生物(例如芽孢杆菌或酵母如酿酒酵母)内使质粒传代而实施微生物的体内诱变。常见增变菌株具有在用于DNA修复系统的基因内的突变(例如mutHLS、mutD、mutT等,参见Rupp,W.D.,1996,DNA repair mechanisms,在:Escherichia coli and Salmonella的第2277-2294页,ASM:Washington.)。本领域技术人员众所周知此类菌株。例如在Greener,A.和Callahan,M.,1994,Strategies 7:32-34内详细说明了此类菌株的用途。优选地在选择并于微生物内检验后实施已突变DNA分子至植物的转移。转基因植物根据本文实施例部分中的多种实施例产生。 
实施例19:从转化的生物内纯化所需的产物 
可以通过本领域内众所周知的多种方法开展从用本文中所述的核酸序列转化的植物材料(即展叶剑叶藓或鼠耳芥)、真菌、藻类、纤毛虫、谷氨酸棒杆菌细胞或其它细菌细胞或从以上所述培养物的上清液内回收所需产物。如果所需的产物不从细胞中分泌,则可以通过低速离心从培养物内收获细胞,并且细胞可以通过标准技术如机械力或超声破碎法进行裂解。植物的器官可以机械地与其它组织或器官分离。匀浆后,通过离心除去细胞残片,并且保留含有可溶性蛋白的上清液部分用于进一步纯化所需要的化合物。若产物从所需要的细胞内分泌,则通过低速离心从培养物内去除细胞,并且保留上清液部分用于进一步纯化。来自两种方法之一的上清液接受具有合适树脂的层析处理,在其中所需要的分子滞留在层析树脂上而样品内众多杂质不滞留在色谱树脂上,或者杂质由树脂滞留,而样品不由树脂滞留。此类层析步骤可以根据需要使用相同的或不同的层析树脂重复进行。本领域技术人员将通晓选择适宜的层析树脂和它们对于待纯化的特定分子最有效的应用法。纯化的产物可以经过滤或超滤浓缩,并在使产物稳定性最大化的温度下贮存。存在本领域内已知的多种醇化方法并且前面的 纯化方法并不意味是限制性的。此类纯化技术例如在Bailey,J.E.和Ollis,1986,D.F.Biochemical Engineering Fundamentals,McGraw-Hill:NewYork内描述。此外,已分离的化合物的鉴定和纯度可以通过本领域内的标准技术评定。这些技术包括高效液相色谱(HPLC)、光谱法、染色方法、薄层层析法、NIRS、酶测定法或微生物学法。此类分析方法在:Patek等,1994,Appl.Environ.Microbiol.60:133-140;Ma-lakhova等,1996,Biotekhnologiya 11:27-32;和Schmidt等,1998,Bioprocess Engineer.19:67-70;Ulmann′s Encyclopedia of Industrail Chemistry,1996,第A27卷,VCH:Weinheim,第89-90页,第521-540页,第540-547页,第559-566页,第575-581页和第581-587页;Michal,G.,1999,Biochemical Pathways:An Atlas of Biochemistry and Molecular Biology,John Wiley and Sons;Fallon,A.等,1987,Applications of HPLC in Biochemistry in:LaboratoryTechniques in Biochemistry and Molecular Biology,第17卷内综述。 
序列表
SEQ ID NO:1
TTTCTAAGCTATTCAACCTGGATTGATTTCAGTATGCAGATTAACAACGGTTTCTTGCACTTGGTGTCTACCCTCC
TAGG
TTTACTTCATTTAGCAACTTTTGCCACAGCTGAATTGAAAACTATTGAATTTAGTTTTCCTAATTTTAAGAGTCCG
GAGA
ATGATGGTACAATCAACATTCCGAATGCAACAGATGTGCCTAGTGGTAGGAACGTCCTCTTCCTTCCCAAGGAAAA
GAAC
GCCATGAGTGTTGGGTGGGTTATTTATGAAGAGAAAGTTCAATTCTGGGACAACTCCGATGACGCTGCTTCTTTTA
GTAC
AGAGTTTACCTTCAGTACTTCAGGTTACAATGCGTCAACCGGAGGTAGCGGACTTGCATTCTTGATAACTCCAGAT
TTTT
CCATCGGTGACATTCGTGGATACCTTGGGATATTTTCATCGACAACCAACGCCTCCACAAACAATCAAAAGATTGC
AGTG
GAGATTGATGTTTTCAAGAACCCATGGGATCCAAGCGCCAGCCACATTGGCTTAGACGTAAACTCCATCGAATCCG
TGAA
GGTAAAAGACTATTGTCCGGTGATGGATAACCGTTGCACTTACTTTACCAACAAAGGGGACATCAATGTTTGGATT
GACT
ACATGGCTGAAAGTGAGACTCTTGAAGTGCGCTTAGCAATGGGTTCAAGCAGTGTGAAGCCAACCCAGCCGGATCT
ACAA
TTCATTGGATTGAACTTGCCAAGGACTATCCGAAACTTTATGTATGTGGGGTTTTCAGCAGCCACTGGAAGTGACT
TTTA
TCCTGCACACACATTTCGATTACGTCGATGGAGCTTTAAAACTACGGCTCCGTCCAACGGAAAAAAGAACATTTTA
CTTA
TCGCCGTGCTCAGTGCTGCTGCAGGTCTCATTTTCATAATTATTGTAGTTCTCTTGTGTATTTGCAGAGCAAGATT
GAGA
TGTTGCTGTTGTGCTCCTGCTCCTGCTCCATGCCTTGACGATCCTTTCCCGCAAATTGCACAACTTGCAAGTGGAC
CTCG
AATATTCACGTACAGAGAACTAAGTGATGCAACAAAGGGGTTCAGTGAGAATGAGTTGCTAGGGCAGGGGGGATTT
GGCA
AGGTCTTTCGTGGAGTGCTGAGGAGTGGAACCATGATAGCCGTGAAAAAAATTTCAGAAGGCTCAGATCAAGGCGA
ACAG
CAGTTTGTAGCGGAAGTGTCGATTATTAGCAATATCCGGCATCGCAGCGTGGTCCAGTTACAAGGCTGGTGCCACG
AACA
AGGTCAGCTCATACTTGTTTACGATTACATGCCGAACGGTGGCCTGGATCAGCACCTCTACGCAAGTAATTGTCCC
CTCA
ATTGGACCATGCGTTACAATGTCATCGTAGATCTTGCATCTGCTCTCGCCTATCTGCACGAAAAGCTGGAGCAATG
CGTG
ATCCACCGTGACATTAAAGCAAGCAATGTGATGCTTGACAGGGACTTCAAAGGGCGATTGGGTGACTTTGGACTTG
CAAA
ATCATCAGCTCGCGATATGGTGGCTGCAACTACCAAGCTGGCTGGAACCATGGTATACATGGCACCTGAACTTCCT
ATCA
CGTTTAAACCCACCACGGAGAGTGACGTATACAGTTTTGGAATACTGGCACTGGAGGTTATATGCCGAAGGCGGCC
TTTC
GACGGGACTGTTATACTGTTAGACTGGGTGTGGGAGAAGCATGAGCAAGGAGAGCTTCTACAGGTTGTAGACCCTG
GTTT
GAACCAAGCTTTCGATCGTACTCAAGCTCAGGTTGCATTGTCCGTTGCGCTGATGTGTGCCAATCCCAATCCTAAT
GAAC
GTCTTCGGATGCAGATGGCCCGTCAAATGTTGATAGGAGAAGTGTCGGTGCCTCCTCTCCCTGCTAACAGACCATT
CATG
CTGTATTCAAATGTGAATTCCGAACAAGGATCGTGTAACAACTCAGGATTTCATTCTGACGCTTGGAATACAGCCG
CAAT
AGAAAATGGAAGAGTGACAATTATACAGAGACCCGAGATGAATCCGAGA
SEQ ID NO:2
MQINNGFLHLVSTLLGLLHLATFATAELKTIEFSFPNFKSPENDGTINIPNATDVPSGRNVLFLPKEKNAMSVGWV
IYEE
KVQFWDNSDDAASFSTEFTFSTSGYNASTGGSGLAFLITPDFSIGDIRGYLGIFSSTTNASTNNQKIAVEIDVFKN
PWDP
SASHIGLDVNSIESVKVKDYCPVMDNRCTYFTNKGDINVWIDYMAESETLEVRLAMGSSSVKPTQPDLQFIGLNLP
RTIR
NFMYVGFSAATGSDFYPAHTFRLRRWSFKTTAPSNGKKNILLIAVLSAAAGLIFIIIVVLLCICRARLRCCCCAPA
PAPC
LDDPFPQIAQLASGPRIFTYRELSDATKGFSENELLGQGGFGKVFRGVLRSGTMIAVKKISEGSDQGEQQFVAEVS
IISN
IRHRSVVQLQGWCHEQGQLILVYDYMPNGGLDQHLYASNCPLNWTMRYNVIVDLASALAYLHEKLEQCVIHRDIKA
SNVM
LDRDFKGRLGDFGLAKSSARDMVAATTKLAGTMVYMAPELPITFKPTTESDVYSFGILALEVICRRRPFDGTVILL
DWVW
EKHEQGELLQVVDPGLNQAFDRTQAQVALSVALMCANPNPNERLRMQMARQMLIGEVSVPPLPANRPFMLYSNVNS
EQGS
CNNSGFHSDAWNTAAIENGRVTIIQRPEMNPR
SEQ ID NO:3
aatccgaaaagtttctgcaccgttttcaccccctaactaacaatatagggaacgtgtgctaaatataaaatgagac
ctta
tatatgtagcgctgataactagaactatgcaagaaaaactcatccacctactttagtggcaatcgggctaaataaa
aaag
agtcgctacactagtttcgttttccttagtaattaagtgggaaaatgaaatcattattgcttagaatatacgttca
catc
tctgtcatgaagttaaattattcgaggtagccataattgtcatcaaactcttcttgaataaaaaaatctttctagc
tgaa
ctcaatgggtaaagagagagattttttttaaaaaaatagaatgaagatattctgaacgtattggcaaagatttaaa
cata
taattatataattttatagtttgtgcattcgtcatatcgcacatcattaaggacatgtcttactccatcccaattt
ttat
ttagtaattaaagacaattgacttatttttattatttatcttttttcgattagatgcaaggtacttacgcacacac
tttg
tgctcatgtgcatgtgtgagtgcacctcctcaatacacgttcaactagcaacacatctctaatatcactcgcctat
ttaa
tacatttaggtagcaatatctgaattcaagcactccaccatcaccagaccacttttaataatatctaaaatacaaa
aaat
aattttacagaatagcatgaaaagtatgaaacgaactatttaggtttttcacatacaaaaaaaaaaagaattttgc
tcgt
gcgcgagcgccaatctcccatattgggcacacaggcaacaacagagtggctgcccacagaacaacccacaaaaaac
gatg
atctaacggaggacagcaagtccgcaacaaccttttaacagcaggctttgcggccaggagagaggaggagaggcaa
agaa
aaccaagcatcctccttctcccatctataaattcctccccccttttcccctctctatataggaggcatccaagcca
agaa
gagggagagcaccaaggacacgcgactagcagaagccgagcgaccgccttctcgatccatatcttccggtcgagtt
cttg
gtcgatctcttccctcctccacctcctcctcacagggtatgtgcctcccttcggttgttcttggatttattgttct
aggt
tgtgtagtacgggcgttgatgttaggaaaggggatctgtatctgtgatgattcctgttcttggatttgggatagag
gggt
tcttgatgttgcatgttatcggttcggtttgattagtagtatggttttcaatcgtctggagagctctatggaaatg
aaat
ggtttagggatcggaatcttgcgattttgtgagtaccttttgtttgaggtaaaatcagagcaccggtgattttgct
tggt
gtaataaagtacggttgtttggtcctcgattctggtagtgatgcttctcgatttgacgaagctatcctttgtttat
tccc
tattgaacaaaaataatccaactttgaagacggtcccgttgatgagattgaatgattgattcttaagcctgtccaa
aatt
tcgcagctggcttgtttagatacagtagtccccatcacgaaattcatggaaacagttataatcctcaggaacaggg
gatt
ccctgttcttccgatttgctttagtcccagaattttttttcccaaatatcttaaaaagtcactttctggttcagtt
caat
gaattgattgctacaaataatgcttttatagcgttatcctagctgtagttcagttaataggtaatacccctatagt
ttag
tcaggagaagaacttatccgatttctgatctccatttttaattatatgaaatgaactgtagcataagcagtattca
tttg
gattattttttttattagctctcaccccttcattattctgagctgaaagtctggcatgaactgtcctcaattttgt
tttc
aaattcacatcgattatctatgcattatcctcttgtatctacctgtagaagtttctttttggttattccttgactg
cttg
attacagaaagaaatttatgaagctgtaatcgggatagttatactgcttgttcttatgattcatttcctttgtgca
gttc
ttggtgtagcttgccactttcaccagcaaagttc

Claims (18)

1.编码凝集素样蛋白激酶胁迫相关多肽的分离的核酸的用途,其用于制造具有对选自干旱和低温的环境胁迫增加的耐受性的转基因植物,其中核酸选自如下的多核苷酸:
a)SEQ ID NO:1的多核苷酸;
b)由于遗传密码的简并性而不同于SEQ ID NO:1中所示的核苷酸序列的多核苷酸。
2.权利要求1所述的用途,其中核酸存在于载体内。
3.权利要求1所述的用途,其中核酸在植物中的过表达增加植物对环境胁迫的耐受性。
4.增加转基因植物对选自干旱和低温的环境胁迫的耐受性的方法,包括增加植物内编码凝集素样蛋白激酶胁迫相关多肽的核酸表达,其中核酸选自:
(a)SEQ ID NO:1的多核苷酸;
(b)由于遗传密码的简并性而不同于SEQ ID NO:1中所示的核苷酸序列的多核苷酸。。
5.权利要求4所述的方法,其中植物用指导核酸表达的启动子转化。
6.权利要求5所述的方法,其中启动子是组织特异性的或者是发育调节性的。
7.产生含有编码凝集素样蛋白激酶胁迫相关多肽的核酸的转基因植物的方法,其中与该植物的野生型品种相比,植物具有增加的对选自干旱和低温的环境胁迫的耐受性,所述方法包括用包含核酸的表达载体转化植物细胞并从植物细胞产生转基因植物,其中核酸选自:
(a)SEQ ID NO:1的多核苷酸;
(b)由于遗传密码的简并性而不同于SEQ ID NO:1中所示的核苷酸序列的多核苷酸。
8.权利要求7所述的方法,其中植物是单子叶植物或双子叶植物。
9.权利要求7所述的方法,其中植物选自茄科植物、蚕豆属物种、柳属植物、多年生禾草和饲料作物。
10.权利要求7所述的方法,其中植物选自玉米、小麦、黑麦、燕麦、小黑麦、稻、大麦、大豆、花生、棉花、欧洲油菜、卡诺拉油菜、木薯、胡椒、向日葵、万寿菊、马铃薯、烟草、茄子、番茄、豌豆、紫花苜蓿、咖啡、可可、茶、油棕榈和椰子。
11.权利要求7所述的方法,其中植物的胁迫耐受性通过增加核酸在植物内的表达而增加。
12.权利要求7所述的方法,其中植物用指导核酸表达的启动子转化。
13.权利要求12所述的方法,其中启动子是组织特异性的或者是发育调节性的。
14.如SEQ ID NO:2所定义的分离的凝集素样蛋白激酶胁迫相关多肽。
15.如权利要求1所定义的编码凝集素样蛋白激酶胁迫相关多肽的核酸。
16.植物表达盒,其含有如权利要求1所定义的编码凝集素样蛋白激酶胁迫相关多肽的分离的核酸,以及与所述核酸有效连接的能够驱动植物细胞内的基因表达的调节序列。
17.权利要求16的植物表达盒,其还包含有效连接的翻译增强子。
18.宿主细胞,其中导入了如权利要求1所定义的核酸。
CN2006800217407A 2005-06-17 2006-06-16 凝集素样蛋白激酶胁迫相关多肽和在植物内使用的方法 Expired - Fee Related CN101203603B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69200505P 2005-06-17 2005-06-17
US60/692,005 2005-06-17
PCT/EP2006/063270 WO2006134162A2 (en) 2005-06-17 2006-06-16 Lecitin-like protein kinase stress-related polypeptides and methods of use in plants

Publications (2)

Publication Number Publication Date
CN101203603A CN101203603A (zh) 2008-06-18
CN101203603B true CN101203603B (zh) 2011-11-16

Family

ID=37179044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800217407A Expired - Fee Related CN101203603B (zh) 2005-06-17 2006-06-16 凝集素样蛋白激酶胁迫相关多肽和在植物内使用的方法

Country Status (9)

Country Link
US (1) US7880055B2 (zh)
EP (1) EP1896575B1 (zh)
CN (1) CN101203603B (zh)
AR (1) AR053638A1 (zh)
AU (1) AU2006259019B2 (zh)
BR (1) BRPI0611879A2 (zh)
CA (1) CA2612016A1 (zh)
MX (1) MX2007015716A (zh)
WO (1) WO2006134162A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200724A (zh) * 2007-06-01 2008-06-18 华中农业大学 利用水稻蛋白激酶基因OsCIPK03提高植物耐冷能力
EP2520656A3 (en) 2007-07-13 2013-05-01 BASF Plant Science GmbH Transgenic plants with increased stress tolerance and yield
US20110145948A1 (en) * 2008-08-20 2011-06-16 BASG Plant Science GmbH Transgenic Plants Comprising as Transgene a Phosphatidate Cytidylyltransferase
BR112012018601A2 (pt) * 2010-02-02 2015-09-01 Du Pont Planta, semente de planta, método e polinucleotídeo isolado
US10738322B2 (en) 2016-11-03 2020-08-11 The Regents Of The University Of California Negative regulator of plant immunity against nematodes

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024222A (en) 1973-10-30 1977-05-17 The Johns Hopkins University Nucleic acid complexes
US4283393A (en) 1979-03-13 1981-08-11 Merck & Co., Inc. Topical application of interferon inducers
US5504200A (en) 1983-04-15 1996-04-02 Mycogen Plant Science, Inc. Plant gene expression
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US5420034A (en) 1986-07-31 1995-05-30 Calgene, Inc. Seed-specific transcriptional regulation
DE122007000007I1 (de) 1986-04-09 2007-05-16 Genzyme Corp Genetisch transformierte Tiere, die ein gewünschtes Protein in Milch absondern
JPS62291904A (ja) 1986-06-12 1987-12-18 Namiki Precision Jewel Co Ltd 永久磁石の製造方法
US5116742A (en) 1986-12-03 1992-05-26 University Patents, Inc. RNA ribozyme restriction endoribonucleases and methods
US4987071A (en) 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
US4873316A (en) 1987-06-23 1989-10-10 Biogen, Inc. Isolation of exogenous recombinant proteins from the milk of transgenic mammals
ATE105585T1 (de) 1987-12-21 1994-05-15 Univ Toledo Transformation von keimenden pflanzensamen mit hilfe von agrobacterium.
US5614395A (en) 1988-03-08 1997-03-25 Ciba-Geigy Corporation Chemically regulatable and anti-pathogenic DNA sequences and uses thereof
US5990387A (en) 1988-06-10 1999-11-23 Pioneer Hi-Bred International, Inc. Stable transformation of plant cells
NZ230375A (en) 1988-09-09 1991-07-26 Lubrizol Genetics Inc Synthetic gene encoding b. thuringiensis insecticidal protein
DE3843628A1 (de) 1988-12-21 1990-07-05 Inst Genbiologische Forschung Wundinduzierbare und kartoffelknollenspezifische transkriptionale regulation
US5231020A (en) 1989-03-30 1993-07-27 Dna Plant Technology Corporation Genetic engineering of novel plant phenotypes
US5034323A (en) 1989-03-30 1991-07-23 Dna Plant Technology Corporation Genetic engineering of novel plant phenotypes
US5086169A (en) 1989-04-20 1992-02-04 The Research Foundation Of State University Of New York Isolated pollen-specific promoter of corn
US5225347A (en) 1989-09-25 1993-07-06 Innovir Laboratories, Inc. Therapeutic ribozyme compositions and expression vectors
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
WO1991013980A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Novel sequences preferentially expressed in early seed development and methods related thereto
WO1991016432A1 (en) 1990-04-18 1991-10-31 Plant Genetic Systems N.V. Modified bacillus thuringiensis insecticidal-crystal protein genes and their expression in plant cells
US5187267A (en) 1990-06-19 1993-02-16 Calgene, Inc. Plant proteins, promoters, coding sequences and use
WO1993007256A1 (en) 1991-10-07 1993-04-15 Ciba-Geigy Ag Particle gun for introducing dna into intact cells
TW261517B (zh) 1991-11-29 1995-11-01 Mitsubishi Shozi Kk
FR2685346B1 (fr) 1991-12-18 1994-02-11 Cis Bio International Procede de preparation d'arn double-brin, et ses applications.
DE69331055T2 (de) 1992-04-13 2002-06-20 Syngenta Ltd Dna-konstruktionen und diese enthaltende pflanzen
US5496698A (en) 1992-08-26 1996-03-05 Ribozyme Pharmaceuticals, Inc. Method of isolating ribozyme targets
DK0651814T3 (da) 1992-07-09 1997-06-30 Pioneer Hi Bred Int Majspollenspecifikt polygalacturonasegen
US5470353A (en) 1993-10-20 1995-11-28 Hollister Incorporated Post-operative thermal blanket
GB9324707D0 (en) 1993-12-02 1994-01-19 Olsen Odd Arne Promoter
GB9403512D0 (en) 1994-02-24 1994-04-13 Olsen Odd Arne Promoter
US5470359A (en) 1994-04-21 1995-11-28 Pioneer Hi-Bred Internation, Inc. Regulatory element conferring tapetum specificity
GB9421286D0 (en) 1994-10-21 1994-12-07 Danisco Promoter
GB9524395D0 (en) 1995-11-29 1996-01-31 Nickerson Biocem Ltd Promoters
DE19626564A1 (de) 1996-07-03 1998-01-08 Hoechst Ag Genetische Transformation von Ciliatenzellen durch Microcarrier-Bombardement mit DNA beladenen Goldpartikeln
US5977436A (en) 1997-04-09 1999-11-02 Rhone Poulenc Agrochimie Oleosin 5' regulatory region for the modification of plant seed lipid composition
ES2276475T5 (es) 1997-09-30 2014-07-11 The Regents Of The University Of California Producción de proteínas en semillas de plantas
US6004804A (en) 1998-05-12 1999-12-21 Kimeragen, Inc. Non-chimeric mutational vectors
ES2258489T3 (es) * 1999-12-22 2006-09-01 Basf Plant Science Gmbh Proteinas relacionadas con el estres por pirofosfatasas y metodos de utilizacion en plantas.
AU2001289843A1 (en) 2001-08-28 2002-02-13 Bayer Cropscience Ag Polypeptides for identifying herbicidally active compounds
CN101031649A (zh) * 2004-10-01 2007-09-05 淡马锡生命科学研究院有限公司 水稻凝集素样受体激酶1(OsLRK1),一个参与植物发育的基因

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Maria-Terea Navarro-Gochicoa et al..Characterization of Four Lectin-Like Receptor KinasesExpressed in Roots of Medicago truncatula. Structure,Location, Regulation of Expression, and PotentialRole in the Symbiosis with Sinorhizobium meliloti.Plant Physiology133 4.2003,133(4),1893-1910.
Maria-Terea Navarro-Gochicoa et al..Characterization of Four Lectin-Like Receptor KinasesExpressed in Roots of Medicago truncatula. Structure,Location, Regulation of Expression, and PotentialRole in the Symbiosis with Sinorhizobium meliloti.Plant Physiology133 4.2003,133(4),1893-1910. *
X-J He. et al..A salt-responsive receptor-like kinase gene regulatedby the ethylene signaling pathway encodes a plasmamembrane serine/threonine kinase.Theor Appl Genet109 2.2004,109(2),377-383.
X-J He. et al..A salt-responsive receptor-like kinase gene regulatedby the ethylene signaling pathway encodes a plasmamembrane serine/threonine kinase.Theor Appl Genet109 2.2004,109(2),377-383. *

Also Published As

Publication number Publication date
EP1896575A2 (en) 2008-03-12
AU2006259019B2 (en) 2011-09-01
CN101203603A (zh) 2008-06-18
WO2006134162A3 (en) 2007-03-22
CA2612016A1 (en) 2006-12-21
US20090158454A1 (en) 2009-06-18
MX2007015716A (es) 2008-02-15
AU2006259019A1 (en) 2006-12-21
BRPI0611879A2 (pt) 2012-08-28
AR053638A1 (es) 2007-05-09
WO2006134162A2 (en) 2006-12-21
US7880055B2 (en) 2011-02-01
EP1896575B1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
CN101228277B (zh) 过表达accdp基因的植物中的产量增加
CN101443355A (zh) 活性钾通道转运蛋白(akt)及它们产生胁迫耐受性植物的用途
US7795415B2 (en) Casein kinase stress-related polypeptides and methods of use in plants
US7598431B2 (en) Protein kinase stress-related polypeptides and methods of use in plants
CN101203603B (zh) 凝集素样蛋白激酶胁迫相关多肽和在植物内使用的方法
US7399903B2 (en) Vesicle trafficking stress-related polypeptides and methods of use in plants
CN101228279A (zh) 过量表达mtp基因的植物内的产量增加
CN102206650A (zh) Scarecrow样胁迫相关的多肽和在植物中的使用方法
EP1451325B1 (en) Transcription factor stress-related polypeptides and methods of use in plants
US20030163850A1 (en) Ion transporter stress-related polypeptides and methods of use in plants
MX2007004082A (en) Scarecrow-like stress-related polypeptides and method sof use in plants
AU2008212062A1 (en) Protein kinase stress-related polypeptides and methods of use in plants

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111116

Termination date: 20140616

EXPY Termination of patent right or utility model