CN101186299A - 一种流化床装置生产高纯度硅的新工艺 - Google Patents

一种流化床装置生产高纯度硅的新工艺 Download PDF

Info

Publication number
CN101186299A
CN101186299A CNA2007100461258A CN200710046125A CN101186299A CN 101186299 A CN101186299 A CN 101186299A CN A2007100461258 A CNA2007100461258 A CN A2007100461258A CN 200710046125 A CN200710046125 A CN 200710046125A CN 101186299 A CN101186299 A CN 101186299A
Authority
CN
China
Prior art keywords
silicon
fluidized
reactor
metal
silicon tetrachloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100461258A
Other languages
English (en)
Inventor
何午生
何文
施杏娣
郭行凯
蒋士震
唐则祁
胡宏勋
潘科君
郑君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO SHANSHAN VENTURE CAPITAL CO Ltd
Shanghai Zhong Ren Energy Technology Co Ltd
NINGBO SHANSHAN YOULIKA SOLAR ENERGY TECHNOLOGY DEVELOPMENT Co Ltd
Original Assignee
NINGBO SHANSHAN VENTURE CAPITAL CO Ltd
Shanghai Zhong Ren Energy Technology Co Ltd
NINGBO SHANSHAN YOULIKA SOLAR ENERGY TECHNOLOGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO SHANSHAN VENTURE CAPITAL CO Ltd, Shanghai Zhong Ren Energy Technology Co Ltd, NINGBO SHANSHAN YOULIKA SOLAR ENERGY TECHNOLOGY DEVELOPMENT Co Ltd filed Critical NINGBO SHANSHAN VENTURE CAPITAL CO Ltd
Priority to CNA2007100461258A priority Critical patent/CN101186299A/zh
Publication of CN101186299A publication Critical patent/CN101186299A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

本发明的目的是提供一种能耗较低,投资相对较少的可以连续化生产且密闭循环的流化床装置生产高纯度硅的新工艺;采用高纯度四氯化硅与高纯度活泼金属进行还原反应制备高纯度硅材料。活泼金属可采用钠,镁,铝,锌等。本发明的效果是:通过以金属在流化床中还原四氯化硅,得到一种可以连续生产的高纯度硅产品,该产品纯度≥6N,为太阳能级多晶硅。同时该工艺与通常生产多晶硅的西门子法工艺比较,具有投资少,能耗低,成本低,无污染排放等优势。

Description

一种流化床装置生产高纯度硅的新工艺
技术领域:
本发明涉及金属还原法制备太阳能级硅材料的技术。
背景技术:
现今太阳能电池有硅太阳能电池、化合物太阳能电池、纳米晶燃料敏化电池、有机太阳能电池等。硅太阳能电池因为硅材料资源丰富、无毒无害且物理性能优良而成为主流产品。
现在世界上工业化生产高纯度硅材料较为成熟的工艺有:西门子法、硅烷法、冶金法等。西门子法是以三氯氢硅与氢气在还原炉中高温还原制备硅材料。硅烷法是将四氯化硅热分解制备硅材料。冶金法是以冶金级硅做原料,通过粉碎,酸除杂,高温精炼和定向结晶等一系列工序制得硅材料。
西门子法是以氢气为还原剂与三氯氢硅进行化学反应,得到高纯度硅材料,而氢气的金属活泼性低于钠,铝,锌等元素,因此利用这些金属作为还原剂制备高纯硅,反应更容易进行。
自六十年代开始就曾有这方面的报导,例如日本“工业化学杂志”64(8)1347-50(1961),EP0123100,JP2-64006报导了以铝还原SiCl4制备高纯硅;又如US4188368,JP53-85716报导了以钠还原SiCl4制备高纯硅;再如JP54-84824报导了以锌还原制备高纯硅。
在高纯度硅材料的反应设备方面,以前通常采用的是固定床装置,所得到的硅材料为棒型,无法连续生产产品,并且要消耗大量的能源以保证硅棒表面的反应温度。
而且以这种设备制备的硅棒在装入晶体生长器的坩埚之前要进行粉碎和分选处理,由于在粉碎和分选处理过程中硅容易受到杂质污染,因此还需要用高纯度无机酸进行腐蚀,用超纯净水进行冲洗,干燥以及在干净的环境下进行包装等复杂的工序来去除杂质。所以,期望能以反应设备直接生产出颗粒状高纯硅产品替代棒状产品。
为了解决上述问题,如:DE2704975,JP63-55112,US4820587提出了用流化床反应器生产粒状高纯硅,这种方法,通过将作为籽晶的硅粉加入流化床内,受到流化床下部供入的气体而流动起来,原料气体受热在籽晶表面反应生成硅,随着反应的进行,颗粒的平均尺寸逐渐增加,长大后流动性减小,逐渐沉积到流化床底部,从而获得可以连续出料的颗粒状高纯硅产品。
同时,流化床中的硅粉与反应气体接触的表面积远远大于固定床反应器中硅棒与反应气体接触的表面积,更有利于反应的进行。
发明内容:
本发明的目的是提供一种能耗较低,投资相对较少的可以连续化生产且密闭循环的流化床装置生产高纯度硅的新工艺。
为了达到上述目的,本发明采用高纯度四氯化硅与高纯度活泼金属进行还原反应制备高纯度硅材料。活泼金属可采用钠,镁铝,锌等。
本发明的工艺过程是:
(1)将工业硅制成300-700μm硅粉,与氯气混合在反应器中制成四氯化硅;
(2)四氯化硅经多个四氯化硅精馏塔精馏后,制成高纯四氯化硅蒸气;
(3)将金属提纯,制成高纯金属蒸气,通常可以采取电解其金属盐或对该金属进行精馏的方法,也可将电解和精馏结合对金属进行提纯;
(4)将高纯四氯化硅蒸气和提纯后的高纯金属的蒸气,送进流化床反应器,两者在反应器内进行还原反应得到硅;
(5)流化床反应器直接输出高纯硅粒,或者将高纯硅粒送进过热器,进一步除杂质,然后将其定向凝固后得到太阳能级多晶硅锭;
(6)流化床反应器里的尾气,进入旋风分离器回收硅粉;
(7)尾气旋风分离后进入三级分离器;
(8)一级分离器分离出未反应的金属蒸气,返回至(3);二级分离器分离出金属氯化物,经电解后得到金属和氯气,分别返回至(3)和(1);三级分离器分离出未反应的四氯化硅,返回至(2);所述四氯化硅制备过程是将300-700μm的硅粒,从一充满保护性气体的反应器上部加入,氯气从该反应器下部加入,反应器温度为400-850℃,保护性气体为氮、氖、氩、氪或上述气体的温合气。
流化床反应器为上部粗、下部细的圆筒状体,顶部有粉硅加入管和排气管,底部有金属蒸气加入管,该管旁边为颗粒硅出料管,底部还有四氯化硅及保护性气体加入管,底部内设置有气体分配板;反应器下部外壳体设置有高频加热装置和保温层。
流化床反应器内的反应温度为700-1300℃,流化床反应器内的尾气导出后,进入旋风分离器回收硅粉,再进入三级分离器。
所述分离器,第一极分离器的温度为500-850℃,第二极分离器的温度为300-500℃,第三极分离器的温度为0-55℃。
本发明的效果是:通过以金属在流化床中还原四氯化硅,得到一种可以连续生产的高纯度硅产品,该产品纯度≥6N,可以作为太阳能级多晶硅原料。同时该工艺与通常生产多晶硅的西门子法工艺比较,具有投资少,能耗低,成本低,无污染物排放等优势。
下面对发明内容进一步描述如下:
以工业级硅和工业级活泼金属为初始原料,首先将工业级硅与氯气反应制备四氯化硅,将所得到的四氯化硅提纯、气化后在流化床反应器里于保护气体氛围中与经过金属提纯系统提纯的金属的蒸气进行反应得到高纯度硅,反应尾气进入分离器中分离回收副产的金属氯化物,未反应的金属,及未反应的四氯化硅,其中金属和四氯化硅进入各自的提纯系统纯化后重新进入流化床反应制备高纯度硅,金属氯化物电解成金属和氯气循环使用。本发明的新工艺由以下几个大的系统组成:
1.以硅和氯气为原料的四氯化硅制备系统;
2.四氯化硅提纯系统;
3.金属提纯系统;
4.以高纯度四氯化硅和高纯度金属制备高纯度硅的流化床反应器系统;
5.反应尾气的回收及金属氯化物电解回用系统。
以上各点分别详述如下:
1.以硅和氯气为原料的四氯化硅制备系统:
将粒径≤5mm,更好的是粒径在300-700μm的工业硅粉从一充满保护性气体的反应器上部加入,氯气从该反应器下部加入,控制该反应器温度在400-850℃,硅粉与氯气反应得到四氯化硅,充入反应器中的保护性气体可以选择氮气、氦气、氖气、氩气、氪气等气体,或上述气体的混合物,其与氯气的体积比例为3-10∶1,反应器导出的气体分离后,四氯化硅进入四氯化硅提纯系统提纯,保护性气体进入四氯化硅反应器中继续使用。
2.四氯化硅提纯系统:
本发明的目的是为了制备高纯度硅材料,因此需要将四氯化硅进行提纯,使其纯度≥6N,为达到该目的,可以采用精馏四氯化硅的方法提纯。精馏提纯的原理是,整个精馏过程在精馏塔中进行,在塔中利用混合物中各组分挥发能力的差异,通过液相和气相的回流,使气、液两相逆向多级接触,在热能驱动和相平衡关系的约束下,使得易挥发组分(轻组分)不断从液相往气相中转移,而难挥发组分却由气相向液相中迁移,使混合物得到不断分离。
本发明通过对四氯化硅以四塔流程或者三塔流程进行精馏后,即可使四氯化硅制备系统制得的粗四氯化硅纯度提高,达到≥6N。
3.金属提纯系统:
本发明以高纯四氯化硅与高纯活泼金属蒸气进行还原反应制备高纯度硅,因此也需要将金属原料进行提纯,这些金属通常可以选择钠,镁,铝,锌等活泼金属,优选锌作为还原金属。这些金属的提纯通常可以采取电解其金属盐或对该金属进行精馏的方法,也可将电解和精馏结合对金属进行提纯,而且电解提纯工艺可以共用本发明的金属氯化物电解回用系统设备。
具体到本发明优选的还原金属锌,可以采用两塔流程进行精馏,从而得到纯度≥6N的锌。
4.以高纯度四氯化硅和高纯度金属制备高纯度硅的流化床反应器系统;
将本发明的四氯化硅提纯系统提纯的四氯化硅的蒸气和金属提纯系统提纯的金属蒸气从底部导入一流化床反应器中作为反应气体,而做为仔晶的硅粉从该流化床顶部加入,同时,流化床底部还导入保护性气体作为驱动气,使硅粉在流化床内流动起来。保护性气体为氮气、氦气、氖气、氩气、氪气等气体,或上述气体的混合物。
流化床以高频加热,流化床内反应温度为700-1300℃。在此温度下,原料气体中的四氯化硅与金属在硅粉表面进行还原反应产生硅,随着反应的进行,颗粒的平均尺寸逐渐增加,长大后流动性减小,逐渐沉积到流化床底部,得到的粒状高纯硅可以直接作为太阳能级多晶硅出售,也可以进入一连接于流化床下部的过热器中进一步加热除杂,过热器中温度为1100-1500℃,最后得到纯度≥6N的高纯硅,将其定向凝固后得到太阳能级多晶硅锭。该流化床为上大下小的圆筒状设备,以高频加热,外壳为耐热不锈钢,内胆以碳化硅、石英或氧化铝等材质制成。床底有分配板。底部配有原料气、驱动气进气口,顶部备有结晶种子高纯硅粉加入口。
5.反应尾气的回收及金属氯化物电解回用系统:
流化床反应器里的尾气导出流化床后,首先进入旋风分离器,回收硅粉,再进入由三级分离器组成的尾气回收系统,在第一分离器中,未反应的金属蒸气在该分离器中被分离后,重新进入金属提纯系统循环使用,该分离器温度控制范围为500-850℃。
在第二分离器中,反应产生的金属氯化物在该分离器中被分离后,通过电解得到金属和氯气,金属进入金属提纯系统循环使用,氯气进入四氯化硅制备系统循环使用;也可将分离得到的金属氯化物直接作为商品出售。该分离器温度控制范围为300-500℃。
在第三分离器中,未反应的四氯化硅在该分离器被分离后进入四氯化硅提纯系统循环使用,该分离器温度控制范围为0-55℃。
三级分离后的尾气作为驱动气重新进入流化床。
附图说明:
图1是本发明的流程示意图;
具体实施方式
下文参照下列实施例对本发明做更详细的说明,但应当理解本发明不受这些实例的限制,在本发明的范围内进行各种修改是可能的。
实施例一
将粒径400-700μm的工业硅粉从上部,氯气从下部加入一充有高纯氮气的反应器中,氮气与氯气的体积比为10∶1,控制该反应器的温度在400-850℃,该反应器产生的四氯化硅经过四个四氯化硅精馏塔精馏后纯度达到≥6N,高纯四氯化硅蒸汽预热后从底部进入流化床中;
将锌原料熔化后,在惰性气体保护下,依次进入两个锌精馏塔,原料锌所含的高沸点杂质和低沸点杂质在两个塔中被分离后,锌的纯度达到≥6N,其蒸气也从底部导入流化床中;
同时将高纯度氩气从底部导入流化床,将作为籽晶的硅粉从流化床上部加入,保持流化床内温度在800-1200℃,四氯化硅与锌反应生成硅沉积在硅粉表面,硅粉长大后进入流化床下部的过热器中,保持该过热器的温度在1100-1500℃,硅在其中进一步除杂,最后得到纯度≥6N的高纯度硅,将其定向凝固后得到太阳能级多晶硅锭。
尾气进入旋风分离器脱出硅粉,再进入三级分离器分离,保持第一级分离器温度范围为500-850℃,未反应的锌蒸气在其中被分离出尾气,回到锌精馏塔继续使用。保持第二级分离器温度范围为300-500℃,氯化锌在其中被分离出尾气,将氯化锌电解后得到锌和氯气循环使用。保持第三级分离器温度范围为0-55℃,未反应的四氯化硅在其中被分离,重新进入四氯化硅精馏塔回用。三级分离后的尾气作为驱动气重新进入流化床。
实施例二
将粒径300-650μm的工业硅粉从上部,氯气从下部加入一充有高纯氮气的反应器中,氮气与氯气的体积比为5∶1,控制该反应器的温度在400-850℃,该反应器产生的四氯化硅经过四个四氯化硅精馏塔精馏后纯度达到≥6N,高纯四氯化硅蒸汽预热后从底部进入流化床中;
将锌原料熔化后,在惰性气体保护下,依次进入两个锌精馏塔,原料锌所含的高沸点杂质和低沸点杂质在两个塔中被分离后,锌的纯度达到≥6N,其蒸气也从底部导入流化床中;
同时将高纯度氩气从底部导入流化床,将作为籽晶的硅粉从流化床上部加入,保持流化床内温度在800-1200℃,四氯化硅与锌反应生成硅沉积在硅粉表面,硅粉长大后进入流化床下部出料,从而得到纯度≥6N的高纯度硅。
尾气进入旋风分离器脱出硅粉,再进入三级分离器分离,保持第一级分离器温度范围为750-800℃,未反应的锌蒸气在其中被分离出尾气,回到锌精馏塔继续使用。保持第二级分离器温度范围为300-500℃,氯化锌在其中被分离出尾气,将氯化锌电解后得到锌和氯气循环使用。保持第三级分离器温度范围为0-45℃,未反应的四氯化硅在其中被分离,重新进入四氯化硅精馏塔回用。三级分离后的尾气作为驱动气重新进入流化床。
实施例三
将粒径400-550μm的工业硅粉从上部,氯气从下部加入一充有高纯氮气的反应器中,氮气与氯气的体积比为7∶1,控制该反应器的温度在500-700℃,该反应器产生的四氯化硅经过三个四氯化硅精馏塔精馏后纯度达到≥6N,高纯四氯化硅蒸汽预热后从底部进入流化床中;
将锌原料熔化后,依次进入两个锌精馏塔,原料锌所含的高沸点杂质和低沸点杂质在两个塔中被分离后,锌的纯度达到≥6N,其蒸气也从底部导入流化床中;
同时将高纯度氩气从底部导入流化床,将作为籽晶的硅粉从流化床上部加入,保持流化床内温度在900-1200℃,四氯化硅与锌反应生成硅沉积在硅粉表面,硅粉长大后进入流化床下部的过热器中,保持该过热器的温度在1300-1500℃,硅在其中进一步除杂,最后得到纯度≥6N的高纯度硅,将其定向凝固后得到太阳能级多晶硅锭。
尾气进入旋风分离器脱出硅粉,再进入三级分离器分离,保持第一级分离器温度范围为700-800℃,未反应的锌蒸气在其中被分离出尾气,回到锌精馏塔继续使用。保持第二级分离器温度范围为350-450℃,氯化锌在其中被分离出尾气,将氯化锌电解后得到锌和氯气循环使用。保持第三级分离器温度范围为0-55℃,未反应的四氯化硅在其中被分离,重新进入四氯化硅精馏塔回用。三级分离后的尾气作为驱动气重新进入流化床。

Claims (5)

1.一种流化床装置生产高纯度硅的新工艺,其特征在于:该工艺的流程是:
(1)将工业硅制成300-700μm硅粉,与氯气混合在反应器中制成四氯化硅;
(2)四氯化硅经多个四氯化硅精馏塔精馏后,制成高纯四氯化硅蒸气;
(3)将金属提纯,制成高纯金属蒸气,通常可以采取电解其金属盐或对该金属进行精馏的方法,也可将电解和精馏结合对金属进行提纯;
(4)将纯四氯化硅蒸气和提纯后的高纯金属的蒸气,送进流化床反应器,两者在反应器内进行还原反应得到硅;
(5)流化床反应器直接输出高纯硅粒,或者将高纯硅粒送进过热器,进一步除杂质,然后将其定向凝固后得到太阳能级多晶硅锭;
(6)流化床反应器里的尾气,进入旋风分离器回收硅粉;
(7)尾气旋风分离后进入三级分离器;
(8)一级分离器分离出未反应的金属蒸气,返回至(3);二级分离器分离出金属氯化物,经电解后得到金属和氯气,分别返回至(3)和(1);三级分离器分离出未反应的四氯化硅,返回至(2);
2.按权利要求1所述的一种流化床装置生产高纯度硅的新工艺,其特征在于:所述四氯化硅是将300-700μm的硅粒,从一充满保护性气体的反应器上部加入,氯气从该反应器下部加入,反应器温度为400-850℃,保护性气体为氮、氖、氩、氪或上述气体的混合气。
3.一种流化床反应器,其特征在于:该反应器为上部粗、下部细的圆筒状体,顶部有粉硅加入管和排气管,底部有金属蒸气加入管,该管旁边为颗粒硅出料管,底部还有四氯化硅及保护性气体加入管,底部内设置有气体分配板;反应器下部外壳体设置有高频加热装置和保温层。
4.按权利要求3所述的流化床反应器,其特征在于:流化床反应器内的反应温度为700-1300℃,流化床反应器内的尾气导出后,进入旋风分离器回收硅粉,再进入三级分离器。
5.按权利要求4所述的流化床反应器,其特征在于:所述分离器,第一极分离器的温度为500-850℃,第二极分离器的温度为300-500℃,第三极分离器的温度为0-55℃。
CNA2007100461258A 2007-09-19 2007-09-19 一种流化床装置生产高纯度硅的新工艺 Pending CN101186299A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007100461258A CN101186299A (zh) 2007-09-19 2007-09-19 一种流化床装置生产高纯度硅的新工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007100461258A CN101186299A (zh) 2007-09-19 2007-09-19 一种流化床装置生产高纯度硅的新工艺

Publications (1)

Publication Number Publication Date
CN101186299A true CN101186299A (zh) 2008-05-28

Family

ID=39478964

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100461258A Pending CN101186299A (zh) 2007-09-19 2007-09-19 一种流化床装置生产高纯度硅的新工艺

Country Status (1)

Country Link
CN (1) CN101186299A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830469B (zh) * 2009-12-30 2011-12-14 邓兵国 可调式高压脉冲静电硅微粉提纯机
CN102464318A (zh) * 2010-11-04 2012-05-23 刘春霞 一种生产太阳能级多晶硅的方法
CN102774838A (zh) * 2011-05-12 2012-11-14 潘凯 用锌还原法制造高纯度晶体硅的方法
CN101723370B (zh) * 2008-10-13 2013-02-20 刘雅铭 一种没有四氯化硅排放的多晶硅生产法
CN103466626A (zh) * 2012-06-08 2013-12-25 浙江昱辉阳光能源有限公司 一种多晶硅的生产方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723370B (zh) * 2008-10-13 2013-02-20 刘雅铭 一种没有四氯化硅排放的多晶硅生产法
CN101830469B (zh) * 2009-12-30 2011-12-14 邓兵国 可调式高压脉冲静电硅微粉提纯机
CN102464318A (zh) * 2010-11-04 2012-05-23 刘春霞 一种生产太阳能级多晶硅的方法
CN102774838A (zh) * 2011-05-12 2012-11-14 潘凯 用锌还原法制造高纯度晶体硅的方法
CN103466626A (zh) * 2012-06-08 2013-12-25 浙江昱辉阳光能源有限公司 一种多晶硅的生产方法
CN103466626B (zh) * 2012-06-08 2016-01-27 浙江昱辉阳光能源有限公司 一种多晶硅的生产方法

Similar Documents

Publication Publication Date Title
Gribov et al. Preparation of high-purity silicon for solar cells
US6887448B2 (en) Method for production of high purity silicon
Safarian et al. Processes for upgrading metallurgical grade silicon to solar grade silicon
CN108793169A (zh) 一种回收利用金刚线切割硅料副产硅泥的方法装置和系统
EP0131586B1 (en) Process and apparatus for obtaining silicon from fluosilicic acid
EP1437327B1 (en) Method for producing silicon
CN101143723B (zh) 制备三氯氢硅和多晶硅的改进方法和装置
US7972584B2 (en) Magnesiothermic methods of producing high-purity silicon
JP4038110B2 (ja) シリコンの製造方法
CN101186299A (zh) 一种流化床装置生产高纯度硅的新工艺
JP3844849B2 (ja) 多結晶シリコンおよび塩化亜鉛の製造方法
CN110526249A (zh) 一种生产硅烷混合物的反应器系统
Maurits Silicon production
CN103153855A (zh) 在基本闭环的方法和系统中制备多晶硅
JP2004284935A (ja) シリコンの製造装置及び製造方法
JP2004210594A (ja) 高純度シリコンの製造方法
CN103466626B (zh) 一种多晶硅的生产方法
CN114314596B (zh) 利用微波加热固定床连续合成高阶硅烷的方法及系统
CN206735809U (zh) 一种电子级多晶硅的生产系统
JP2004035382A (ja) 多結晶シリコンの製造方法
CN103193233B (zh) 通过钠还原四氟化硅制备太阳能级多晶硅的装置和方法
CN102060298A (zh) 一种多晶硅生产装置及多晶硅生产方法
JPH02172811A (ja) トリクロロシランの製造方法
CN103626184B (zh) 一种高纯液体多晶硅的制备方法
JPS59121109A (ja) 高純度シリコンの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080528