CN101180759B - 燃料电池系统 - Google Patents

燃料电池系统 Download PDF

Info

Publication number
CN101180759B
CN101180759B CN2006800177556A CN200680017755A CN101180759B CN 101180759 B CN101180759 B CN 101180759B CN 2006800177556 A CN2006800177556 A CN 2006800177556A CN 200680017755 A CN200680017755 A CN 200680017755A CN 101180759 B CN101180759 B CN 101180759B
Authority
CN
China
Prior art keywords
fuel
reformer
exhaust
evaporator
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800177556A
Other languages
English (en)
Other versions
CN101180759A (zh
Inventor
锺尾幸久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN101180759A publication Critical patent/CN101180759A/zh
Application granted granted Critical
Publication of CN101180759B publication Critical patent/CN101180759B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2458Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2465Two reactions in indirect heat exchange with each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2469Feeding means
    • B01J2219/247Feeding means for the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种燃料电池系统。流体单元(14)包括换热器(18)、蒸发器(20)和重整器(22)。流体单元(14)设置在第三壳体单元(72)中。在第三壳体单元(72)中设置作为排气的通路的排气通道(76)。排气通道(76)包括第一通道(78)、第二通道和第三通道(82),所述第一通道用于将排气供应至所述重整器(22),所述第二通道用于将排气供应至所述换热器(18),所述第三通道连接到所述第二通道(80)的下游侧,用于将排气供应至所述蒸发器(20)。供应至蒸发器(20)的排气由于在换热器(18)中的热交换而具有较低的温度。

Description

燃料电池系统 
技术领域
本发明涉及一种燃料电池系统,其中在壳体内设置燃料电池组、换热器、蒸发器和重整器。 
背景技术
例如,固体氧化物燃料电池(SOFC)采用诸如稳定氧化锆的离子导电氧化物的电解质。电解质插设在阳极和阴极之间以形成电解质电极组件(单元电池)。电解质电极组件插设在隔板(双极板)之间。在使用中,将预定数量的单元电池和隔板堆叠在一起以形成燃料电池组。 
通常,使用通过重整设备从烃基原燃料产生的氢气作为供应到燃料电池的燃料气体。在重整设备中,当从诸如化石燃料(例如,甲烷或LNG(液化天然气))的烃基原燃料获得重整原材料气体之后,对重整原材料气体进行蒸汽重整或部分氧化重整、自热重整等以产生重整气体(燃料气体)。 
例如,日本特开专利公报No.2003-40605公开了一种如图10所示的重整设备。该重整设备包括重整单元1、燃烧单元2和水蒸汽供应单元3。向重整单元1供应原材料气体,用于通过部分氧化反应和水蒸汽重整反应产生氢气。燃烧单元2与重整单元1一体设置,用于燃烧燃料以加热重整单元1。水蒸汽供应单元3与重整单元1一体设置,用于至少向原材料气体供应通过使用重整单元1的废热来蒸发水而获得的水蒸汽。 
在重整单元1中,通过部分氧化反应(即,原材料气体中的原燃料与氧气的反应)和蒸汽重整反应(即,原燃料与水蒸汽的反应)从原燃料产生氢气。此时,对于蒸汽重整反应(吸热反应)中所需的反应热,从燃烧单元2向重整单元1供应通过燃烧燃料产生的热。 
部分氧化反应是放热反应。部分氧化反应的反应温度比蒸汽重整反 应的反应温度高。因此,从重整单元1辐射废热。根据该公开,来自重整单元1的废热用作使水蒸汽供应单元3中的水蒸发的热源。 
在传统技术中,来自氢电极的在排气中剩余的氢气在空气中燃烧,并将获得的燃烧热供应给重整单元1。该燃烧热用作重整单元1的重整热源。在聚合物电解质燃料电池的情况下,工作温度为100℃以下。通常,从燃料电池排放的排气的温度比重整单元1中的重整温度和水蒸汽供应单元3的工作温度低。 
在传统技术中,没有从排气收集热,而是通过燃烧单元2燃烧剩余的氢气以提高热回收效率。在该结构中,因为需要用于燃烧排气的燃烧器,所以设备较复杂,并且设备的尺寸较大。 
另外,在来自于排气的废热不能有效收集的情况下,必须减少从燃料电池系统自然辐射的热能。因此,使用大量的绝热材料等,从而燃料电池系统的尺寸变得相当大。 
发明内容
本发明的主要目的在于提供一种燃料电池系统,在该燃料电池系统中可以有效地利用从燃料电池组排放的排气的热,并有效地提高热回收率而不会增大该燃料电池系统的尺寸。 
本发明涉及一种燃料电池系统,该燃料电池系统包括燃料电池组、换热器、蒸发器、重整器和壳体。所述燃料电池组通过堆叠多个燃料电池而形成。每个所述燃料电池均包括堆叠在一起的电解质电极组件和隔板。所述电解质电极组件包括阳极、阴极和插设在所述阳极与所述阴极之间的电解质。所述换热器加热待供应至所述燃料电池组的含氧气体。所述蒸发器蒸发水以产生主要含有烃的原燃料与水蒸汽的混合燃料。所述重整器重整所述混合燃料以产生重整气体。所述壳体至少容纳所述燃料电池组、所述换热器、所述蒸发器和所述重整器。 
在所述壳体中设置排气通道,该排气通道作为在发电反应中消耗后从所述燃料电池组排放的排气的通路。所述排气通道包括第一通道、第二通道和第三通道,所述第一通道用于将排气供应至所述重整器,作为用于重整混合燃料气体的热源,所述第二通道用于将排气供应至所述换热器,作为用于加热含氧气体的热源,所述第三通道连接到所述第二通道的下游侧,用于将排气供应至所述蒸发器,作为用于蒸发水的热源;所述第一通道通过形成在壁中的多个孔从所述第二通道分支,并且所述重整器包括入口和出口;所述混合燃料通过所述入口流入所述重整器,所述重整气体通过所述出口供应至所述燃料电池组;相比于所述出口,所述入口被设置成更接近所述第一通道的排气出口,所述第一通道通过该排气出口通向所述重整器。 
优选的是,在所述燃料电池组的一侧上设置至少包括所述换热器、所述蒸发器和所述重整器的流体单元,并且所述流体单元关于所述燃料电池组的中央轴线对称设置。 
另外,优选的是,所述重整器靠近所述燃料电池组设置,所述蒸发器靠近所述重整器设置并位于远离所述燃料电池组的一侧,并且所述换热器沿着垂直于所述中央轴线的方向设置在所述重整器的外侧。 
另外,优选的是,沿着垂直于所述中央轴线的方向,所述蒸发器设置在所述重整器的外侧,所述换热器设置在所述蒸发器的外侧。另外,优选的是,所述重整器和所述换热器设置成比所述蒸发器更接近所述燃料电池组。另外,优选的是,在所述蒸发器周围设置绝热层,并在该绝热层中充入排气。 
图1是表示根据本发明第一实施方式的燃料电池系统的局部剖视图; 
图2是表示燃料电池系统的流体单元的主要部件的剖视图; 
图3是表示燃料电池系统的燃料电池组的立体图; 
图4是表示燃料电池组的燃料电池的分解立体图; 
图5是表示燃料电池中的气体流动的局部分解立体图; 
图6是表示燃料电池系统的蒸发器的主要部件的立体图; 
图7是表示燃料电池系统的重整器的局部剖视图; 
图8是表示重整器的主要部件的分解立体图; 
图9是表示根据本发明第二实施方式的燃料电池系统的流体单元的主要部件的剖视图;以及 
图10是表示传统重整设备的剖视图。 
具体实施方式
燃料电池系统10用在各种应用中,包括静止应用和移动应用。例如,燃料电池系统10安装在车辆上。如图1所示,燃料电池系统10包括燃料电池组12、设置在燃料电池组12的一侧上的流体单元14、以及容纳燃料电池组12和流体单元14的壳体16。 
如图1和图2所示,流体单元14包括用于在含氧气体供应至燃料电池组12之前加热含氧气体的换热器18、用于蒸发水以产生主要含烃的原燃料(例如,城市燃气)与水蒸汽的混合燃料的蒸发器20以及用于重整混合燃料以产生重整气体的重整器22。 
重整器22是用于使用城市燃气中的高碳(C2+)烃(例如乙烷(C2H6)、丙烷(C3H6)和丁烷(C4H10))通过蒸汽重整而产生主要含甲烷(CH4)的原燃料气体的初步重整器。重整器22的工作温度在300℃到400℃的范围内。 
在壳体16中,在燃料电池组12的另一侧上设置载荷施加机构24,用于沿箭头A(见图1和图3)所示的燃料电池组12的燃料电池26的堆叠方向施加紧固载荷。流体单元14和载荷施加机构24关于燃料电池组12的中央轴线对称地设置。 
燃料电池26是固体氧化物燃料电池。如图4和图5所示,燃料电池26包括电解质电极组件36。每个电解质电极组件36均包括阴极32、阳极34和插设在阴极32与阳极34之间的电解质(电解质板)30。例如,电解质30由诸如稳定氧化锆的离子导电氧化物制成。 
燃料电池26的工作温度很高,大约700℃以上。在电解质电极组件36中,通过重整燃料气体中的甲烷而产生氢气,并将氢气供应至阳极34。 
在一对隔板38之间插设多个(例如八个)电解质电极组件36以形成燃料电池26。这八个电解质电极组件36布置在与穿过隔板38的中央延伸的燃料气体供应通路40同心的圆上。围绕燃料气体供应通路40气密地设置含氧气体供应单元41。 
例如在图4中,每个隔板38均包括例如不锈钢合金或碳板制成的单个金属板。燃料气体供应通路40穿过隔板38的中央延伸。隔板38包括多个圆盘42。每个圆盘42均在其接触阳极34的表面上具有第一突起48。第一突起48形成用于沿着阳极34的电极表面供应燃料气体的燃料气体通道46。 
每个圆盘42均在其接触阴极32的表面上具有第二突起52。第二突起52形成用于沿着阴极32的电极表面供应含氧气体的含氧气体通道50。如图4和图5所示,每个圆盘42均具有用于向燃料气体通道46供应燃料气体的燃料气体入口54。 
通道构件56通过钎焊或激光焊接在面向阴极32的表面上而固定至隔板38。燃料气体供应通路40穿过通道构件56的中央延伸。通道构件56形成将燃料气体供应通路40和燃料气体通道46连接的燃料气体供应通道58。围绕隔板38形成用于将消耗的反应气体作为排气排放的排气排放通道59。 
如图1和图3所示,燃料电池组12包括堆叠在一起的多个燃料电池26,以及设置在沿堆叠方向的相对两端的端板60a、60b。在端板60a的中央形成孔61,沿着绕孔61的同一虚拟圆以预定角度间隔交替地形成孔62和螺纹孔64。孔62连接到稍后描述的空气通道84。 
如图1所示,壳体16包括容纳载荷施加机构24的第一壳体单元66a和容纳燃料电池组12的第二壳体单元66b。端板60b和一绝缘构件(未示出)夹在第一壳体单元66a与第二壳体单元66b之间。该绝缘构件设置在第二壳体单元66b的一侧上。第一壳体单元66a与第二壳体单元66b之间的接合部分通过螺栓68和螺母70紧固。 
第二壳体单元66b接合到作为流体单元14的一部分的筒形第三壳体单元72的一端。顶板74固定至第三壳体单元72的另一端。在第三壳体单元72中设置排气通道76。在发电消耗之后从燃料电池组12的排气排放通道59排出的排气流经流体单元14中的排气通道76。 
如图2所示,排气通道76包括第一通道78、第二通道80和第三通道82,第一通道78用于将排气供应至重整器22,作为用于重整混合燃 料的热源,第二通道80用于将排气供应至换热器18,作为用于加热含氧气体的热源,第三通道82连接到第二通道80的下游侧,用于将排气供应至蒸发器20,作为用于蒸发水的热源。第二通道80是主要通路,第一通道78通过形成在壁81中的多个孔81a从第二通道80分支。第一通道78通过整流孔(排气出口)83通向重整器22。 
重整器22和蒸发器20沿箭头A1所示的方向布置,使得重整器22定位在燃料电池组12的一侧上,蒸发器20定位在远离燃料电池组12的一侧上。换热器18设置在重整器22的外侧。换热器18与重整器22以及燃料电池组12之间的距离应最小化。燃料电池组12的排气排放通道59直接连接到排气通道76的第二通道80。 
第二通道80设置在换热器18的内侧。另外,用于使空气通过的空气通道84设置在换热器18的内侧,靠近第二通道80。在该结构中,排气和被排气加热的空气以逆流方式流动。空气通道84在顶板74处连接到空气供应管86。 
蒸发器20具有外筒形构件88和内筒形构件90。外筒形构件88和内筒形构件90彼此同轴。在外筒形构件88与内筒形构件90之间成螺旋形设置套管92。如图2和图6所示,套管92包括外管94a和内管94b。第三通道82形成在外管94a与外筒形构件88和内筒形构件90之间。 
在外管94a与内管94b之间形成原燃料通道96。在内管94b内侧形成水通道98。内管94b在蒸发器20的下游侧上具有多个孔100。例如,孔100的直径在10μm至100μm的范围内。 
套管92在上游侧上的一端通过顶板74延伸到外侧。在套管92在下游侧上的一端处,内管94b终止,仅外管94a沿箭头A2所示的方向延伸。混合燃料供应管101的一端连接到外管94a,并且混合燃料供应管101的另一端连接到重整器22的入口102(见图2)。混合燃料供应管101朝燃料电池组12延伸,并连接到入口102。入口102设置在与从排气通道76分支的第一通道78连接的整流孔83的附近。 
如图7所示,重整器22具有盖108,入口102形成在盖108处。盖108位于重整器22的一端处,通过将第一接收器构件110和第二接收器 构件112交替连接而形成重整器22。如图7和图8所示,第一接收器构件110和第二接收器构件112为大致板状。在第一接收器构件110的中央形成孔114。在第二接收器构件112的周边部分中在一圆上形成多个孔116。 
多个重整催化剂颗粒118夹在第一接收器构件110与第二接收器构件112之间。每个催化剂颗粒118均具有圆柱形形状。例如,通过在陶瓷化合物基材上设置镍基催化剂而形成催化剂颗粒118。 
在重整器22中形成重整通道120。重整通道120沿着箭头A1所示的方向延伸,并具有穿过第一接收器构件110的孔114和第二接收器构件112的孔116的蛇形图案。在重整器22的下游侧上(在重整器22沿箭头A1所示方向的端部处),设置出口122,并且重整气体供应通路124的一端连接到出口122(见图7)。如图2所示,重整气体供应通路124沿着重整器22的轴线延伸到端板60a的孔61中,并连接到燃料气体供应通路40。 
主排气管126和排气管128连接到顶板74。主排气管126连接到蒸发器20的第三通道82。排气管128设置在蒸发器20的中央,用于沿着箭头A1所示的方向排放在重整器22周围流动的排气。 
围绕蒸发器20的外筒形构件88设置筒形罩129。在筒形罩129与外筒形构件88之间的封闭空间中形成绝热层129a。绝热层129a连接到第二通道80,一部分排气充入绝热层129a中。 
如图1所示,载荷施加机构24包括第一紧固单元130a和第二紧固单元130b,第一紧固单元130a用于向燃料气体供应通路40周围(附近)的区域施加第一紧固载荷T1,第二紧固单元130b用于向电解质电极组件36施加第二紧固载荷T2。第二紧固载荷T2小于第一紧固载荷T1(T1>T2)。 
如图1和图3所示,第一紧固单元130a包括拧入沿着端板60a的一个对角线形成的螺纹孔64中的较短的第一紧固螺栓132a。第一紧固螺栓132a沿着燃料电池26的堆叠方向延伸,并与第一压板134a接合。第一压板134a是窄板,其与隔板38的中央位置接合以覆盖燃料气体供应通 路40。 
第二紧固单元130b包括拧入沿着端板60a的另一个对角线形成的螺纹孔64中的较长的第二紧固螺栓132b。第二紧固螺栓132b的端部延伸穿过具有弯曲外部的第二压板134b。螺母136装配到第二紧固螺栓132b的端部。在第二压板134b的位于与燃料电池26的圆盘42上的电解质电极组件36对应的位置处的相应圆形部分中,设置弹簧138和弹簧座140。例如,弹簧138是陶瓷弹簧。 
下面将描述燃料电池系统10的操作。 
如图2和图6所示,将诸如城市燃气的原燃料(包括CH4、C2H6、C3H8和C4H10)供应至蒸发器20的套管92的原燃料通道96,并将水供应至套管92的水通道98。另外,将诸如空气的含氧气体供应至空气供应管86。 
在蒸发器20中,原燃料沿着套管92中的原燃料通道96螺旋运动,水沿着水通道98螺旋运动,并且排气如下所述流经第三通道82。从而,穿过水通道98运动的水被蒸发,并从在内管94b的下游侧上形成的多个孔100涌出至原燃料通道96。 
此时,水蒸汽与流经原燃料通道96的原燃料混合,从而获得混合燃料。混合燃料通过连接到外管94a的混合燃料供应管101供应至重整器22的入口102。如图7所示,从入口102供应至重整器22中的混合燃料流经第一接收器构件110的孔114。混合燃料通过插设在第一接收器构件110与第二接收器构件112之间的催化剂颗粒118进行重整。另外,混合燃料从第二接收器构件112的周边部分中形成的孔116供应至下一颗粒118。 
从而,通过蒸汽重整将沿着重整器22中的具有蛇形图案的重整通道120运动的混合燃料重整。这样,除去了C2+的烃以产生主要含甲烷的重整气体(燃料气体)。重整气体流经与重整器22的出口122连接的重整气体供应通路124。然后,重整气体供应至燃料电池组12的燃料气体供应通路40。 
如图4和图5所示,来自燃料气体供应通路40的燃料气体沿着燃料 气体供应通道58流动。燃料气体从圆盘42的燃料气体入口54流入燃料气体通道46。在每个电解质电极组件36中,燃料气体入口54形成在阳极34的大致中央位置处。因此,燃料气体从燃料气体入口54供应至阳极34的大致中央,并且燃料气体中的甲烷被重整而产生氢气。主要含氢的燃料气体沿着燃料气体通道46向阳极34的外部区域流动。 
如图2所示,当从空气供应管86供应至换热器18的空气沿着换热器18的空气通道84运动时,在空气与如下所述沿着第二通道80流动的燃烧排气之间进行热交换。从而,空气被加热至预定温度。如图4和图5所示,在换热器18中被加热的空气供应至燃料电池组12的含氧气体供应单元41,并沿着箭头B所示的方向流入电解质电极组件36的内周缘与圆盘42的内周缘之间的空间中。因此,空气沿着含氧气体通道50从阴极32的内周缘流向外周缘。 
因此,在电解质电极组件36中,燃料气体沿着阳极34流动,空气沿着阴极32流动,用于在阳极34和阴极32处通过电化学反应产生电。排气被排至各个电解质电极组件36的外部,并沿着排气排放通道59在堆叠方向上流动。然后,排气流入排气通道76。 
流经排气通道76的排气具有大约700℃的高温。如图2所示,排气部分流入通过孔81a分支的第一通道78。排气从壁81的整流孔83供应至重整器22的入口102中。在排气局部加热重整器22的入口102之后,排气流入蒸发器20内,并从排气管128排放至外部。 
此时,在重整器22中进行蒸汽重整,具体地说,入口102周围的温度趋于降低。因此,通过用热的排气局部加热入口102,可以限制重整器22的温度降低。从而使重整器22的温度稳定。可以将S/C(蒸汽/碳)比保持在一定水平。 
另外,供应至排气通道76的第二通道80的排气流经换热器18。排气与空气之间进行热交换。空气被加热至预定温度,并且排气的温度降低。一部分排气充入绝热层129a中,其余的排气流入与第二通道80连接的第三通道82中。第三通道82形成在蒸发器20的套管92的外筒形构件88与内筒形构件90之间。排气使流经套管92的水通道98的水蒸 发。因此,可以可靠地在原燃料通道96中产生原燃料与水蒸汽的混合燃料。在排气流经蒸发器20之后,排气通过主排气管126排放至外部。 
在第一实施方式中,从燃料电池组12排放的排气分别流入第一通道78和第二通道80。流经第一通道78的排气加热重整器22的入口102周围的区域,流经第二通道80的排气用于与换热器18中的空气进行热交换。另外,从换热器18排放的排气流经第三通道82,用于加热蒸发器20。从而,从排气收集热的热回收率提高。 
另外,与换热器18的工作温度相比,蒸发器20的工作温度较低。因此,即使流经第二通道80的排气的温度由于热交换而降低,当具有较低温度的排气流经第三通道82时,仍然起到用于在蒸发器20中产生水蒸汽的热源的作用。从而排气的热得到了有效利用。使热损失尽可能最小,从而热回收率进一步提高。 
这样,尽可能地收集排气中的热。因此,不必保持用于将从燃料电池系统10自然辐射的热隔绝的绝热性能。因为在燃料电池系统10中使用的绝热材料量减少,所以可以有利地减小燃料电池系统10的尺寸。另外,不必对于重整器22、换热器18和蒸发器20中的每一个都实现高的热回收率。因此,可简单地制造燃料电池系统10,并容易降低成本。 
另外,包括换热器18、蒸发器20和重整器22的流体单元14设置在燃料电池组12的一侧上,并且流体单元14关于燃料电池组12的中央轴线对称设置。因此,在燃料电池系统10中具有高温的流体单元14局部设置在同一区域内。来自流体单元14的热辐射降低。从而可以提高热回收率。另外,因为流体单元14关于燃料电池组12的中央轴线对称设置,所以不产生明显的热应力或热变形,从而提高了耐久性。 
另外,重整器22靠近燃料电池组12设置,并且蒸发器20靠近重整器22设置,与燃料电池组12相对。换热器18设置在重整器22的外侧。从而,可以通过从换热器18辐射的热加热重整器22,并有效地提高重整器22的绝热性能。因此,重整器22的温度保持在一定水平。保持了重整可靠性,并且有利地实现了重整效率的提高。 
另外,因为换热器18和重整器22设置在燃料电池组12附近,所以 使热容易且可靠地从燃料电池组12传递。因此可以提高热回收率。 
另外,筒形罩129设置在蒸发器20中以覆盖外筒形构件88,并且在筒形罩129内设置绝热层129a。因此,仅通过在绝热层129a中充入一部分排气,就实现了蒸发器20的绝热性能的进一步提高。 
图9是表示根据本发明第二实施方式的燃料电池系统的流体单元150的主要部件的剖视图。与根据第一实施方式的燃料电池系统10相同的构成元件标有相同的附图标记,并将省略对其的描述。 
流体单元150包括换热器18、重整器22和蒸发器152。流体单元150关于燃料电池组12的中央轴线对称地设置在燃料电池组12的一侧上。在流体单元150中,蒸发器152设置在重整器22的外侧,并且换热器18设置在蒸发器152的外侧。 
在第二实施方式中,蒸发器152和重整器22设置在换热器18内侧。在该结构中,可以通过从换热器18辐射的热加热重整器22。有效地提高了蒸发器152的绝热性能。可以容易地产生水蒸汽。另外,流体单元150在箭头A所示的方向上的尺寸有效地减小。因此,容易减小燃料电池系统的整体尺寸。 
工业应用性 
根据本发明,通过流经第一通道的排气加热重整器,并利用流经第二通道的排气在换热器中进行热交换。另外,在热交换之后,通过流经第三通道的排气加热蒸发器。因此,从排气收集热的热回收率增加。 
另外,与换热器的工作温度相比,蒸发器的工作温度较低。因此,即使流经第二通道的排气的温度由于热交换而降低,排气仍然起到用于在蒸发器中产生水蒸汽的热源的作用。从而排气的热得到了有效利用。使热损失尽可能最小,从而热回收率进一步提高。 
这样,尽可能地收集了排气中的热。因此,不必保持用于将从燃料电池系统自然辐射的热隔绝的绝热性能。因为在燃料电池系统中使用的绝热材料量减少,所以可以有利地减小燃料电池系统的尺寸。 

Claims (6)

1.一种燃料电池系统,该燃料电池系统包括:
燃料电池组(12),该燃料电池组通过堆叠多个燃料电池(26)而形成,所述燃料电池(26)均包括堆叠在一起的电解质电极组件(36)和隔板(38),所述电解质电极组件(36)包括阳极(34)、阴极(32)和插设在所述阳极(34)与所述阴极(32)之间的电解质(30);
换热器(18),该换热器用于加热待供应至所述燃料电池组(12)的含氧气体;
蒸发器(20),该蒸发器用于蒸发水以产生主要含有烃的原燃料与水蒸汽的混合燃料;
重整器(22),该重整器用于重整所述混合燃料以产生重整气体;和
壳体(16),该壳体至少容纳所述燃料电池组(12)、所述换热器(18)、所述蒸发器(20)和所述重整器(22),其中在所述壳体(16)中设置排气通道(76),该排气通道作为在发电反应中消耗后从所述燃料电池组(12)排放的排气的通路,所述排气通道(76)包括:
第一通道(78),该第一通道用于将排气供应至所述重整器(22),作为用于重整混合燃料气体的热源;
第二通道(80),该第二通道用于将排气供应至所述换热器(18),作为用于加热含氧气体的热源;和
第三通道(82),该第三通道连接到所述第二通道(80)的下游侧,用于将排气供应至所述蒸发器(20),作为用于蒸发水的热源;其中,
所述第一通道(78)通过形成在壁(81)中的多个孔(81a)从所述第二通道(80)分支,并且,
所述重整器(22)包括入口(102)和出口(122);
所述混合燃料通过所述入口(102)流入所述重整器(22),所述重整气体通过所述出口(122)供应至所述燃料电池组(12);并且
相比于所述出口(122),所述入口(102)被设置成更接近所述第一通道(78)的排气出口(83),所述第一通道(78)通过该排气出口(83)通向所述重整器(22)。
2.根据权利要求1所述的燃料电池系统,其中,在所述燃料电池组(12)的一侧上设置至少包括所述换热器(18)、所述蒸发器(20)和所述重整器(22)的流体单元(14);并且
所述流体单元(14)关于所述燃料电池组(12)的中央轴线对称设置。
3.根据权利要求2所述的燃料电池系统,其中,所述重整器(22)靠近所述燃料电池组(12)设置,所述蒸发器(20)靠近所述重整器(22)设置并位于远离所述燃料电池组(12)的一侧;并且
所述换热器(18)沿着垂直于所述中央轴线的方向设置在所述重整器(22)的外侧。
4.根据权利要求2所述的燃料电池系统,其中,沿着垂直于所述中央轴线的方向,所述蒸发器(152)设置在所述重整器(22)的外侧,所述换热器(18)设置在所述蒸发器(152)的外侧。
5.根据权利要求1所述的燃料电池系统,其中,相比于所述蒸发器(20),所述重整器(22)和所述换热器(18)被设置成更接近所述燃料电池组(12)。
6.根据权利要求1所述的燃料电池系统,其中,在所述蒸发器(20)周围设置绝热层(129a);并且
在所述绝热层(129a)中充入排气。
CN2006800177556A 2005-05-23 2006-05-23 燃料电池系统 Expired - Fee Related CN101180759B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005149361A JP2006331678A (ja) 2005-05-23 2005-05-23 燃料電池システム
JP149361/2005 2005-05-23
PCT/JP2006/310611 WO2006126700A1 (en) 2005-05-23 2006-05-23 Fuel cell system

Publications (2)

Publication Number Publication Date
CN101180759A CN101180759A (zh) 2008-05-14
CN101180759B true CN101180759B (zh) 2010-12-08

Family

ID=37067538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800177556A Expired - Fee Related CN101180759B (zh) 2005-05-23 2006-05-23 燃料电池系统

Country Status (9)

Country Link
US (1) US20090104486A1 (zh)
EP (1) EP1905116B1 (zh)
JP (1) JP2006331678A (zh)
KR (1) KR20080000674A (zh)
CN (1) CN101180759B (zh)
AU (1) AU2006250359B2 (zh)
CA (1) CA2608642A1 (zh)
DE (1) DE602006020572D1 (zh)
WO (1) WO2006126700A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60321109D1 (de) * 2002-10-31 2008-07-03 Matsushita Electric Ind Co Ltd Verfahren zum Betrieb eines Brennstoffzellensystems und Brennstoffzellensystem
JP2008287959A (ja) * 2007-05-16 2008-11-27 Nippon Oil Corp 間接内部改質型高温型燃料電池
US8641789B2 (en) * 2007-07-13 2014-02-04 Powercell Sweden Ab Reformer reactor and method for converting hydrocarbon fuels into hydrogen rich gas
US9052146B2 (en) 2010-12-06 2015-06-09 Saudi Arabian Oil Company Combined cooling of lube/seal oil and sample coolers
WO2014004833A2 (en) * 2012-06-29 2014-01-03 Mag Aerospace Industries, Inc. Microbiologically protected fuel cell
JP6122360B2 (ja) * 2013-07-19 2017-04-26 本田技研工業株式会社 燃料電池モジュール
CN105393392B (zh) * 2013-07-24 2018-04-10 京瓷株式会社 混合动力装置以及混合动力系统
JP2018098109A (ja) * 2016-12-16 2018-06-21 東京瓦斯株式会社 燃料電池システム
AT520612B1 (de) * 2017-10-22 2020-04-15 Avl List Gmbh Brenner für ein Brennstoffzellensystem mit zwei Reaktionskammern
GB201813431D0 (en) * 2018-08-17 2018-10-03 Weedon Geoffrey Gerald Process & apparatus for steam reforming
CN112880434B (zh) * 2021-02-24 2022-06-17 中铁建工集团建筑安装有限公司 一种nmp工艺管道施工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1173744A (zh) * 1996-06-19 1998-02-18 苏舍赫克希斯公司 用于操纵具有燃料电池的装置的方法
US6440596B1 (en) * 1999-10-20 2002-08-27 Technology Management, Inc. Solid-oxide fuel cell hot assembly
CN1370333A (zh) * 1999-08-16 2002-09-18 塞拉米克燃料电池有限公司 燃料电池系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199776A (ja) * 1989-01-30 1990-08-08 Ishikawajima Harima Heavy Ind Co Ltd 溶融炭酸塩型燃料電池発電システム
JPH07192742A (ja) * 1993-12-27 1995-07-28 Fuji Electric Co Ltd 燃料電池用燃料改質器の触媒層温度制御装置
JPH10297903A (ja) * 1997-04-25 1998-11-10 Toyota Motor Corp 燃料改質装置
JP2003040605A (ja) * 2001-07-31 2003-02-13 Daikin Ind Ltd 改質装置及び燃料電池システム
JP4520100B2 (ja) * 2003-03-20 2010-08-04 新日本石油株式会社 水素製造装置および燃料電池システム
US7169495B2 (en) * 2003-05-06 2007-01-30 Versa Power Systems, Ltd. Thermally integrated SOFC system
JP2004349214A (ja) * 2003-05-26 2004-12-09 Mitsubishi Materials Corp 固体酸化物型燃料電池の運転方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1173744A (zh) * 1996-06-19 1998-02-18 苏舍赫克希斯公司 用于操纵具有燃料电池的装置的方法
CN1370333A (zh) * 1999-08-16 2002-09-18 塞拉米克燃料电池有限公司 燃料电池系统
US6440596B1 (en) * 1999-10-20 2002-08-27 Technology Management, Inc. Solid-oxide fuel cell hot assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2003-229163A 2003.08.15

Also Published As

Publication number Publication date
EP1905116B1 (en) 2011-03-09
US20090104486A1 (en) 2009-04-23
AU2006250359A1 (en) 2006-11-30
WO2006126700A1 (en) 2006-11-30
CA2608642A1 (en) 2006-11-30
KR20080000674A (ko) 2008-01-02
EP1905116A1 (en) 2008-04-02
AU2006250359B2 (en) 2009-07-23
JP2006331678A (ja) 2006-12-07
CN101180759A (zh) 2008-05-14
DE602006020572D1 (de) 2011-04-21

Similar Documents

Publication Publication Date Title
CN101180759B (zh) 燃料电池系统
CN100367556C (zh) 热强化小型重整器
US6720099B1 (en) Fuel cell waste energy recovery combustor
US8227126B2 (en) Fuel cell system
EP2244327A1 (en) Solid oxide fuel cell system
JP2004531022A (ja) 燃料電池、改質装置又は熱プラントとして動作可能な多機能エネルギシステム
JP2008135395A (ja) 燃料電池パワープラント及び燃料電池パワープラントを作動させる方法
EP2842190B1 (en) Fuel cell module with heat exchanger
US8071045B2 (en) Reformer
JP6064782B2 (ja) 燃料電池装置
CA2967940C (en) Catalytic burner arrangement
JP4437766B2 (ja) 燃料電池用蒸発装置及び蒸気生成方法
JP4797352B2 (ja) 固体酸化物形燃料電池
JP4210912B2 (ja) 燃料改質器および燃料電池発電装置
US10790522B2 (en) Fuel cell module
JP2006059549A (ja) 燃料電池発電装置
JP6450202B2 (ja) 燃料電池モジュール
JP6635853B2 (ja) 燃料電池システム
KR101387856B1 (ko) 천연가스를 사용하는 고체산화물 연료전지용 판형 스팀리포머
JP5285262B2 (ja) 燃料電池モジュール
JP2010287502A (ja) 燃料電池用原料供給装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101208

Termination date: 20120523