CN101142731B - 在干线供电电压暂降期间注入无功电流的方法和装置 - Google Patents

在干线供电电压暂降期间注入无功电流的方法和装置 Download PDF

Info

Publication number
CN101142731B
CN101142731B CN2006800053996A CN200680005399A CN101142731B CN 101142731 B CN101142731 B CN 101142731B CN 2006800053996 A CN2006800053996 A CN 2006800053996A CN 200680005399 A CN200680005399 A CN 200680005399A CN 101142731 B CN101142731 B CN 101142731B
Authority
CN
China
Prior art keywords
voltage
phase
voltage network
network
dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800053996A
Other languages
English (en)
Other versions
CN101142731A (zh
Inventor
何塞伊格纳西奥·略伦特冈萨雷斯
曼努埃尔·比谢尔斯吉克索特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gamesa Eolica SA
Original Assignee
Gamesa Eolica SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Eolica SA filed Critical Gamesa Eolica SA
Publication of CN101142731A publication Critical patent/CN101142731A/zh
Application granted granted Critical
Publication of CN101142731B publication Critical patent/CN101142731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明涉及一种在干线供电电压暂降期间注入电流的方法和装置。本发明的方法在于持续监视干线供电电压的幅度和相位,并且在检测到电压暂降时,在非常短的间隔、以与暂降的幅度成比例地、在电压暂降持续期间可以变化的方式向受影响的干线供电相注入无功电流,从而吸收必要的有功电流。该装置包括电压测量开关、变压器(低压/中压),DC/AC逆变器、电容器、电压暂降检测电路以及控制电路。

Description

在干线供电电压暂降期间注入无功电流的方法和装置
技术领域
本发明涉及一种当出现网路电压暂降时向连接有一个或多个发电机的网络上注入无功电流的方法和装置,尤其用于在风力发电厂的应用。
背景技术
在风力涡轮机等发电机的电厂输出处的电网连接上,可能出现“电压暂降”,电压暂降包括由网络上的故障导致的电压突然下降,其导致电压暂降区或恒定降低,以及当导致暂降的故障解除时电压升高的上升区,二者都具有依赖于所出现的电压暂降确定的持续时间。由于网络的技术要求,在电压暂降期间需要机器所需的时变无功电流注入,以重建电压并减小所述暂降的影响。
在此情况下,电网行业协会定义了在电压暂降期间应该向网络上注入的无功电流值的曲线。这些曲线根据检测到的暂降深度给出无功电流值。
在该技术中存在已知的装置,利用该装置以可在几分或几秒的时间范围内改变的可变设置持续注入无功功率。
然而,利用这种装置不能使要注入的无功电流在非常短的时间段内适于可变的网络电压。另外,这种已知装置被设计为具有限于其额定容量的两倍或三倍的过载容量,这使得其大电流的应用在经济上不切实际。
本发明目的在于为该问题提供一种解决方案。
发明内容
本发明的第一方面提出一种当出现电压暂降时向连接有一个或多个发电机的网络上注入无功电流的方法,该方法包括以下步骤:
-持续监视网络电压的幅度和相位;
-当检测到单相、两相或三相电压暂降时,在电压暂降持续期间以与其幅度成比例地可变方式向网络上的单相或多相注入无功电流,吸收必要的有功电流。
该方法使能在检测到非常短的时间间隔内的网络电压变化时注入行业协会所要求的电流,并且即使在非常短的时间范围内也可以改变所注入的无功电流的幅度。
其次,本发明提出一种用于对中压网络执行上述方法的装置,该装置包括以下主要组件:
-中压开关;
-低压/中压变压器(LV/MV);
-dc/ac逆变器;
-用于能量存储和装置稳定性的电容器;
-用于检测MV网络上的电压暂降的电路;
-上述组件的组的控制电路,其包括用于检测MV网络上电压暂降的电路,当它检测到网络电压值低于设定的阈值时,启动本发明的装置,以根据由上述曲线表示的技术要求在已出现电压暂降的短暂持续时间注入平衡网络电压所需的瞬时无功电流。
在以下详细说明及附图中,本发明的其它特征和优点可明显看出。
附图说明
图1示出构成根据本发明的装置的组件的框图。
图2示出在电压暂降的短暂期间必须注入到电网上的无功电流的曲线图。
具体实施方式
在优选实施例中,根据本发明的用于风力发电厂的装置包括以下元件:
a)中压开关1,用于将所述装置连接到从发电厂的输出12到网络连接14的中压电路;
b)每一相的LV/MV变压器2,其LV侧连接到dc/ac逆变器3,其MV侧连接到开关1;
c)每一相的优选具有IGBT或IGCT半导体的dc/ac逆变器3,其dc侧连接到电容器4,其ac侧连接到变压器2的LV初级线圈;
d)dc电容器4,其连接到逆变器3的dc侧的电源电路;
e)上述单元组的控制电路20,其连接到与各单元相关的控制10、12、13,并包括以下元件:
-MV电压传感器或电压变压器;
-LV电流传感器、霍耳效应变压器等;
-dc电压传感器、电压变压器或霍耳效应变压器等;
-具有DSP的电压暂降检测电路10,其检测低于根据本发明的装置的设定阈值的电压值;
-用于计算要注入的瞬时无功电流的装置、DSP或微处理器;
-用于计算要吸收的瞬时有功电流的装置;
-要注入的瞬时无功电流的滞环发生器;
-比较电路,用于比较有功电流电路读数和滞环预置值;
-用于为自动切换功率半导体而产生开、关脉冲的电路;
-在上述电路和半导体的触发电路之间的光纤耦合电路;
-不同功率级的控制和操纵电路。
当不需要每一相都注入时,代替上述单相组件,所述装置可以包括三相组件,其操作与下述类似。
当MV网络14上出现电压暂降时,其特征是包括电压突然下降区、恒定深度的暂降区以及当造成暂降的故障解除后的电压升高的上升区。
为了补救所述网络上暂降的影响,电网行业协会定义了这样的曲线图(图2),在该曲线图上,横轴代表与网络的连接点处的电压T(用其与额定电压的关系来表示),纵轴代表无功电流I(用其与总电流的关系来表示)。箭头F1表示正常工作的情形,箭头F2表示电压暂降情形,其中曲线C定义了必须注入的无功电流的幅度。
优选具有DSP的电压暂降检测电路10使用适当的算法并基于MV网络14的瞬时电压读数值来连续计算所述电压的峰值和rms值及其相位,当其检测到低于根据本发明的装置设定的阈值的电压值时,触发所述装置的启动过程。该电路10能够在1毫秒内检测暂降,并且能够在2毫秒内根据曲线C中定义的关系计算无功成分的幅度和相位,在网络14上出现暂降后的大约2毫秒注入无功电流。
当检测到暂降时,控制电路20基于电路10在网络14上测得的瞬时电压值并基于曲线C上定义的关系来计算要注入的无功电流,以及需要使用变压器2和逆变器3从MV网络吸收的瞬时有功电流,从而维持连接到逆变器3的dc侧的电容器4的电压。另外,控制电路20包括功率级的不同部分的操纵和控制电路,以基于需要依次在每个瞬间注入的无功电流值来控制它们中每一个的接通和断开。
根据本发明的装置的其它重要特征如下:
-本发明的装置在电压暂降持续期间处理的瞬时功率在20至30MW之间,是具有标准自动切换元件的装置的可容许功率的30多倍;
-该装置不需要电源或ac/dc整流器来工作,因为该装置从ac网络取得其功率并以受控方式将其传送至连接到dc的电容器;
-即使当网络电压下降到其额定值的20%时,换句话说,当电压暂降深度达到80%时,该装置也能够从网络提取必要的有功功率以执行其功能;
-该装置能够在每一相上注入可变的无功电流,因此在单相或两相故障的情形下可以正确地工作;
-该装置对每一相都是模块化的,因此,当一个模块有故障时,其余模块继续工作;
-该装置具有顺序控制,因此基于在任何瞬间必须注入到网络的电流,在每个瞬间只有正确数量的模块工作,以利用低电流改善性能并减小所注入的谐波畸变。
在我们所描述的本实施例中,可以在所附权利要求限定的范围内进行修改。

Claims (9)

1.当由于单相、两相或三相故障导致连接到包括一个或多个风力涡轮机的风力发电厂(12)的输出的中压网络(14)上出现电压暂降时,向所述中压网络注入无功电流的方法,其特征在于,所述方法包括以下步骤:
a)持续监视所述中压网络(14)电压的幅度和相位;
b)当检测到单相、两相或三相电压暂降时,在电压暂降持续期间以与所述电压暂降的幅度成比例地可变方式向所述中压网络(14)受影响的一相或多相上注入无功电流,吸收必要的有功电流。
2.根据权利要求1的方法,其特征在于:由检测电路执行的所述监视可以在小于或等于1毫秒的时间内检测到所述中压网络(14)上的电压暂降。
3.根据权利要求1的方法,其特征在于:由控制电路执行的对注入中压网络(14)的无功电流的改变在小于或等于20毫秒的时间间隔内发生。
4.当由于单相、两相或三相故障导致连接到包括一个或多个风力涡轮机的风力发电厂(12)的输出的中压网络(14)上出现电压暂降时,向所述中压网络(14)注入无功电流的装置,其特征在于,该装置包括以下组件:
a)在从风力发电厂(12)的输出到中压网络(14)的连接上的中压开关(1);
b)每一相上的低压/中压变压器(2);
c)每一相上的具有IGBT或IGCT半导体的dc/ac逆变器(3);
d)dc电容器(4);
e)上述组件的组的每一相上的控制电路(20),该控制电路(20)连接到与每个所述组件相关的控制(10、12、13),并包括电压和电流传感器、具有DSP的电压暂降检测电路(10)、用于计算中压网络(14)上的瞬时电压的装置以及电压比较电路,使得当所述电压暂降检测电路(10)检测到电压暂降时,以可变的方式在每个时间间隔基于由上述传感器和电压暂降检测电路(10)提供的测量向中压网络(14)上注入无功电流,从中压网络(14)取得必要的有功电流给dc电容器(4)。
5.当由于三相故障导致连接到包括一个或多个风力涡轮机的风力发电厂(12)的输出的中压网络(14)上出现电压暂降时,向所述中压网络(14)注入无功电流的装置,其特征在于,该装置包括以下组件:
a)在从风力发电厂(12)的输出到中压网络(14)的连接上的中压开关(1);
b)低压/中压三相变压器(2);
c)具有IGBT或IGCT半导体的dc/ac三相逆变器(3);
d)dc电容器(4);
e)上述组件的组的控制电路(20),其连接到与每个所述组件相关的控制(10、12、13),并包括电压和电流传感器、具有DSP的电压暂降检测电路(10)、用于计算中压网络(14)上的瞬时电压的装置以及电压比较电路,使得当所述电压暂降检测电路(10)检测到电压暂降时,以可变的方式在每个时间间隔基于由上述传感器和所述电压暂降检测电路(10)提供的测量向中压网络(14)上注入无功电流,从中压网络(14)取得必要的有功电流给dc电容器(4)。
6.根据权利要求4或5的装置,其特征在于:所述电压暂降检测电路(10)在等于或小于1毫秒的时间范围内检测由于单相、两相或三相故障导致的中压电网(14)上的电压暂降。
7.根据权利要求4或5的装置,其特征在于:所述控制电路(20)在小于或等于20毫秒的时间间隔内改变向中压网络(14)注入的无功电流的幅度。
8.根据权利要求4或5的装置,其特征在于:所述向中压网络(14)注入无功电流的装置从中压网络(14)取得其功率。
9.根据权利要求4的装置,其特征在于:所述向中压网络(14)注入无功电流的装置内建在模块中,使得当所述模块中的一个失效时,其余的模块可以继续工作。
CN2006800053996A 2005-02-23 2006-02-22 在干线供电电压暂降期间注入无功电流的方法和装置 Active CN101142731B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES200500411A ES2277724B1 (es) 2005-02-23 2005-02-23 Procedimiento y dispositivo para inyectar intensidad reactiva durante un hueco de tension de red.
ESP200500411 2005-02-23
PCT/ES2006/000079 WO2006089989A1 (es) 2005-02-23 2006-02-22 Procedimiento y dispositivo para inyectar intensidad reactiva durante un hueco de tensión de red

Publications (2)

Publication Number Publication Date
CN101142731A CN101142731A (zh) 2008-03-12
CN101142731B true CN101142731B (zh) 2011-12-07

Family

ID=36927056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800053996A Active CN101142731B (zh) 2005-02-23 2006-02-22 在干线供电电压暂降期间注入无功电流的方法和装置

Country Status (5)

Country Link
US (1) US7821157B2 (zh)
EP (1) EP1855367B8 (zh)
CN (1) CN101142731B (zh)
ES (2) ES2277724B1 (zh)
WO (1) WO2006089989A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542864A (zh) * 2006-10-02 2009-09-23 维斯塔斯风力系统有限公司 用于在市电网扰动期间运行连接到市电网的风力涡轮机的方法、风力涡轮机以及风电厂
CN101521385A (zh) * 2008-02-28 2009-09-02 西门子公司 用于三相电源系统的动态电压补偿器
WO2010060903A1 (en) * 2008-11-28 2010-06-03 Vestas Wind Systems A/S A method and device for facilitating the localisation of a fault in a grid
CN102318157B (zh) 2008-12-12 2014-07-23 维斯塔斯风力系统集团公司 控制方法和装置
CN101556300B (zh) * 2009-05-11 2010-09-08 山东电力研究院 地电流入侵差动模拟通道导致其误动的检测方法
EP2461452A4 (en) * 2009-07-27 2017-01-04 Gamesa Innovation & Technology, S.L. System for reactive power compensation in electricity system
WO2011050807A2 (en) * 2009-10-27 2011-05-05 Vestas Wind Systems A/S Wind power plant with optimal power output
WO2012000517A2 (en) * 2010-06-30 2012-01-05 Vestas Wind Systems A/S Operating a wind power plant including energy storage during grid faults
DE102010054233A1 (de) * 2010-12-11 2012-06-14 Adensis Gmbh Energieversorgungsnetz mit Blindleistungsmanagement
US8405247B2 (en) * 2010-12-16 2013-03-26 General Electric Company Method and apparatus for control of fault-induced delayed voltage recovery (FIDVR) with photovoltaic and other inverter-based devices
EP2573895B1 (en) * 2011-09-20 2014-01-15 Siemens Aktiengesellschaft Method for operating a wind farm, wind farm controller and wind farm
WO2013044922A1 (en) * 2011-09-28 2013-04-04 Vestas Wind Systems A/S A wind power plant and a method for operating thereof
EP3004634B1 (en) 2013-06-03 2020-11-04 Vestas Wind Systems A/S Wind power plant controller
EP2851558B1 (en) * 2013-09-18 2017-07-19 Siemens Aktiengesellschaft Method of controlling a wind turbine
WO2015043602A1 (en) * 2013-09-30 2015-04-02 Vestas Wind Systems A/S Detecting faults in electricity grids
DE102013222452A1 (de) * 2013-11-05 2015-05-07 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
JP6025769B2 (ja) * 2014-02-28 2016-11-16 三菱電機株式会社 エレベーターかご給電装置
US9458830B2 (en) 2014-09-05 2016-10-04 General Electric Company System and method for improving reactive current response time in a wind turbine
ES2624213B1 (es) * 2016-01-12 2018-04-24 José Luis MARTÍNEZ GONZÁLEZ Transformador eléctrico optimizado
CA3013435C (en) * 2016-02-03 2020-03-24 Siemens Aktiengesellschaft Fault ride-through capability for wind turbine
DE102016105662A1 (de) 2016-03-29 2017-10-05 Wobben Properties Gmbh Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz mit einem Windpark sowie Windpark
DE102016106215A1 (de) 2016-04-05 2017-10-05 Wobben Properties Gmbh Verfahren sowie Windenergieanlage zum Einspeisen elektrischer Leistung
CN113487071B (zh) * 2021-06-24 2022-03-04 四川大学 用于电压暂降治理的ssts与dvr协调动作策略制定方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329222A (en) * 1992-11-30 1994-07-12 Westinghouse Electric Corporation Apparatus and method for dynamic voltage restoration of utility distribution networks
CN1359183A (zh) * 2002-01-11 2002-07-17 张玉良 混合型无功功率发生器
CN1101070C (zh) * 2000-09-05 2003-02-05 上海交通大学 电网无功连续补偿方法及补偿装置
CN2659000Y (zh) * 2003-11-21 2004-11-24 华南理工大学 一种可动态无功补偿的电力变压器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU646957B2 (en) * 1991-07-01 1994-03-10 Superconductivity, Inc. Shunt connected superconducting energy stabilizing system
DE19605419B4 (de) * 1996-02-14 2005-08-04 Rwe Rhein-Ruhr Aktiengesellschaft Verfahren zur Beseitigung von Abweichungen der Ist-Spannung in einem Drehstromnetz von einer vorgegebenen Soll-Spannung
JP2000041338A (ja) * 1998-05-18 2000-02-08 Nissin Electric Co Ltd 系統連系装置
US6215202B1 (en) * 1998-05-21 2001-04-10 Bechtel Enterprises Inc. Shunt connected superconducting energy management system having a single switchable connection to the grid
WO2000048286A1 (en) * 1999-01-29 2000-08-17 American Superconductor Corporation Electric utility system with superconducting magnetic energy storage
US6134124A (en) * 1999-05-12 2000-10-17 Abb Power T&D Company Inc. Universal distributed-resource interface
JP3352662B2 (ja) * 2000-02-03 2002-12-03 関西電力株式会社 二次電池システムを用いた電力系統安定化装置および電力系統安定化方法
JP2001327083A (ja) * 2000-05-18 2001-11-22 Ngk Insulators Ltd 高温二次電池による電力貯蔵及び補償システム
JP2003199252A (ja) * 2001-12-27 2003-07-11 Kansai Electric Power Co Inc:The 分散電源システム及びその制御方法
US7116010B2 (en) * 2002-09-17 2006-10-03 Wisconsin Alumni Research Foundation Control of small distributed energy resources
KR20050088107A (ko) * 2002-12-06 2005-09-01 일렉트릭 파워 리서치 인스티튜트 무정전 전원 공급기 및 발전기 시스템
US6858953B2 (en) * 2002-12-20 2005-02-22 Hawaiian Electric Company, Inc. Power control interface between a wind farm and a power transmission system
US7099169B2 (en) * 2003-02-21 2006-08-29 Distributed Power, Inc. DC to AC inverter with single-switch bipolar boost circuit
JP2004320859A (ja) * 2003-04-14 2004-11-11 Hitachi Ltd 無効電力補償装置
US6924565B2 (en) * 2003-08-18 2005-08-02 General Electric Company Continuous reactive power support for wind turbine generators
US7298059B2 (en) * 2004-12-17 2007-11-20 General Electric Company System and method for operating a wind farm under high wind speed conditions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329222A (en) * 1992-11-30 1994-07-12 Westinghouse Electric Corporation Apparatus and method for dynamic voltage restoration of utility distribution networks
CN1101070C (zh) * 2000-09-05 2003-02-05 上海交通大学 电网无功连续补偿方法及补偿装置
CN1359183A (zh) * 2002-01-11 2002-07-17 张玉良 混合型无功功率发生器
CN2659000Y (zh) * 2003-11-21 2004-11-24 华南理工大学 一种可动态无功补偿的电力变压器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hingorani Narain G.Understanding FACTS:concepts and technology of flexible AC transmission systems.IEEE press
Hingorani,Narain G.Understanding FACTS:concepts and technology of flexible AC transmission systems.IEEE press,2000,144-145,164-179. *

Also Published As

Publication number Publication date
EP1855367B1 (en) 2019-03-27
EP1855367A4 (en) 2016-08-03
WO2006089989A1 (es) 2006-08-31
EP1855367B8 (en) 2019-05-22
US20080252143A1 (en) 2008-10-16
ES2277724A1 (es) 2007-07-16
EP1855367A1 (en) 2007-11-14
ES2730573T3 (es) 2019-11-12
CN101142731A (zh) 2008-03-12
US7821157B2 (en) 2010-10-26
ES2277724B1 (es) 2008-06-16

Similar Documents

Publication Publication Date Title
CN101142731B (zh) 在干线供电电压暂降期间注入无功电流的方法和装置
Kasem et al. An improved fault ride-through strategy for doubly fed induction generator-based wind turbines
Liu et al. Contribution of VSC-HVDC to frequency regulation of power systems with offshore wind generation
CN103217641B (zh) 一种风电变流器的crowbar电路的测试装置及测试方法
RU2263925C2 (ru) Устройство и способ обнаружения короткого замыкания на землю и вычисления его сопротивления
CN102223125B (zh) 一种电网电压故障时风电机组不间断运行控制方法及装置
Guha et al. A passive islanding detection approach for inverter-based distributed generation using rate of change of frequency analysis
CN101452016A (zh) 电压暂降检测方法和装置
Huang et al. Fault ride-through configuration and transient management scheme for self-excited induction generator-based wind turbine
EP2311165A1 (en) Low voltage ride through
EP2680019A1 (en) Device that generates electrical disturbances
CN201601647U (zh) 大型发电机组合灭磁电路
Reis et al. Analysis of the Sandia Frequency Shift (SFS) islanding detection method with a single-phase photovoltaic distributed generation system
CN102508162A (zh) 风力发电机组低电压穿越检测系统及方法
Jin et al. DVR control of DFIG for compensating fault ride-through based on stationary and synchronous reference frame
CN103227476A (zh) 一种低电压穿越或低电压支撑综合试验系统
Niiranen Experiences on voltage dip ride through factory testing of synchronous and doubly fed generator drives
Gupta et al. A novel control scheme for single and three phase dynamic voltage restorer using PSCAD/EMTDC
Sarkar et al. Distance relay performance in future converter dominated power systems
Kuncoro et al. DVR to voltage sag mitigation due to induction motor starting and 3 phase fault
de Toledo et al. TOPIC 7: Wind Farm In Weak Grids Compensated With Statcom
Ernst et al. Validation of a Converter Control based on a Generator Model as Voltage Source
Aoyang et al. The impacts of distributed doubly-fed induction generators on smart distribution Grid protection
Yu et al. An Improved Synchronous Firing Control on Suppressing LCC-HVDC Commutation Failures Caused by Single-phase-grounding Faults
Karthick et al. Design and implementation of a fault emulator for LVRT capability testing of wind turbines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant