CN101142731A - 在干线供电电压暂降期间注入无功电流的方法和装置 - Google Patents
在干线供电电压暂降期间注入无功电流的方法和装置 Download PDFInfo
- Publication number
- CN101142731A CN101142731A CNA2006800053996A CN200680005399A CN101142731A CN 101142731 A CN101142731 A CN 101142731A CN A2006800053996 A CNA2006800053996 A CN A2006800053996A CN 200680005399 A CN200680005399 A CN 200680005399A CN 101142731 A CN101142731 A CN 101142731A
- Authority
- CN
- China
- Prior art keywords
- phase
- network
- voltage
- voltage dip
- reactive power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000003990 capacitor Substances 0.000 claims abstract description 10
- 238000005259 measurement Methods 0.000 claims abstract 3
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 3
- 244000287680 Garcinia dulcis Species 0.000 claims description 2
- 230000002085 persistent effect Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract 1
- 230000008520 organization Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 230000005355 Hall effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013024 troubleshooting Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
- F03D9/255—Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
- F03D9/257—Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
- H02J3/1835—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
- H02J3/1842—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/20—Active power filtering [APF]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
Abstract
本发明涉及一种在干线供电电压暂降期间注入电流的方法和装置。本发明的方法在于持续监视干线供电电压的幅度和相位,并且在检测到电压暂降时,在非常短的间隔、以与暂降的幅度成比例地、在电压暂降持续期间可以变化的方式向受影响的干线供电相注入无功电流,从而吸收必要的有功电流。该装置包括电压测量开关、变压器(低压/中压),DC/AC逆变器、电容器、电压暂降检测电路以及控制电路。
Description
技术领域
本发明涉及一种当出现网路电压暂降时向连接有一个或多个发电机的网络上注入无功功率的方法和装置,尤其用于在风力发电厂的应用。
背景技术
在风力涡轮机等发电机的电厂输出处的电网连接上,可能出现“电压暂降”,电压暂降包括由网络上的故障导致的电压突然下降,其导致电压暂降区或恒定降低,以及当导致暂降的故障解除时电压升高的上升区,二者都具有依赖于所出现的电压暂降确定的持续时间。由于网络的技术要求,在电压暂降期间需要机器所需的时变无功功率注入,以重建电压并减小所述暂降的影响。
在此情况下,电网行业协会定义了在电压暂降期间应该向网络上注入的无功功率值的曲线。这些曲线根据检测到的暂降深度给出无功功率值。
在该技术中存在已知的装置,利用该装置以可在几分或几秒的时间范围内改变的可变设置持续注入无功功率。
然而,利用这种装置不能使要注入的无功功率在非常短的时间段内适于可变的网络电压。另外,这种已知装置被设计为具有限于其额定容量的两倍或三倍的过载容量,这使得其大功率的应用在经济上不切实际。
本发明目的在于为该问题提供一种解决方案。
发明内容
本发明的第一方面提出一种当出现电压暂降时向连接有一个或多个发电机的网络上注入无功功率的方法,该方法包括以下步骤:
-持续监视网络电压的幅度和相位;
-当检测到单相、两相或三相电压暂降时,在电压暂降持续期间以与其幅度成比例地可变方式向网络上的单相或多相注入无功功率,吸收必要的有功功率。
该方法使能在检测到非常短的时间间隔内的网络电压变化时注入行业协会所要求的功率,并且即使在非常短的时间范围内也可以改变所注入的无功功率的幅度。
其次,本发明提出一种用于对中压网络执行上述方法的装置,该装置包括以下主要组件:
-中压开关;
-低压/中压变压器(LV/MV);
-dc/ac逆变器;
-用于能量存储和装置稳定性的电容器;
-用于检测MV网络上的电压暂降的电路;
-上述元件组的控制电路,其包括用于检测MV网络上电压暂降的电路,当它检测到网络电压值低于设定的阈值时,启动本发明的装置,以根据由上述曲线表示的技术要求在已出现电压暂降的短暂持续时间注入平衡网络电压所需的瞬时无功功率。
在以下详细说明及附图中,本发明的其它特征和优点可明显看出。
附图说明
图1示出构成根据本发明的装置的组件的框图。
图2示出在电压暂降的短暂期间必须注入到电网上的无功功率的曲线图。
具体实施方式
在优选实施例中,根据本发明的用于风力发电厂的装置包括以下元件:
a)中压开关1,用于将所述装置连接到从发电厂的输出12到网络连接14的中压电路;
b)每一相的LV/MV变压器2,其LV侧连接到dc/ac逆变器3,其MV侧连接到开关1;
c)每一相的优选具有IGBT或IGCT半导体的dc/ac逆变器3,其dc侧连接到电容器4,其ac侧连接到变压器2的LV初级线圈;
d)dc电容器4,其连接到逆变器3的dc侧的电源电路;
e)上述单元组的控制电路20,其连接到与各单元相关的控制10、12、13,并包括以下元件:
-MV电压传感器或电压变压器;
-LV功率传感器、霍耳效应变压器等;
-dc电压传感器、电压变压器或霍耳效应变压器等;
-具有DSP的电压暂降检测电路10,其检测低于根据本发明的装置的设定阈值的电压值;
-用于计算要注入的瞬时无功功率的装置、DSP或微处理器;
-用于计算要吸收的瞬时有功功率的装置;
-要注入的瞬时无功功率的滞环发生器;
-比较电路,用于比较有功功率电路读数和滞环预置值;
-用于为自动切换功率半导体而产生开、关脉冲的电路;
-在上述电路和半导体的触发电路之间的光纤耦合电路;
-不同功率级的控制和操纵电路。
当不需要每一相都注入时,代替上述单相组件,所述装置可以包括三相组件,其操作与下述类似。
当MV网络14上出现电压暂降时,其特征是包括电压突然下降区、恒定深度的暂降区以及当造成暂降的故障解除后的电压升高的上升区。
为了补救所述网络上暂降的影响,电网行业协会定义了这样的曲线图(图2),在该曲线图上,横轴代表与网络的连接点处的电压T(用其与额定电压的关系来表示),纵轴代表无功功率I(用其与总功率的关系来表示)。时期F1表示正常工作的情形,时期F2表示电压暂降情形,其中曲线C定义了必须注入的无功功率的幅度。
优选具有DSP的电压暂降检测电路10使用适当的算法并基于MV网络14的瞬时电压读数值来连续计算所述电压的峰值和rms值及其相位,当其检测到低于根据本发明的装置设定的阈值的电压值时,触发所述装置的启动过程。该电路10能够在1毫秒内检测暂降,并且能够在2毫秒内根据曲线C中定义的关系计算无功成分的幅度和相位,在网络14上出现暂降后的大约2毫秒注入无功功率。
当检测到暂降时,控制电路20基于电路10在网络14上测得的瞬时电压值并基于曲线C上定义的关系来计算要注入的无功功率,以及需要使用变压器2和逆变器3从MV网络吸收的瞬时有功功率,从而维持连接到逆变器3的dc侧的电容器4的电压。另外,控制电路20包括功率级的不同部分的操纵和控制电路,以基于需要依次在每个瞬间注入的无功功率值来控制它们中每一个的接通和断开。
根据本发明的装置的其它重要特征如下:
-本发明的装置在电压暂降持续期间处理的瞬时功率在20至30MW之间,是具有标准自动切换元件的装置的可容许功率的30多倍;
-该装置不需要电源或ac/dc整流器来工作,因为该装置从ac网络取得其功率并以受控方式将其传送至连接到dc的电容器;
-即使当网络电压下降到其额定值的20%时,换句话说,当电压暂降深度达到80%时,该装置也能够从网络提取必要的有功功率以执行其功能;
-该装置能够在每一相上注入可变的无功功率,因此在单相或两相故障的情形下可以正确地工作;
-该装置对每一相都是模块化的,因此,当一个模块有故障时,其余模块继续工作;
-该装置具有顺序控制,因此基于在任何瞬间必须注入到网络的强度,在每个瞬间只有正确数量的模块工作,以利用低功率改善性能并减小所注入的谐波畸变。
在我们所描述的本实施例中,可以在所附权利要求限定的范围内进行修改。
Claims (11)
1.当由于单相、两相或三相故障导致连接有一个或多个发电机的MV网络(14)上出现电压暂降时向所述网络(14)注入无功功率的装置,其特征在于,该装置包括以下组件:
a)在从风力发电厂(12)到网络(14)的连接上的中压开关(1);
b)每一相上的LV/MV变压器(2);
c)每一相上的具有IGBT或IGCT半导体的dc/ac逆变器(3);
d)dc电容器(4);
e)上述单元组的每一相上的控制电路(20),该控制电路(20)连接到与每个所述单元相关的控制(10、12、13),并包括电压和功率传感器、具有DSP的电压暂降检测电路(10)、用于计算网络(14)上的瞬时电压的装置以及电压比较电路,使得当所述电路(10)检测到电压暂降时,以可变的方式在每个时间间隔基于由上述传感器和电路提供的测量向MV网络(14)上注入无功功率,从网络(14)取得必要的有功功率给电容器(4)。
2.当由于三相故障导致连接有一个或多个发电机的MV网络(14)上出现电压暂降时向所述网络(14)注入无功功率的装置,其特征在于,该装置包括以下组件:
a)在从风力发电厂(12)到网络(14)的连接上的中压开关(1);
b)LV/MV三相变压器(2);
c)具有IGBT或IGCT半导体的dc/ac三相逆变器(3);
d)dc电容器(4);
e)上述单元组的控制电路(20),其连接到与每个所述单元相关的控制(10、12、13),并包括电压和功率传感器、具有DSP的电压暂降检测电路(10)、用于计算网络(14)上的瞬时电压的装置以及电压比较电路,使得当所述电路(10)检测到电压暂降时,以可变的方式在每个时间间隔基于由上述传感器和电路提供的测量向MV网络(14)上注入无功功率,从网络(14)取得必要的有功功率给电容器(4)。
3.根据权利要求1或2所述的当由于单相、两相或三相故障导致连接有一个或多个发电机的MV网络(14)上出现电压暂降时,向所述MV网络(14)上注入无功功率的装置,其特征在于,所述电压暂降电路(10)在等于或小于1毫秒的时间范围内检测由于单相、两相或三相故障导致的电压暂降。
4.根据权利要求1或2所述的当由于单相、两相或三相故障导致连接有一个或多个发电机的MV网络(14)上出现电压暂降时,向所述网络(14)上注入无功功率的装置,其特征在于,所述控制电路(20)在小于或等于20毫秒的时间间隔内改变注入的无功功率的幅度。
5.根据权利要求1或2所述的当由于单相、两相或三相故障导致连接有一个或多个发电机的MV网络(14)上出现电压暂降时,向所述网络(14)上注入无功功率的装置,其特征在于,所述装置从MV网络(14)取得其功率。
6.根据权利要求1所述的当由于单相、两相或三相故障导致连接有一个或多个发电机的MV网络(14)上出现电压暂降时,向所述网络(14)上注入无功功率的装置,其特征在于,该装置内建在模块中,使得当所述模块中的一个失效时,其余的模块可以继续工作。
7.根据权利要求1或2所述的当由于单相、两相或三相故障导致连接有一个或多个发电机的MV网络(14)上出现电压暂降时,向所述网络(14)上注入无功功率的装置,其特征在于,所述发电机是风力涡轮机。
8.当由于单相、两相或三相故障导致连接有一个或多个发电机的网络上出现电压暂降时,利用根据权利要求1至7中任一项所述的装置向所述网络上注入无功功率的方法,其特征在于,所述方法包括以下步骤:
a)持续监视所述网络电压的幅度和相位;
b)当检测到单相、两相或三相电压暂降时,在电压暂降持续期间以与所述电压暂降的幅度成比例地可变方式向所述网络受影响的一相或多相上注入无功功率,吸收必要的有功功率。
9.当由于单相、两相或三相故障导致连接有一个或多个发电机的MV网络上出现电压暂降时,利用根据权利要求1至7中任一项所述的装置向所述网络上注入无功功率的方法,其特征在于,由所述检测电路(10)执行的上述监视可以在小于或等于1毫秒的时间内检测到电压暂降。
10.当由于单相、两相或三相故障导致连接有一个或多个发电机的MV网络上出现电压暂降时,利用根据权利要求1至7中任一项所述的装置向所述网络上注入无功功率的方法,其特征在于,由所述控制电路(20)执行的对所注入无功功率的改变在小于或等于20毫秒的时间间隔内发生。
11.当由于单相、两相或三相故障导致连接有一个或多个发电机的网络上出现电压暂降时,利用根据权利要求1至7中任一项所述的装置向所述网络上注入无功功率的方法,其特征在于,所述发电机是风力涡轮机。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200500411A ES2277724B1 (es) | 2005-02-23 | 2005-02-23 | Procedimiento y dispositivo para inyectar intensidad reactiva durante un hueco de tension de red. |
ESP200500411 | 2005-02-23 | ||
PCT/ES2006/000079 WO2006089989A1 (es) | 2005-02-23 | 2006-02-22 | Procedimiento y dispositivo para inyectar intensidad reactiva durante un hueco de tensión de red |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101142731A true CN101142731A (zh) | 2008-03-12 |
CN101142731B CN101142731B (zh) | 2011-12-07 |
Family
ID=36927056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800053996A Active CN101142731B (zh) | 2005-02-23 | 2006-02-22 | 在干线供电电压暂降期间注入无功电流的方法和装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7821157B2 (zh) |
EP (1) | EP1855367B8 (zh) |
CN (1) | CN101142731B (zh) |
ES (2) | ES2277724B1 (zh) |
WO (1) | WO2006089989A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102714412A (zh) * | 2009-07-27 | 2012-10-03 | 歌美飒创新技术公司 | 电力系统中的无功功率补偿系统 |
CN104454343A (zh) * | 2013-09-18 | 2015-03-25 | 西门子公司 | 控制风轮机的方法 |
CN105705785A (zh) * | 2013-11-05 | 2016-06-22 | 乌本产权有限公司 | 用于运行风能设备的方法 |
CN108604795A (zh) * | 2016-02-03 | 2018-09-28 | 西门子股份公司 | 风力涡轮机故障穿越能力 |
US10566799B2 (en) | 2016-03-29 | 2020-02-18 | Wobben Properties Gmbh | Method for feeding electrical power into an electricity supply network with a wind park and wind park with black start |
US11088546B2 (en) | 2016-04-05 | 2021-08-10 | Wobben Properties Gmbh | Method and wind turbine for feeding electric power |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2611131T3 (es) * | 2006-10-02 | 2017-05-05 | Vestas Wind Systems A/S | Método de accionamiento de una turbina eólica conectada a una red de distribución eléctrica durante perturbación de red de distribución eléctrica, turbina eólica y parque eólico |
CN101521385A (zh) * | 2008-02-28 | 2009-09-02 | 西门子公司 | 用于三相电源系统的动态电压补偿器 |
WO2010060903A1 (en) * | 2008-11-28 | 2010-06-03 | Vestas Wind Systems A/S | A method and device for facilitating the localisation of a fault in a grid |
WO2010066892A2 (en) * | 2008-12-12 | 2010-06-17 | Vestas Wind Systems A/S | Control method and apparatus |
CN101556300B (zh) * | 2009-05-11 | 2010-09-08 | 山东电力研究院 | 地电流入侵差动模拟通道导致其误动的检测方法 |
EP2494671B1 (en) * | 2009-10-27 | 2020-08-12 | Vestas Wind Systems A/S | Wind power plant with optimal power output |
WO2012000517A2 (en) * | 2010-06-30 | 2012-01-05 | Vestas Wind Systems A/S | Operating a wind power plant including energy storage during grid faults |
DE102010054233A1 (de) * | 2010-12-11 | 2012-06-14 | Adensis Gmbh | Energieversorgungsnetz mit Blindleistungsmanagement |
US8405247B2 (en) * | 2010-12-16 | 2013-03-26 | General Electric Company | Method and apparatus for control of fault-induced delayed voltage recovery (FIDVR) with photovoltaic and other inverter-based devices |
DK2573895T3 (en) * | 2011-09-20 | 2014-03-10 | Siemens Ag | A method for operating a wind farm, the wind farm control unit and wind farm |
WO2013044922A1 (en) * | 2011-09-28 | 2013-04-04 | Vestas Wind Systems A/S | A wind power plant and a method for operating thereof |
US10197042B2 (en) | 2013-06-03 | 2019-02-05 | Vestas Wind Systems A/S | Wind power plant controller |
US20160248246A1 (en) * | 2013-09-30 | 2016-08-25 | Vestas Wind Systems A/S | Detecting faults in electricity grids |
JP6025769B2 (ja) * | 2014-02-28 | 2016-11-16 | 三菱電機株式会社 | エレベーターかご給電装置 |
US9458830B2 (en) | 2014-09-05 | 2016-10-04 | General Electric Company | System and method for improving reactive current response time in a wind turbine |
ES2624213B1 (es) * | 2016-01-12 | 2018-04-24 | José Luis MARTÍNEZ GONZÁLEZ | Transformador eléctrico optimizado |
EP3900146A1 (en) | 2018-12-20 | 2021-10-27 | Vestas Wind Systems A/S | Boosting reactive current injection from wind turbine generators |
CN113487071B (zh) * | 2021-06-24 | 2022-03-04 | 四川大学 | 用于电压暂降治理的ssts与dvr协调动作策略制定方法和装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU646957B2 (en) * | 1991-07-01 | 1994-03-10 | Superconductivity, Inc. | Shunt connected superconducting energy stabilizing system |
US5329222A (en) * | 1992-11-30 | 1994-07-12 | Westinghouse Electric Corporation | Apparatus and method for dynamic voltage restoration of utility distribution networks |
DE19605419B4 (de) * | 1996-02-14 | 2005-08-04 | Rwe Rhein-Ruhr Aktiengesellschaft | Verfahren zur Beseitigung von Abweichungen der Ist-Spannung in einem Drehstromnetz von einer vorgegebenen Soll-Spannung |
JP2000041338A (ja) * | 1998-05-18 | 2000-02-08 | Nissin Electric Co Ltd | 系統連系装置 |
US6215202B1 (en) * | 1998-05-21 | 2001-04-10 | Bechtel Enterprises Inc. | Shunt connected superconducting energy management system having a single switchable connection to the grid |
NZ513856A (en) * | 1999-01-29 | 2001-09-28 | American Superconducting Corp | Electric utility system with superconducting magnetic energy storage |
US6134124A (en) * | 1999-05-12 | 2000-10-17 | Abb Power T&D Company Inc. | Universal distributed-resource interface |
JP3352662B2 (ja) * | 2000-02-03 | 2002-12-03 | 関西電力株式会社 | 二次電池システムを用いた電力系統安定化装置および電力系統安定化方法 |
JP2001327083A (ja) * | 2000-05-18 | 2001-11-22 | Ngk Insulators Ltd | 高温二次電池による電力貯蔵及び補償システム |
CN1101070C (zh) * | 2000-09-05 | 2003-02-05 | 上海交通大学 | 电网无功连续补偿方法及补偿装置 |
JP2003199252A (ja) * | 2001-12-27 | 2003-07-11 | Kansai Electric Power Co Inc:The | 分散電源システム及びその制御方法 |
CN1359183A (zh) * | 2002-01-11 | 2002-07-17 | 张玉良 | 混合型无功功率发生器 |
US7116010B2 (en) * | 2002-09-17 | 2006-10-03 | Wisconsin Alumni Research Foundation | Control of small distributed energy resources |
US20050012395A1 (en) * | 2002-12-06 | 2005-01-20 | Steven Eckroad | Integrated closed loop control method and apparatus for combined uninterruptible power supply and generator system |
US6858953B2 (en) * | 2002-12-20 | 2005-02-22 | Hawaiian Electric Company, Inc. | Power control interface between a wind farm and a power transmission system |
US7099169B2 (en) * | 2003-02-21 | 2006-08-29 | Distributed Power, Inc. | DC to AC inverter with single-switch bipolar boost circuit |
JP2004320859A (ja) * | 2003-04-14 | 2004-11-11 | Hitachi Ltd | 無効電力補償装置 |
US6924565B2 (en) * | 2003-08-18 | 2005-08-02 | General Electric Company | Continuous reactive power support for wind turbine generators |
CN2659000Y (zh) * | 2003-11-21 | 2004-11-24 | 华南理工大学 | 一种可动态无功补偿的电力变压器 |
US7298059B2 (en) * | 2004-12-17 | 2007-11-20 | General Electric Company | System and method for operating a wind farm under high wind speed conditions |
-
2005
- 2005-02-23 ES ES200500411A patent/ES2277724B1/es not_active Expired - Fee Related
-
2006
- 2006-02-22 EP EP06725777.4A patent/EP1855367B8/en active Active
- 2006-02-22 US US11/884,826 patent/US7821157B2/en active Active
- 2006-02-22 CN CN2006800053996A patent/CN101142731B/zh active Active
- 2006-02-22 WO PCT/ES2006/000079 patent/WO2006089989A1/es active Application Filing
- 2006-02-22 ES ES06725777T patent/ES2730573T3/es active Active
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102714412A (zh) * | 2009-07-27 | 2012-10-03 | 歌美飒创新技术公司 | 电力系统中的无功功率补偿系统 |
CN102714412B (zh) * | 2009-07-27 | 2015-11-25 | 歌美飒创新技术公司 | 电力系统中的无功功率补偿系统 |
CN104454343A (zh) * | 2013-09-18 | 2015-03-25 | 西门子公司 | 控制风轮机的方法 |
CN105705785A (zh) * | 2013-11-05 | 2016-06-22 | 乌本产权有限公司 | 用于运行风能设备的方法 |
US9957952B2 (en) | 2013-11-05 | 2018-05-01 | Wobben Properties Gmbh | Method for operating a wind turbine |
CN105705785B (zh) * | 2013-11-05 | 2020-01-03 | 乌本产权有限公司 | 用于运行风能设备的方法 |
CN108604795A (zh) * | 2016-02-03 | 2018-09-28 | 西门子股份公司 | 风力涡轮机故障穿越能力 |
CN108604795B (zh) * | 2016-02-03 | 2022-01-28 | 西门子股份公司 | 风力涡轮机故障穿越能力 |
US10566799B2 (en) | 2016-03-29 | 2020-02-18 | Wobben Properties Gmbh | Method for feeding electrical power into an electricity supply network with a wind park and wind park with black start |
US11088546B2 (en) | 2016-04-05 | 2021-08-10 | Wobben Properties Gmbh | Method and wind turbine for feeding electric power |
Also Published As
Publication number | Publication date |
---|---|
EP1855367A1 (en) | 2007-11-14 |
ES2730573T3 (es) | 2019-11-12 |
WO2006089989A1 (es) | 2006-08-31 |
EP1855367B8 (en) | 2019-05-22 |
ES2277724B1 (es) | 2008-06-16 |
EP1855367B1 (en) | 2019-03-27 |
EP1855367A4 (en) | 2016-08-03 |
US20080252143A1 (en) | 2008-10-16 |
ES2277724A1 (es) | 2007-07-16 |
CN101142731B (zh) | 2011-12-07 |
US7821157B2 (en) | 2010-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101142731B (zh) | 在干线供电电压暂降期间注入无功电流的方法和装置 | |
Duran-Gomez et al. | An approach to achieve ride-through of an adjustable-speed drive with flyback converter modules powered by super capacitors | |
Kasem et al. | An improved fault ride-through strategy for doubly fed induction generator-based wind turbines | |
Jiang-Hafner et al. | HVDC with voltage source converters-a powerful standby black start facility | |
US7906870B2 (en) | System and method for anti-islanding, such as anti-islanding for a grid-connected photovoltaic inverter | |
CN103217641B (zh) | 一种风电变流器的crowbar电路的测试装置及测试方法 | |
Guha et al. | A passive islanding detection approach for inverter-based distributed generation using rate of change of frequency analysis | |
Tedde et al. | Anti-islanding for three-phase one-cycle control grid tied inverter | |
Lamchich | Average Current Mode Control of a Voltage Source Inverter Connected to the Grid, Application to Different Filter Cells | |
CN105281366B (zh) | 一种同时实现低电压穿越和孤岛检测的方法 | |
CN101794988A (zh) | 一种微网孤岛状态的检测方法 | |
CN101452016A (zh) | 电压暂降检测方法和装置 | |
Reis et al. | Analysis of the Sandia Frequency Shift (SFS) islanding detection method with a single-phase photovoltaic distributed generation system | |
CN113433483A (zh) | 一种交流系统短路电流在线监测方法及监测装置 | |
CN103227476A (zh) | 一种低电压穿越或低电压支撑综合试验系统 | |
Gupta et al. | A novel control scheme for single and three phase dynamic voltage restorer using PSCAD/EMTDC | |
Kuncoro et al. | DVR to voltage sag mitigation due to induction motor starting and 3 phase fault | |
Ernst et al. | Validation of a Converter Control based on a Generator Model as Voltage Source | |
CN105470990B (zh) | 大功率直驱式永磁风力发电系统低压穿越控制系统及控制方法 | |
CN203707795U (zh) | 具有转向识别功能的软并网装置 | |
CN110137982B (zh) | 一种处理抽水蓄能机组并网三相不平衡故障的方法及系统 | |
Huweg et al. | Application of inverter based shunt device for voltage sag mitigation due to starting of an induction motor load | |
Karthick et al. | Design and implementation of a fault emulator for LVRT capability testing of wind turbines | |
Liu | Laboratory verification of an excitation control system for increasing power transfer capability | |
Rozegnał et al. | The protections of the 5–node Medium Voltage power system in case of the symmetrical faults |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |