CN101135563A - A dual-mass tuned output silicon MEMS gyroscope - Google Patents
A dual-mass tuned output silicon MEMS gyroscope Download PDFInfo
- Publication number
- CN101135563A CN101135563A CNA2007101758863A CN200710175886A CN101135563A CN 101135563 A CN101135563 A CN 101135563A CN A2007101758863 A CNA2007101758863 A CN A2007101758863A CN 200710175886 A CN200710175886 A CN 200710175886A CN 101135563 A CN101135563 A CN 101135563A
- Authority
- CN
- China
- Prior art keywords
- mass
- outer frame
- tuning fork
- levers
- dual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 24
- 239000010703 silicon Substances 0.000 title claims abstract description 24
- 230000003321 amplification Effects 0.000 claims abstract description 18
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 18
- 230000003068 static effect Effects 0.000 claims description 12
- 230000001133 acceleration Effects 0.000 abstract description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009699 differential effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005290 field theory Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
Abstract
一种双质量块调谐输出式硅MEMS陀螺仪主要由静齿、动齿、两个质量块、两个外框架、两对杆杆和两个音叉谐振器组成。第一质量块和第二质量块分别通过四个内折叠梁连接在第一外框架和第二外框架上,两外框架分别通过外支撑梁固连在锚点上,两外框架之间通过一对折叠梁相连。第一外框架左右两侧通过反方向力放大杠杆与两个音叉谐振器自由端相连,第二外框架左右两侧通过同方向力放大杠杆与两个音叉谐振器自由端相连。通过测得两端音叉谐振器的谐振频率差计算外部输入转速。该陀螺仪减小了器件的振动噪声,消除了外界加速度引起的误差,提高了器件性能,可应用于微小型系统、智能武器的惯性导航系统。
A dual-mass tuned output silicon MEMS gyroscope is mainly composed of a fixed tooth, a movable tooth, two mass blocks, two outer frames, two pairs of rods and two tuning fork resonators. The first mass block and the second mass block are respectively connected to the first outer frame and the second outer frame through four inner folded beams, and the two outer frames are fixed to the anchor points through outer support beams respectively, and the two outer frames are connected by A pair of folded beams are connected. The left and right sides of the first outer frame are connected with the free ends of the two tuning fork resonators through the opposite direction force amplification levers, and the left and right sides of the second outer frame are connected with the two tuning fork resonator free ends through the same direction force amplification levers. The external input rotational speed is calculated by measuring the resonance frequency difference of the tuning fork resonators at both ends. The gyroscope reduces the vibration noise of the device, eliminates the error caused by the external acceleration, improves the performance of the device, and can be applied to the inertial navigation system of micro-miniature systems and intelligent weapons.
Description
技术领域 technical field
本发明涉及一种双质量块调谐输出式硅MEMS陀螺仪,可应用于微小型系统的导航及控制,并可以应用于工作时间短、成本低、动态范围大的战术武器的惯性导航系统。The invention relates to a dual-mass tuning output silicon MEMS gyroscope, which can be applied to the navigation and control of micro-miniature systems, and can be applied to the inertial navigation system of tactical weapons with short working time, low cost and large dynamic range.
背景技术 Background technique
陀螺仪是一种惯性转速传感器,可用来测量载体的运动角速度,利用三个陀螺仪和三个加速度计组成的IMU(Inertial Measurement Unit,惯性测量单元)可以为载体提供位置、姿态信息,被广泛应用于惯性导航领域。从20世纪80年代末开始,随着MEMS(Micro-Electromechanical System,微机电系统)技术的发展,各种传感器实现了微小型化,以MEMS技术为基础的陀螺仪相对于传统的机械及光学陀螺仪而言,具有成本低、体积小、功耗低、可与电路集成等优点,具有广泛的应用前景,受到了各国的高度重视,先后投入巨资加以研究。The gyroscope is an inertial speed sensor that can be used to measure the angular velocity of the carrier. The IMU (Inertial Measurement Unit) composed of three gyroscopes and three accelerometers can provide position and attitude information for the carrier. It is widely used Applied in the field of inertial navigation. Since the late 1980s, with the development of MEMS (Micro-Electromechanical System, micro-electromechanical system) technology, various sensors have been miniaturized. Compared with traditional mechanical and optical gyroscopes, gyroscopes based on MEMS technology As far as the instrument is concerned, it has the advantages of low cost, small size, low power consumption, and can be integrated with circuits. It has a wide range of application prospects and has been highly valued by various countries.
从检测原理上讲,目前MEMS陀螺仪普遍采用电容检测方式,通过检测哥氏力产生位移的大小来间接估计转速。当器件的结构尺寸缩小到一定程度时,电容检测的灵敏度大大降低,严重影响陀螺仪的性能,同时电容式检测必须附加复杂的闭环电路,增加了器件的设计、加工难度,并且受一定的电-机耦合的影响,仪器的信噪比相对比较小。为此,人们一直在探索新的结构及检测方式,1998年美国加利福尼亚大学伯克利分校的T.A.W.Roessig提出了调谐输出式硅MEMS加速度计,为MEMS陀螺仪的谐振式检测奠定了基础。2002年,美国加利福尼亚大学伯克利分校的A.A.Seshia等人首次提出了调谐输出式硅MEMS陀螺仪,采用一个高频振动的质量块作为敏感单元,音叉谐振器作为检测单元,并成功研制了原理样机。该陀螺仪将敏感角速率产生的哥氏力转换成音叉谐振器谐振频率的变化,通过测量两端音叉谐振器谐振频率差来计算转速的大小,陀螺仪输出是准数字信号,易于数字电路集成,具有动态范围大、灵敏度较高、输出线性度好优点。然而由于单质量块的高频振动,引起了器件干扰噪声,增加了机械损耗;理想陀螺仪仅敏感输入轴向的角速度,然而单质量块调谐输出式硅MEMS陀螺仪不仅敏感输入轴向的角速度,同时敏感外部加速度,引入了加速度干扰误差,从而导致器件的测量误差。From the point of view of the detection principle, the current MEMS gyroscope generally adopts the capacitive detection method, and indirectly estimates the rotational speed by detecting the displacement generated by the Coriolis force. When the structural size of the device is reduced to a certain extent, the sensitivity of capacitance detection is greatly reduced, which seriously affects the performance of the gyroscope. - Influenced by machine coupling, the signal-to-noise ratio of the instrument is relatively small. For this reason, people have been exploring new structures and detection methods. In 1998, T.A.W.Roessig of the University of California, Berkeley proposed a tuned output silicon MEMS accelerometer, which laid the foundation for the resonant detection of MEMS gyroscopes. In 2002, A.A. Seshia of the University of California, Berkeley and others first proposed a tuned output silicon MEMS gyroscope, using a high-frequency vibrating mass as the sensitive unit, and a tuning fork resonator as the detection unit, and successfully developed a prototype. The gyroscope converts the Coriolis force generated by the sensitive angular rate into the change of the resonant frequency of the tuning fork resonator, and calculates the speed by measuring the difference between the resonant frequencies of the tuning fork resonator at both ends. The output of the gyroscope is a quasi-digital signal, which is easy for digital circuit integration , has the advantages of large dynamic range, high sensitivity and good output linearity. However, due to the high-frequency vibration of the single-mass block, it causes device interference noise and increases the mechanical loss; the ideal gyroscope is only sensitive to the angular velocity of the input axis, but the single-mass tuned output silicon MEMS gyroscope is not only sensitive to the angular velocity of the input axis , while being sensitive to external acceleration, the acceleration interference error is introduced, which leads to the measurement error of the device.
发明内容 Contents of the invention
本发明的技术解决问题是:克服现有调谐输出式硅MEMS陀螺仪振动噪声大、无法消除外部加速度引起的误差等不足,提出一种双质量块调谐输出式硅MEMS陀螺仪。The technical problem of the present invention is: to overcome the shortcomings of the existing tuned output silicon MEMS gyroscope, such as large vibration noise and inability to eliminate errors caused by external acceleration, and propose a dual-mass tuned output silicon MEMS gyroscope.
本发明的技术解决方案为:一种双质量块调谐输出式硅MEMS陀螺仪,其特征在于:主要由静齿、动齿、第一质量块、第二质量块、第一外框架、第二外框架、杠杆41、42、51、52和两个音叉谐振器81、82组成。静齿和动齿构成了电容式极板,第一质量块通过四个内折叠梁11、12、13、14连接在第一外框架上,第二质量块通过四个内折叠梁71、72、73、74连接在第二外框架上,第一外框架通过外支撑梁31、32固连在锚点21、22上,第二外框架通过外支撑梁61、62固连在锚点23、24上,第一外框架和第二外框架之间通过折叠梁361、362相连;第一外框架左右两侧分别通过杠杆41、42与音叉谐振器81、82自由端相连,第二外框架左右两侧分别通过杠杆51、52与音叉谐振器81、82自由端相连;锚点411、421分别是杠杆41、42的支撑点,锚点511、521分别是杠杆51、52的支撑点,音叉谐振器81、82固定端分别与锚点91、92相连,通过测得两端音叉谐振器的谐振频率差计算外部输入转速。The technical solution of the present invention is: a dual-mass tuned output silicon MEMS gyroscope, characterized in that it mainly consists of static teeth, movable teeth, a first mass block, a second mass block, a first outer frame, a second The outer frame, levers 41, 42, 51, 52 and two
所述的第一质量块和第二质量块结构完全相同,内部嵌入梳状动齿,第一质量块和第二质量块沿Y轴做同频、等幅、反相振动;The structure of the first mass block and the second mass block is exactly the same, and comb-shaped movable teeth are embedded inside, and the first mass block and the second mass block vibrate at the same frequency, equal amplitude, and anti-phase along the Y axis;
所述的第一外框架左右两侧的杠杆41、42和第二外框架左右两侧的杠杆51、52的放大比例是通过调节杠杆支撑点位置设置的,实现哥氏力的放大功能,杠杆41、42、51、52的放大比例相同;The magnification ratio of the
所述的杠杆41与杠杆42实现的力放大方向相同,杠杆51与杠杆52实现的力放大方向相同;The force amplification direction that described
所述的杠杆41、42与杠杆51、52实现的力放大方向相反。The directions of force amplification realized by the
本发明的原理如图1所示,静齿与动齿间构成了电容极板,在静齿上施加直流偏置电压和U0和频率为ωp的等频、反相交流电压,动齿上施加0伏电压,动齿与静齿间产生静电驱动力,该静电驱动力驱动第一质量块和第二质量块沿Y轴做频率为ωp的等幅、反相振动。当垂直于芯片平面(Z)轴有外部转速Ω输入时,两质量块产生沿X轴方向的反相哥氏力,且分别通过内折叠梁传递到第一外框架和第二外框架上,第一外框架承载的哥氏力通过杠杆反方向放大后沿轴向作用到音叉谐振器自由端,第二外框架承载的反相哥氏力通过杠杆同方向放大后沿轴向作用到音叉谐振器自由端,实现了差分效应。当哥氏力作用在音叉谐振器一端时,谐振梁承受正弦变化的压缩和拉伸力,从而周期地调制音叉谐振器的谐振频率f,通过测得两端音叉谐振器的谐振频率差Δf,计算出作用在器件上的外部输入转速Ω。The principle of the present invention is shown in Figure 1, the capacitive plate is formed between the fixed teeth and the movable teeth, a DC bias voltage and U 0 and an equal-frequency, anti-phase AC voltage with a frequency of ω p are applied on the fixed teeth, and the movable teeth When a voltage of 0 volts is applied to the top, an electrostatic driving force is generated between the movable tooth and the fixed tooth, and the electrostatic driving force drives the first mass block and the second mass block to vibrate with equal amplitude and anti-phase at frequency ω p along the Y axis. When there is an external rotational speed Ω input perpendicular to the chip plane (Z) axis, the two mass blocks generate anti-phase Coriolis forces along the X-axis direction, and transmit them to the first outer frame and the second outer frame through the inner folded beam respectively, The Coriolis force carried by the first outer frame is amplified in the opposite direction by the lever and acts on the free end of the tuning fork resonator in the axial direction, and the anti-phase Coriolis force carried by the second outer frame is amplified in the same direction by the lever and acts on the tuning fork resonator in the axial direction The free end of the device realizes the differential effect. When the Coriolis force acts on one end of the tuning fork resonator, the resonant beam bears sinusoidal compression and tension, thereby periodically modulating the resonant frequency f of the tuning fork resonator. By measuring the resonant frequency difference Δf of the tuning fork resonator at both ends, Calculate the external input speed Ω acting on the device.
双质量块调谐输出式硅MEMS陀螺仪每一个质量块内的静齿与动齿间的电容为:The capacitance between the fixed teeth and the movable teeth in each mass block of the dual-mass tuned output silicon MEMS gyroscope is:
式中,n为静齿数,ε为介电常数,L为静、动齿的长度,d0为齿间距,t为齿厚,b为尺宽,y为动(静)齿端与静(动)齿根间的间距。由静电场理论可知,静电驱动力与成正比,对式(1)求偏导:In the formula, n is the number of static teeth, ε is the dielectric constant, L is the length of the static and movable teeth, d 0 is the tooth spacing, t is the tooth thickness, b is the ruler width, y is the distance between the dynamic (static) tooth end and the static ( moving) spacing between tooth roots. According to the electrostatic field theory, the electrostatic driving force and is directly proportional to the partial derivative of formula (1):
在工作过程中,y的变化量对静电力影响相对很小,动静齿间的静电力可近似写成:During the working process, the change of y has relatively little influence on the electrostatic force, and the electrostatic force between the moving and static teeth can be approximately written as:
式中,y0为静止时动(静)齿端与静(动)齿根间的间距。该静电力可近似为一常值,式中UD表示在静齿上施加的直流偏置电压Uo、交流驱动电压Ui之和,第一质量块所受的静电力可表示为:In the formula, y0 is the distance between the moving (static) tooth end and the static (moving) tooth root at rest. The electrostatic force can be approximated as a constant value, where U D represents the sum of the DC bias voltage U o and the AC drive voltage U i applied to the fixed teeth, and the electrostatic force on the first mass can be expressed as:
式中,ωD卢为交流驱动电压的频率。同理,第二质量块所受的静电力为:In the formula, ω D Lu is the frequency of the AC driving voltage. Similarly, the electrostatic force on the second mass block is:
由式(4)和式(5)可知,质量块所受静电驱动力大小、频率相等,方向相反,耦合到支撑结构的能量相互转换抵消,减小了结构的振动噪声及器件的能量损耗,提高了陀螺仪的性能。It can be seen from formulas (4) and (5) that the magnitude and frequency of the electrostatic driving force on the mass block are equal and opposite, and the energy coupled to the supporting structure is mutually converted and offset, reducing the vibration noise of the structure and the energy loss of the device. Improved gyroscope performance.
为降低陀螺仪驱动模态的刚度,同时不加大结构平面尺寸,采用折叠梁结构,该梁可近似为四个悬臂梁串联,悬臂梁刚度可表示为:In order to reduce the stiffness of the gyroscope driving mode without increasing the plane size of the structure, a folded beam structure is adopted. The beam can be approximated as four cantilever beams connected in series. The stiffness of the cantilever beam can be expressed as:
式中,E为硅材料的弹性模量;I为梁转动惯量:Lb为梁的长度。折叠梁相当四个悬臂梁串联,其刚度可表示为:In the formula, E is the modulus of elasticity of the silicon material; I is the moment of inertia of the beam; L b is the length of the beam. A folded beam is equivalent to four cantilever beams connected in series, and its stiffness can be expressed as:
陀螺仪每个质量块通过四个相同的内折叠梁与外框架相连,每个质量块沿驱动模态的总刚度可表示为:Each mass of the gyroscope is connected to the outer frame through four identical inner folded beams, and the total stiffness of each mass along the driving mode can be expressed as:
式中,h为结构的厚度;w为内折叠梁的宽度。驱动模态自然频率可近似为:In the formula, h is the thickness of the structure; w is the width of the inner folded beam. The driving modal natural frequency can be approximated as:
式中,m为每个质量块的有效质量;ml为四个内折叠梁的总质量;ρ为硅材料的密度;S为每个质量块的表面积;Sl为四个内折叠梁的总表面积,驱动模态固有角速率可近似为:In the formula, m is the effective mass of each mass block; m l is the total mass of the four inner folded beams; ρ is the density of the silicon material; S is the surface area of each mass block; S l is the mass of the four inner folded beams The total surface area, driven mode intrinsic angular rate can be approximated as:
第一质量块在静电力Fd1作用下沿驱动方向做恒幅振动,调制驱动交流电压角速率ωp与驱动模态固有角速率ωd一致时,第一质量块振幅最大,振动运动方程可表示为:The first mass vibrates with a constant amplitude along the driving direction under the action of the electrostatic force F d1 , and when the angular rate ω p of the modulated driving AC voltage is consistent with the intrinsic angular rate ω d of the driving mode, the amplitude of the first mass is the largest, and the vibration equation can be expressed as Expressed as:
式中,Q为系统品质因子,表示驱动频率等于系统谐振频率的运动被放大了Q倍。同理,第二质量块的振动运动方程可表示为:In the formula, Q is the quality factor of the system, which means that the motion with the drive frequency equal to the resonance frequency of the system is amplified by Q times. Similarly, the vibration motion equation of the second mass block can be expressed as:
由方程(11)可知,第一质量块的运动速度为:It can be seen from equation (11) that the motion speed of the first mass block is:
由方程(12)可知,第二质量块的运动速度为:It can be known from equation (12) that the motion speed of the second mass block is:
当垂直陀螺仪平面的Z轴有角速度Ω输入时,两质量块敏感Ω,产生沿X轴的哥氏力,第一质量块产生的哥氏力为:When the Z-axis perpendicular to the gyroscope plane has an angular velocity Ω input, the two mass blocks are sensitive to Ω and generate a Coriolis force along the X-axis. The Coriolis force generated by the first mass block is:
第二质量块产生的哥氏力为:The Coriolis force generated by the second mass block is:
两质量块产生的哥氏力Fc1和Fc2分别通过两对杠杆放大后传递到外框架两侧的两个音叉谐振器轴向上。The Coriolis forces F c1 and F c2 generated by the two mass blocks are respectively amplified by two pairs of levers and transmitted to the axial direction of the two tuning fork resonators on both sides of the outer frame.
式中,C1为第一外框架左右两侧杠杆的放大系数,C2分别为第二外框架左右两侧杠杆的放大系数,两质量块作用到每个音叉谐振器轴向自由端的哥氏力矢量和为:In the formula, C 1 is the amplification factor of the levers on the left and right sides of the first outer frame, C 2 is the amplification factor of the levers on the left and right sides of the second outer frame respectively, and the Coriolis force of the two mass blocks acting on the axial free end of each tuning fork resonator The force vector sum is:
由于两个质量块产生的哥氏力通过杠杆差分后输入音叉谐振器,消除了外界加速度引起的误差,提高了器件性能。Since the Coriolis force generated by the two mass blocks is input to the tuning fork resonator through the difference of the lever, the error caused by the external acceleration is eliminated, and the performance of the device is improved.
音叉谐振器受到轴向时变哥氏力作用,弹性系数随之被调制,音叉运动方程可表示为:The tuning fork resonator is subjected to the axial time-varying Coriolis force, and the elastic coefficient is modulated accordingly. The tuning fork motion equation can be expressed as:
mrq+crq+(kr+klcos(ωpt))q=Fr, (19)m r q+c r q+(k r +k l cos(ω p t))q=F r , (19)
式中,mr为音叉谐振器的质量,cr为音叉谐振器的阻尼系数,kr为音叉谐振器在未受哥氏力作用时系统的弹性系数,kl为余弦轴向力对结构产生的调制弹性系数,Fr为外加在音叉谐振器上的驱动力。当考虑kl调制作用,且kl<<kr时,音叉谐振器谐振频率为:In the formula, m r is the mass of the tuning fork resonator, c r is the damping coefficient of the tuning fork resonator, k r is the elastic coefficient of the system when the tuning fork resonator is not subjected to the Coriolis force, k l is the cosine axial force on the structure The resulting modulating elastic coefficient, F r is the driving force applied to the tuning fork resonator. When k l modulation is considered, and k l <<k r , the resonant frequency of the tuning fork resonator is:
式中,ωr0为音叉谐振器初始谐振角速度,忽略二阶小量得:In the formula, ω r0 is the initial resonance angular velocity of the tuning fork resonator, ignoring the second-order small quantity:
其中:in:
式中,Lr为音叉谐振器中梁的长度,tb为音叉谐振器中梁的厚度,wb为音叉谐振器中梁的宽度,Sr为轴向力对音叉谐振器的调制系数。F为作用到音叉谐振器每个梁轴上的哥氏力。由调频技术的理论可知,在调制信号为单频正弦信号时,调频波的最大频偏与调制信号的振幅有关,与调制信号的频率无关,每个音叉谐振器的输出频率是在其谐振频率fr0左右摆动,因哥氏力以等幅反相的形式作用在两个音叉谐振器上,构成差分输出,所以任一瞬时,左侧音叉谐振器频偏Δf1大小等于右侧音叉谐振器频偏Δf2,方向相反,即有:Δf1=-Δf2,两个音叉谐振器的谐振频率差:In the formula, L r is the length of the beam in the tuning fork resonator, t b is the thickness of the beam in the tuning fork resonator, w b is the width of the beam in the tuning fork resonator, and S r is the modulation coefficient of the axial force on the tuning fork resonator. F is the Coriolis force acting on each beam axis of the tuning fork resonator. According to the theory of frequency modulation technology, when the modulation signal is a single-frequency sinusoidal signal, the maximum frequency deviation of the frequency modulation wave is related to the amplitude of the modulation signal and has nothing to do with the frequency of the modulation signal. The output frequency of each tuning fork resonator is at its resonant frequency f r0 swings left and right, because the Coriolis force acts on the two tuning fork resonators in the form of equal amplitude and antiphase to form a differential output, so at any instant, the frequency deviation Δf 1 of the left tuning fork resonator is equal to the right tuning fork resonator The frequency offset Δf 2 is in the opposite direction, that is: Δf 1 =-Δf 2 , the resonance frequency difference between the two tuning fork resonators:
外部转速与两音叉谐振器谐振频率差之间关系可表示为:The relationship between the external speed and the resonance frequency difference between the two tuning fork resonators can be expressed as:
Ω=S·δfΩ=S·δf
式中,S为双质量块调谐输出式硅MEMS陀螺仪的标度因数。当垂直陀螺仪平面Z轴有角速度Ω输入时,两质量块产生的哥氏力通过杠杆放大后输入到音叉谐振器的自由端,周期变化的压缩、拉伸力对音叉谐振器的谐振频率进行调解,两个音叉谐振器的谐振频率可以通过音叉谐振器的测量静齿端测出,通过测得两端音叉谐振器的谐振频率差的大小来计算外部转速。In the formula, S is the scale factor of the dual-mass tuned output silicon MEMS gyroscope. When the Z axis of the vertical gyro plane has an angular velocity Ω input, the Coriolis force generated by the two mass blocks is amplified by the lever and then input to the free end of the tuning fork resonator, and the periodically changing compression and stretching force adjusts the resonance frequency of the tuning fork resonator For mediation, the resonant frequency of the two tuning fork resonators can be measured by measuring the static tooth end of the tuning fork resonator, and the external rotational speed can be calculated by measuring the difference between the resonant frequencies of the tuning fork resonators at both ends.
本发明与现有技术相比的优点在于:双质量块调谐输出式硅MEMS陀螺仪采用两块同频、等幅、反相振动的质量块作为敏感单元,两个高频振动质量块耦合到支撑结构的能量相互抵消,可以减小器件的振动噪声和能量损耗;杠杆差分效应消除了外界加速度引起的误差,提高了器件性能。Compared with the prior art, the present invention has the advantages that: the dual-mass tuning output silicon MEMS gyroscope adopts two mass blocks vibrating at the same frequency, equal amplitude and anti-phase as sensitive units, and the two high-frequency vibrating mass blocks are coupled to The energy of the supporting structure cancels each other, which can reduce the vibration noise and energy loss of the device; the leverage differential effect eliminates the error caused by the external acceleration and improves the performance of the device.
附图说明 Description of drawings
图1为双质量块调谐输出式硅MEMS陀螺仪工作原理框图;Figure 1 is a block diagram of the working principle of a dual-mass tuned output silicon MEMS gyroscope;
图2为双质量块调谐输出式硅MEMS陀螺仪结构图;Figure 2 is a structural diagram of a dual-mass tuned output silicon MEMS gyroscope;
图3为双质量块调谐输出式硅MEMS陀螺仪静齿和动齿结构图。Fig. 3 is a structural diagram of the static and movable teeth of the dual-mass tuned output silicon MEMS gyroscope.
具体实施方式 Detailed ways
本发明技术解决方案的具体实施结构如图2和图3所示,一种双质量块调谐输出式硅MEMS陀螺仪主要由静齿101、动齿102、第一质量块1、第二质量块7、第一外框架3、第二外框架6、杠杆41、42、51、52和两个音叉谐振器81、82组成。静齿101和动齿102构成了电容式极板,第一质量块1和第二质量块7内部嵌入梳状动齿,结构完全相同,两质量块沿Y轴做同频、等幅、反相振动,第一质量块1通过四个内折叠梁11、12、13、14连接在第一外框架3上,第二质量块7通过四个内折叠梁71、72、73、74连接在第二外框架6上,考虑陀螺仪功耗及灵敏度,设计两质量块沿Y轴的固有频率为1000~10000Hz,本实施方案设计两质量块沿Y轴的固有频率为2000Hz,第一外框架3通过外支撑梁31、32固连在锚点21、22上,第二外框架6通过外支撑梁61、62固连在锚点23、24上,第一外框架3和第二外框架6之间通过折叠梁361、362相连。第一外框架3左右两侧分别通过反方向力放大杠杆41、42与音叉谐振器81、82自由端相连,第二外框架6左右两侧分别通过同方向力放大杠杆51、52与音叉谐振器81、82自由端相连,锚点411、421分别为杠杆41、42支撑点,锚点511、521分别为杠杆51、52支撑点,通过调节支撑点位置设置杠杆的放大比例,实现哥氏力的放大功能,杠杆41、42、51、52放大比例相同,杠杆41、42与杠杆51、52实现的哥氏力放大方向相反,在结构尺寸约束下,设计两杠杆的放大倍数为10~100,本实施方案设计两杠杆的放大倍数为50,音叉谐振器81、82固定端分别与锚点91、92相连。双质量块调谐输出式硅MEMS陀螺仪采用LIGA技术制备而成,是通过溅射、刻蚀等工艺制备的整体硅结构。为了保证产生适合的静电驱动力,本实施方案在静齿101上施加12伏直流偏置电压和角频率为2000Hz的等频、反相交流12伏电压,动齿102上施加0伏电压,动齿与静齿间产生的静电驱动力驱动第一质量块1和第二质量块7沿Y轴做角频率为ωp的反相、等幅振动,为了保证静齿端不与动齿根相碰,提高器件工作可靠性,设计质量块振幅小于静齿端到动齿根距离的五分之一至三分之一,本实施方案设计质量块振幅小于静齿端到动齿根距离的五分之一。当垂直于芯片平面(Z)轴有外部转速Ω输入时,两质量块产生沿X轴方向的反方向哥氏力,第一质量块1通过四个内折叠梁11、12、13、14将哥氏力传递到第一外框架3上,第二质量块7通过四个内折叠梁71、72、73、74将哥氏力传递到第二外框架6上,第一外框架3承载的哥氏力通过反方向力放大杠杆41、42放大后轴向作用到音叉谐振器81、82自由端,第二外框架6承载的哥氏力通过同方向力放大杠杆51、52放大后轴向作用到音叉谐振器81、82自由端,实现了差分效应。由谐波检测原理可知,音叉谐振器81、82的固有频率应大于第一质量块1和第二质量块7振动频率一个数量级以上,本实施方案设计的音叉谐振器81、82的固有频率为30000Hz,当哥氏力作用在音叉谐振器81、82一端时,谐振梁承受正弦变化的压缩和拉伸力,从而周期地调制音叉谐振器81、82的谐振频率f,通过测得两端音叉谐振器的谐振频率差Δf,计算出作用在器件上的外部输入转速Ω。The specific implementation structure of the technical solution of the present invention is shown in Figure 2 and Figure 3, a dual-mass tuned output silicon MEMS gyroscope is mainly composed of a fixed
该双质量块调谐输出式硅MEMS陀螺仪克服了现有调谐输出式硅MEMS陀螺仪振动噪声大、外部加速度引起的测量误差大等的不足,具有振动噪声和能量损耗小、无外界加速度引起的误差,精度高等优点可应用于微小型系统的导航及控制,并可以应用于工作时间短、成本低、动态范围大的战术武器的惯性导航系统。The dual-mass tuned output silicon MEMS gyroscope overcomes the shortcomings of the existing tuned output silicon MEMS gyroscope, such as large vibration noise and large measurement error caused by external acceleration, and has small vibration noise and energy loss, and no external acceleration. The advantages of error and high precision can be applied to the navigation and control of micro-miniature systems, and can be applied to the inertial navigation system of tactical weapons with short working time, low cost and large dynamic range.
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。The contents not described in detail in the description of the present invention belong to the prior art known to those skilled in the art.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007101758863A CN100487376C (en) | 2007-10-15 | 2007-10-15 | Double quality blocks attune output type silicon MEMS gyroscopes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2007101758863A CN100487376C (en) | 2007-10-15 | 2007-10-15 | Double quality blocks attune output type silicon MEMS gyroscopes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101135563A true CN101135563A (en) | 2008-03-05 |
CN100487376C CN100487376C (en) | 2009-05-13 |
Family
ID=39159777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2007101758863A Expired - Fee Related CN100487376C (en) | 2007-10-15 | 2007-10-15 | Double quality blocks attune output type silicon MEMS gyroscopes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100487376C (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101893451A (en) * | 2009-05-22 | 2010-11-24 | 鸿富锦精密工业(深圳)有限公司 | Capacitor type sensor and gyroscope |
CN101403615B (en) * | 2008-10-24 | 2011-01-05 | 北京航空航天大学 | Direct frequency-output vibration gyroscope structure |
CN102147423A (en) * | 2011-02-25 | 2011-08-10 | 东南大学 | Dual-axle integrated fully-coupled silicon micro-resonance type accelerometer |
CN102334009A (en) * | 2009-02-27 | 2012-01-25 | 感应动力股份公司 | microelectromechanical sensor |
CN102340719A (en) * | 2010-07-19 | 2012-02-01 | 廖明忠 | Method and device for acquiring sound signal based on sensor |
RU2442992C1 (en) * | 2010-06-30 | 2012-02-20 | Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина" | Vibration frequency micromechanical accelerometer |
CN101774529B (en) * | 2010-01-26 | 2012-11-14 | 北京航空航天大学 | MEMS atom cavity chip and preparation method thereof |
CN102959356A (en) * | 2010-04-30 | 2013-03-06 | 高通Mems科技公司 | Micromachined piezoelectric Z-axis gyroscope |
CN103278149A (en) * | 2013-06-19 | 2013-09-04 | 江苏物联网研究发展中心 | Interdigital capacitor accelerometer with uniaxial folding spring beams |
CN103901229A (en) * | 2014-04-18 | 2014-07-02 | 清华大学 | Micromechanics accelerometer |
CN103954305A (en) * | 2014-05-09 | 2014-07-30 | 浙江大学 | MEMS resonant mode charge sensor with flexible levers and detection method thereof |
CN104215236A (en) * | 2013-06-05 | 2014-12-17 | 中国科学院地质与地球物理研究所 | MEMS reverse vibratory gyroscope and manufacturing process thereof |
CN105043422A (en) * | 2015-09-08 | 2015-11-11 | 浙江大学 | MEMS resonant charge sensor with high resolution and wide dynamic range and detection method |
CN105300368A (en) * | 2015-10-21 | 2016-02-03 | 中国矿业大学(北京) | Holosymmetric decoupling vibrating gyroscope capable of directly outputting frequency |
CN105953781A (en) * | 2016-06-03 | 2016-09-21 | 哈尔滨工业大学 | Tuning-fork micromechanical gyroscope sensor applied to wireless sensor network |
CN103987653B (en) * | 2011-12-12 | 2017-02-22 | 原子能和替代能源委员会 | Mechanical connection forming pivot for MEMS and NEMS mechanical structures |
CN107063222A (en) * | 2017-04-17 | 2017-08-18 | 东南大学 | The double quality silicon micromechanical gyroscopes of three frame-types of direct rate-adaptive pacemaker |
CN107449491A (en) * | 2017-07-17 | 2017-12-08 | 西北工业大学 | A kind of disturbance location of weak coupling resonant transducer determines method |
CN107976180A (en) * | 2016-10-24 | 2018-05-01 | 意法半导体股份有限公司 | Frequency modulation mems triaxial gyroscope |
CN108225544A (en) * | 2017-11-27 | 2018-06-29 | 东南大学 | A kind of bilayer composite triangle collapse beam mass block resonator system and its trace detection method |
CN109029409A (en) * | 2018-06-15 | 2018-12-18 | 浙江大学 | Parameter amplification method and its device in a kind of tunable grid structure micromechanical gyro |
CN109103049A (en) * | 2018-09-13 | 2018-12-28 | 中国工程物理研究院电子工程研究所 | A kind of MEMS inertia switch based on V-type beam bistable structure |
CN109192560A (en) * | 2018-09-13 | 2019-01-11 | 西安电子科技大学 | A kind of MEMS inertia switch based on the short cant beam bistable structure of three-stage |
CN110482479A (en) * | 2019-07-16 | 2019-11-22 | 西北工业大学 | A kind of polycyclic resonant gyroscope self-adapting closed loop control method of the MEMS of simplification |
CN111551161A (en) * | 2020-06-28 | 2020-08-18 | 江苏睦荷科技有限公司 | MEMS vibrating gyroscope structure and manufacturing method thereof |
CN112097750A (en) * | 2020-08-05 | 2020-12-18 | 南昌理工学院 | System and method for eliminating influence of gravity and acceleration of vibrating gyroscope |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101957200B (en) * | 2009-07-21 | 2012-05-23 | 深迪半导体(上海)有限公司 | Monocrystalline silicon MEMS gyro decoupled by symmetrically folded beam springs |
-
2007
- 2007-10-15 CN CNB2007101758863A patent/CN100487376C/en not_active Expired - Fee Related
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101403615B (en) * | 2008-10-24 | 2011-01-05 | 北京航空航天大学 | Direct frequency-output vibration gyroscope structure |
CN102334009B (en) * | 2009-02-27 | 2014-11-05 | 玛克西姆综合公司 | Electromechanic microsensor |
CN102334009A (en) * | 2009-02-27 | 2012-01-25 | 感应动力股份公司 | microelectromechanical sensor |
US8850886B2 (en) | 2009-02-27 | 2014-10-07 | Maxim Integrated Products, Inc. | Electromechanic microsensor |
CN101893451A (en) * | 2009-05-22 | 2010-11-24 | 鸿富锦精密工业(深圳)有限公司 | Capacitor type sensor and gyroscope |
CN101893451B (en) * | 2009-05-22 | 2013-08-21 | 鸿富锦精密工业(深圳)有限公司 | Capacitor type sensor and gyroscope |
CN101774529B (en) * | 2010-01-26 | 2012-11-14 | 北京航空航天大学 | MEMS atom cavity chip and preparation method thereof |
CN102959356A (en) * | 2010-04-30 | 2013-03-06 | 高通Mems科技公司 | Micromachined piezoelectric Z-axis gyroscope |
US9032796B2 (en) | 2010-04-30 | 2015-05-19 | Qualcomm Mems Technologies, Inc. | Stacked lateral overlap transducer (SLOT) based three-axis accelerometer |
US9410805B2 (en) | 2010-04-30 | 2016-08-09 | Qualcomm Mems Technologies, Inc. | Micromachined piezoelectric z-axis gyroscope |
US9605965B2 (en) | 2010-04-30 | 2017-03-28 | Snaptrack, Inc. | Micromachined piezoelectric x-axis gyroscope |
CN102959356B (en) * | 2010-04-30 | 2016-01-20 | 高通Mems科技公司 | Micromechanics piezoelectricity Z axis gyroscope |
US9459099B2 (en) | 2010-04-30 | 2016-10-04 | Qualcomm Mems Technologies, Inc. | Micromachined piezoelectric x-axis gyroscope |
US10209072B2 (en) | 2010-04-30 | 2019-02-19 | Snaptrack Inc. | Stacked lateral overlap transducer (SLOT) based three-axis accelerometer |
US9021880B2 (en) | 2010-04-30 | 2015-05-05 | Qualcomm Mems Technologies, Inc. | Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer |
RU2442992C1 (en) * | 2010-06-30 | 2012-02-20 | Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина" | Vibration frequency micromechanical accelerometer |
CN102340719A (en) * | 2010-07-19 | 2012-02-01 | 廖明忠 | Method and device for acquiring sound signal based on sensor |
CN102147423B (en) * | 2011-02-25 | 2012-06-13 | 东南大学 | Dual-axle integrated fully-coupled silicon micro-resonance type accelerometer |
CN102147423A (en) * | 2011-02-25 | 2011-08-10 | 东南大学 | Dual-axle integrated fully-coupled silicon micro-resonance type accelerometer |
CN103987653B (en) * | 2011-12-12 | 2017-02-22 | 原子能和替代能源委员会 | Mechanical connection forming pivot for MEMS and NEMS mechanical structures |
CN104215236A (en) * | 2013-06-05 | 2014-12-17 | 中国科学院地质与地球物理研究所 | MEMS reverse vibratory gyroscope and manufacturing process thereof |
CN104215236B (en) * | 2013-06-05 | 2016-12-28 | 中国科学院地质与地球物理研究所 | A kind of anti-phase vibratory gyroscope of MEMS and manufacturing process thereof |
CN103278149B (en) * | 2013-06-19 | 2015-07-08 | 江苏物联网研究发展中心 | Interdigital capacitor accelerometer with uniaxial folding spring beams |
CN103278149A (en) * | 2013-06-19 | 2013-09-04 | 江苏物联网研究发展中心 | Interdigital capacitor accelerometer with uniaxial folding spring beams |
CN103901229A (en) * | 2014-04-18 | 2014-07-02 | 清华大学 | Micromechanics accelerometer |
CN103954305A (en) * | 2014-05-09 | 2014-07-30 | 浙江大学 | MEMS resonant mode charge sensor with flexible levers and detection method thereof |
CN105043422A (en) * | 2015-09-08 | 2015-11-11 | 浙江大学 | MEMS resonant charge sensor with high resolution and wide dynamic range and detection method |
CN105043422B (en) * | 2015-09-08 | 2017-10-27 | 浙江大学 | The MEMS resonant formula charge sensor and detection method of high-resolution and wide dynamic range |
CN105300368B (en) * | 2015-10-21 | 2018-03-09 | 中国矿业大学(北京) | A kind of direct output frequency oscillation gyro of holohedral symmetry decoupling |
CN105300368A (en) * | 2015-10-21 | 2016-02-03 | 中国矿业大学(北京) | Holosymmetric decoupling vibrating gyroscope capable of directly outputting frequency |
CN105953781A (en) * | 2016-06-03 | 2016-09-21 | 哈尔滨工业大学 | Tuning-fork micromechanical gyroscope sensor applied to wireless sensor network |
CN107976180A (en) * | 2016-10-24 | 2018-05-01 | 意法半导体股份有限公司 | Frequency modulation mems triaxial gyroscope |
US12038283B2 (en) | 2016-10-24 | 2024-07-16 | Stmicroelectronics S.R.L. | Frequency modulation MEMS triaxial gyroscope |
US11448507B2 (en) | 2016-10-24 | 2022-09-20 | Stmicroelectronics S.R.L. | Frequency modulation MEMS triaxial gyroscope |
CN107063222A (en) * | 2017-04-17 | 2017-08-18 | 东南大学 | The double quality silicon micromechanical gyroscopes of three frame-types of direct rate-adaptive pacemaker |
CN107449491A (en) * | 2017-07-17 | 2017-12-08 | 西北工业大学 | A kind of disturbance location of weak coupling resonant transducer determines method |
CN107449491B (en) * | 2017-07-17 | 2019-09-24 | 西北工业大学 | A kind of disturbance location of weak coupling resonant transducer determines method |
CN108225544B (en) * | 2017-11-27 | 2020-02-18 | 东南大学 | A double-layer multiplexed triangular folded beam mass block resonance system and its trace detection method |
CN108225544A (en) * | 2017-11-27 | 2018-06-29 | 东南大学 | A kind of bilayer composite triangle collapse beam mass block resonator system and its trace detection method |
CN109029409A (en) * | 2018-06-15 | 2018-12-18 | 浙江大学 | Parameter amplification method and its device in a kind of tunable grid structure micromechanical gyro |
CN109192560A (en) * | 2018-09-13 | 2019-01-11 | 西安电子科技大学 | A kind of MEMS inertia switch based on the short cant beam bistable structure of three-stage |
CN109192560B (en) * | 2018-09-13 | 2020-11-27 | 西安电子科技大学 | A MEMS inertial switch based on three-segment short inclined beam bistable structure |
CN109103049A (en) * | 2018-09-13 | 2018-12-28 | 中国工程物理研究院电子工程研究所 | A kind of MEMS inertia switch based on V-type beam bistable structure |
CN110482479A (en) * | 2019-07-16 | 2019-11-22 | 西北工业大学 | A kind of polycyclic resonant gyroscope self-adapting closed loop control method of the MEMS of simplification |
CN110482479B (en) * | 2019-07-16 | 2022-11-01 | 西北工业大学 | Simplified MEMS multi-ring resonance gyroscope self-adaptive closed-loop control method |
CN111551161A (en) * | 2020-06-28 | 2020-08-18 | 江苏睦荷科技有限公司 | MEMS vibrating gyroscope structure and manufacturing method thereof |
CN112097750A (en) * | 2020-08-05 | 2020-12-18 | 南昌理工学院 | System and method for eliminating influence of gravity and acceleration of vibrating gyroscope |
CN112097750B (en) * | 2020-08-05 | 2023-06-27 | 南昌理工学院 | Vibrating Gyro Gravity and Acceleration Effect Elimination System and Elimination Method |
Also Published As
Publication number | Publication date |
---|---|
CN100487376C (en) | 2009-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101135563A (en) | A dual-mass tuned output silicon MEMS gyroscope | |
CN101067555B (en) | Force balancing resonance micro-mechanical gyro | |
EP3279608B1 (en) | Improved vibratory gyroscope | |
Zotov et al. | High-range angular rate sensor based on mechanical frequency modulation | |
CN100590383C (en) | A resonant micromachined gyroscope | |
CN103185574B (en) | Micro electro mechanical system device with oscillation module | |
CN102288172B (en) | Capacitor type micro-machined gyroscope for amplifying movement speed of mass block | |
CN101363731B (en) | Quartz micromechanical gyroscope based on shear stress detection and its manufacturing method | |
CN100473948C (en) | Symmetric-structure double-grade decoupling single-crystal-silicon micro mechanical gyroscope | |
CN101298987B (en) | Robustness tuning fork vibrating type micromechanical gyroscope | |
CN101261126A (en) | Micro Solid Mode Gyroscope | |
CN111693036A (en) | Three-axis MEMS gyroscope | |
CN104819710A (en) | Resonant mode silicon micro-machined gyroscope with temperature compensation structure | |
CN111812355A (en) | A low stress sensitivity silicon microresonant accelerometer structure | |
CN102645211A (en) | Four-degree-of-freedom micromechanical gyroscope | |
CN101398305B (en) | Piezo-electricity micro-solid mode gyroscope with concentrated mass blocks | |
CN101514897A (en) | Improved sonic type micro mechanical scopperil | |
Trusov et al. | Gyroscope architecture with structurally forced anti-phase drive-mode and linearly coupled anti-phase sense-mode | |
CN105300368A (en) | Holosymmetric decoupling vibrating gyroscope capable of directly outputting frequency | |
Nguyen et al. | Design of piezoelectric MEMS bulk acoustic wave mode-matched gyroscopes based on support transducer | |
CN105953781A (en) | Tuning-fork micromechanical gyroscope sensor applied to wireless sensor network | |
CN103115620B (en) | A kind of four-degree-of-freedom micromechanical gyro array | |
CN102297689B (en) | Electrostatically driven piezoelectric detection closed loop controlled micro-solid modal gyro | |
CN106705949A (en) | Force balance type resonant micromechanical gyroscope | |
Chen et al. | Micromachined bar-structure gyroscope with high Q-factors for both driving and sensing mode at atmospheric pressure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090513 |
|
CF01 | Termination of patent right due to non-payment of annual fee |