CN101133495A - 成像装置 - Google Patents

成像装置 Download PDF

Info

Publication number
CN101133495A
CN101133495A CNA2006800071867A CN200680007186A CN101133495A CN 101133495 A CN101133495 A CN 101133495A CN A2006800071867 A CNA2006800071867 A CN A2006800071867A CN 200680007186 A CN200680007186 A CN 200680007186A CN 101133495 A CN101133495 A CN 101133495A
Authority
CN
China
Prior art keywords
photodiode
imaging
light
semiconductor
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800071867A
Other languages
English (en)
Inventor
西泽宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101133495A publication Critical patent/CN101133495A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

一种成像设备,包括:半导体成像装置,具有彩色滤光片和多个光电二极管;以及成像光学系统,用于将光从目标引导至所述半导体成像装置。半导体成像装置的各个光电二极管的开口具有依据透射穿过设于光电二极管的入射表面侧上的彩色滤光片的光的波长来确定的直径(40、41)。因此,在使用半导体成像装置的照相机模块中,像素尺寸缩小。可以防止受到波动影响的范围内的成像设备的图像退化并缩小设备尺寸和厚度。

Description

成像装置
相关申请
本申请主张2005年7月21日在日本提交的日本专利申请No.2005-210882、No.2005-210883和No.2005-210886的权益,其内容通过参考结合于此。
技术领域
本发明涉及使用半导体成像装置的成像设备,具体而言涉及用于便携终端、便携电话或其他小终端的成像设备。
背景技术
常规地,如日本专利公报No.2004-327914所述,使用半导体成像装置的成像设备包括例如透镜的成像光学系统和例如CCD的半导体成像装置。该成像设备将从目标经由成像光学系统入射的光通过半导体成像装置转换成电信号,并捕捉图像。随着便携装备变得越来越小,成像设备也要求较以往更小且更轻。为此,通过将成像设备的各个部件制成尽可能薄,由此减少成像设备的厚度。
成像设备已经定位为朝着高像素数目的发展方向以及区域尺寸缩小。形成图像的光学系统通常设计成使得最小模糊的圆与像素具有相同尺寸。随着朝尺寸缩小和高像素数目的进一步前进,预计将进入除了使用Snell定律等考虑光线迹线之外还需要考虑光的波动性的区域。
日本专利特开公报No.2004-200231指出,例如当光电二极管的开口为1μm以下时,在红光波长(0.650μm)则需要考虑波动光学效果。该申请还建议,用于垂直传输来自像素的信号的电极设有红色灵敏度范围。
专利申请No.2002-513145的PCT国际申请的公开日文翻译披露了一种如下形式的结构,其中不同颜色的光电二极管沿半导体基板的厚度方向布置。该申请披露了与短波长的光相比,长波长的光更深入半导体基底。
发明内容
本发明要解决的问题
如上所述,常规成像设备减小其部件的尺寸从而减小自身的尺寸和厚度,且已经尝试通过使用非球面玻璃透镜等改善其形成图像的光学系统的性能。
然而,像素进一步微型化以减小半导体成像装置的尺寸从而适应高像素数目,阻碍了已经发展的技术的应用,且因此存在新突破的需求。例如,已经需要考虑日本专利特开公报No.2004-200231中披露的波动光学效应。
另一方面,各个彩色滤光片的像素在常规成像设备中通常布置成二维,且例如Bayer阵列等是公知的。还存在用于该阵列的许多读取方法和彩色校正方法。需要一种能够有效利用这些资源的小的、薄的且高像素数目的成像设备。
鉴于前述背景进行的本发明的目的是提供一种小的、薄的且高像素数目的成像设备。
解决问题的手段
本发明的成像设备包括:半导体成像装置,具有彩色滤光片和多个光电二极管;以及成像光学系统,用于将光从目标引导至该半导体成像装置,其中该半导体成像装置的各个光电二极管的开口直径是依据穿过设于该光电二极管的入射表面侧上的彩色滤光片并到达该入射表面的光的波长来确定。
在这种配置中,当该成像设备的尺寸减小时,易遭受波动光学效应的长波长侧的红色像素的光电二极管的开口制成直径大于用于其他波长的光电二极管的开口的直径。即使对于在长波长侧敏感的光电二极管,通过避免波动光学效应,可以防止输出减小,且可以实现成像设备的尺寸减小。
上述成像设备包括置于该半导体成像装置和该成像光学系统之间的光学滤光片,其中该半导体成像装置的各个光电二极管的开口直径是依据进入与该光电二极管相对应光学滤光片上的区域的光的入射角来确定。
这种配置可以减小由入射角增大引起的图像退化。光学滤光片具有随着入射角变大将光学滤光片的半值波长偏移到短波长侧的性能。如此,长波长侧上红光的衰减变得更大,且因此图像退化加剧。然而,通过使长波长侧上的红色像素的光电二极管的开口直径大于用于其他波长的光的光电二极管的开口,可以防止图像退化。
在上述成像设备中,半导体成像装置的同一线上的像素的高度相等。
在这种配置中,各条线上的像素的尺寸沿高度方向是相同的。因此,有利于半导体成像装置的内部电极的走线,且可以提高布局设计中的灵活度。
本发明的成像设备包括:半导体成像装置,具有彩色滤光片和多个光电二极管;以及成像光学系统,用于将光从目标引导至该半导体成像装置,其中位于该多个光电二极管的至少一部分的入射表面的对立侧上的该半导体成像装置具有用于探测穿过该光电二极管的光的辅助光电二极管。
在这种配置中,穿过位于入射表面侧上的光电二极管的光进入该辅助光电二极管。因此,各个光电二极管的输出彼此相加,且一个像素的输出可以增大。辅助光电二极管的数目不限于一个,可以具有任意数目的辅助光电二极管。如果辅助光电二极管设置用于该多个光电二极管中与当成像设备尺寸减小时易遭受波动光学效应的长波长侧红色像素对应的光电二极管,则在长波长侧灵敏的光电二极管的灵敏度可以提高,由波动光学效应导致的输出减少可以得到补偿,且成像设备的尺寸缩小可以实现。由于长波长的光通常达到半导体芯片的更深位置,即使光电二极管成堆布置,输出仍可以有效地提高,且对易遭受波动光学效应的长波长的光的灵敏度可以提高。
在上述成像设备中,辅助光电二极管的尺寸是依据穿过设于光电二极管入射表面侧上的彩色滤光片并到达该入射表面的光的波长来确定。
这种配置可以依据该彩色滤光片透射的光的波长来确定该辅助光电二极管将多大程度地提高灵敏度。例如,由于设有透射长波长的光的彩色滤光片的光电二极管非常易遭受波动光学效应,该辅助光电二极管制成大的尺寸以提高灵敏度的增幅。由于设有透射短波长的光的彩色滤光片的光电二极管不易遭受波动光学效应,该辅助光电二极管制成小的尺寸以减小灵敏度的增幅。这样,视波长而不同的波动光学效应可以针对每一个波长得到补偿,且整个成像设备的灵敏度可得到平衡。
上述成像设备包括置于该半导体成像装置和该成像光学系统之间的光学滤光片,其中该辅助光电二极管的尺寸是依据进入与该光电二极管相对应光学滤光片上的区域的光的入射角来确定。
这种配置可以减小由入射角增大引起的图像退化。光学滤光片具有随着入射角变大将光学滤光片的半值波长偏移到短波长侧的性能。如此,长波长侧上红光的衰减变得更大,且因此图像退化加剧。然而,通过使长波长侧上的红色像素的光电二极管的尺寸大于用于其他波长的光的光电二极管,可以防止图像退化。
本发明的成像设备包括:半导体成像装置,具有彩色滤光片和多个光电二极管;以及成像光学系统,用于将光从目标引导至该半导体成像装置,其中位于该多个光电二极管的至少一部分的入射表面的对立侧上的该半导体成像装置具有用于反射穿过该光电二极管的光的反射层。
在这种配置中,穿过光电二极管的光被该反射层反射并再次进入该光电二极管。因此,光电二极管的输出可以增大。如果该反射层设置用于该多个光电二极管中与当成像设备尺寸减小时易遭受波动光学效应的长波长侧红色像素对应的光电二极管,则在长波长侧灵敏的光电二极管的灵敏度可以提高,由波动光学效应导致的输出减少可以得到补偿,且成像设备的尺寸缩小可以实现。由于长波长的光通常达到半导体芯片的更深位置,即使该反射层布置在光电二极管的入射表面的对立侧上,输出仍可以有效地提高。因此,对易遭受波动光学效应的长波长的光的灵敏度可以提高。
在上述成像设备中,该反射层的尺寸或反射率是依据穿过设于光电二极管入射表面侧上的彩色滤光片并到达该入射表面的光的波长来确定。
这种配置可以依据该彩色滤光片透射的光的波长,通过改变该反射层的尺寸或反射率来确定该灵敏度增加多少。例如,由于设有透射长波长的光的彩色滤光片的光电二极管非常易遭受波动光学效应,该反射层制成大的尺寸或反射率以提高灵敏度的增幅。由于设有透射短波长的光的彩色滤光片的光电二极管不易遭受波动光学效应,该反射层制成小的尺寸或反射率以减小灵敏度的增幅。这样,视波长而不同的波动光学效应可以针对每一个波长得到补偿,且整个成像设备的灵敏度可得到平衡。
在上述成像设备中,该反射层由银白色金属形成。
这种配置使得可以通过简单工艺来应用该反射层。使用银白色金属可以维持在可见光区域该反射层的反射率几乎恒定,且实现良好的彩色再写能力。此外,这种配置可以屏蔽来自该半导体成像装置背侧的不需要的入射光,特别是例如近红外光,且可以减小由不需要的光所致的图像退化。
在上述成像设备中,该反射层是由半导体形成。
在这种配置中,可以通过掺杂材料改变反射率来形成该反射层,且因此可以通过普通扩散工艺来形成该反射层,而不改变工艺。此外,可以容易地形成多层反射层。
上述成像设备包括置于该半导体成像装置和该成像光学系统之间的光学滤光片,其中该反射层的尺寸或反射率是依据进入与该光电二极管相对应光学滤光片上的区域的光的入射角来确定。
这种配置可以减小由入射角增大引起的图像退化。光学滤光片具有随着入射角变大将光学滤光片的半值波长偏移到短波长侧的性能。如此,长波长侧上红光的衰减变得更大,且因此图像退化加剧。然而,通过使长波长侧上的红色像素的反射层的尺寸或反射率大于用于其他波长的光的反射层,可以防止图像退化。
上述成像设备包括用于容放该半导体成像装置的三维基板,该三维基板不透射可见光和近红外光。
在这种配置中,该半导体成像装置容放在该不透射可见光和近红外光的三维基板内。因此,当该成像设备安装在便携电话或其他便携装备中时,无需提供用于为该成像设备屏蔽光的屏蔽构件,且因此该装备尺寸可减小。此外,由于该半导体成像装置和该成像光学系统可以固定到该三维基板,可使用性提高。
在上述成像设备中,半导体成像装置的像素节距为2微米以下。
半导体成像装置的光电二极管的开口直径约为像素节距的一半。因此当像素节距为2微米以下时,光电二极管的开口直径与此相关联地减小,且波动光学效应导致输出减小。在本发明的配置中,导致输出减小问题的长波长的光进入的开口制成大的直径,或者提供辅助光电二极管或反射层。因此,可以提高该光电二极管的灵敏度,且还可以防止长波长侧上的输出减小。
本发明的便携电话设备包含上述成像设备。
在这种配置中,如本发明成像设备的情形,通过避免波动光学效应可以防止输出的减小,即使对于在长波长侧灵敏的光电二极管,且可以实现该便携电话设备的尺寸减小。在长波长侧上灵敏的该光电二极管的灵敏度可以提高,由于波动光学效应导致的输出减少可以得到补偿,且成像设备的尺寸缩小可以实现。
本发明的半导体成像装置包括:多个光电二极管,用于将入射光转换成电信号;以及彩色滤光片,设于光电二极管的入射表面侧上,其中各个该光电二极管的开口的直径是依据穿过设于该光电二极管的入射表面侧上的彩色滤光片并到达该入射表面的光的波长来确定。
在这种配置中,如本发明成像设备的情形,即使对于在长波长侧敏感的光电二极管,通过避免波动光学效应,可以防止输出减小,且可以实现该半导体成像装置的尺寸减小。
本发明的半导体成像装置包括:多个光电二极管,用于将入射光转换成电信号;彩色滤光片,设于光电二极管的入射表面侧上;以及辅助光电二极管,布置于该多个光电二极管的至少一部分的入射表面的对立侧上,其中该辅助光电二极管具有依据从彩色滤光片入射到该光电二极管的透射光的波长的尺寸。
在这种配置中,如本发明成像设备的情形,穿过位于入射表面侧上的光电二极管的光进入该辅助光电二极管。因此,各个光电二极管的输出彼此相加,且一个像素的输出可以增大。此外,视波长而不同的波动光学效应可以针对每一个波长得到补偿,且整个半导体成像装置的灵敏度可得到平衡。
本发明的半导体成像装置包括:多个光电二极管,用于将入射光转换成电信号;彩色滤光片,设于光电二极管的入射表面侧上;以及反射层,布置于该多个光电二极管的至少一部分的入射表面的对立侧上,其中该反射层具有依据从彩色滤光片入射到该光电二极管的透射光的波长的尺寸。
在这种配置中,如本发明成像设备的情形,穿过光电二极管的光被该反射层反射并再次进入该光电二极管。因此,该半导体成像装置的输出可以增大。此外,视波长而不同的波动光学效应可以针对每一个波长得到补偿,且整个半导体成像装置的灵敏度可得到平衡。
本发明其他方面描述如下。本发明的公开内容因此旨在提供部分本发明,而非旨在限制此处所述和所主张的本发明的范围。
附图说明
图1示出了一实施例的半导体成像装置的布置;
图2为示出了该实施例的成像设备的透视图;
图3为沿III-III截取的成像设备的剖面图;
图4为成像设备的部分IV的放大图;
图5示出了该实施例中入射角和光学滤光片半值波长之间的关系;
图6为半导体成像装置的一个像素的放大剖面图;
图7示出了该实施例中光电二极管的灵敏度对波长特性;
图8示出了该实施例的半导体成像装置的灵敏度对像素尺寸及波长特性;
图9示出了半导体成像装置的像素尺寸和像素数目之间的关系;
图10示出了一半导体成像装置的布置;
图11为半导体成像装置的一个像素的放大剖面图;
图12示出了实施例的光电二极管的灵敏度对波长特性;
图13为一半导体成像装置的一个像素的放大剖面图;以及
图14示出了实施例中光电二极管的灵敏度对波长特性。
具体实施方式
下文是对本发明的详细描述。将会理解,下述实施例仅仅是本发明的示例,且本发明可以在各种方面改变。因此,下述具体配置和功能并不限制权利要求的范围。
现在参考图示描述本发明
第一实施例
图1示出了本实施例的成像设备中使用的半导体成像装置。在本实施例的描述中,将首先参考图2和后续图示描述包括该半导体成像装置的成像设备的一般配置,且随后描述该半导体成像装置的配置。参考图2至5所描述的半导体成像装置的配置对于所有实施例是相同的。
图2为示出本发明第一实施例的成像设备1的透视图;图3为从III-III方向观看的图2的成像设备1的剖面图;以及图4为图3的部分IV的放大图。
如图3所示,成像设备1包括:沿光轴L布置的非球面透镜6a和6b、光学滤光片5、半导体成像装置4、保持这些元件的三维基板2、以及连接到三维基板2的印刷电路板(FPC)15。金属箔14布置于FPC 15的底面上,用于防止可见光和红外光从底面进入半导体成像装置4。在本实施例中,三维基板2同时起着固定半导体成像装置4的作用和作为固持构件用于固持光学滤光片5的作用。三维基板2包括圆柱形透镜镜筒部17和延续到透镜镜筒部17端面的基部7。在下面的描述中,透镜镜筒部17侧称为向上方向,且基部7侧称为向下方向。
首先将描述三维基板2。透镜镜筒部17位于基部7的顶面上,上下延伸。基部7设有形成于其底面中心内的凹陷。矩形通孔10也形成于基部7上。通孔10对应于半导体成像装置4的成像区域。
三维基板2是由玻璃增强PPA(聚酞酰胺树脂)等构成,且制成黑色以防止来自外部的可见光穿过。混合成丸的碳黑等用于该三维基板2,且光透射率为0.5%以下。尽管期望也能够屏蔽波长比可见光长的光,考虑到红外区域的灵敏度,该透过率可以依据所使用的半导体成像装置4的性能而恰当地选择。
在透镜镜筒部17的镜筒中,光学性能彼此不同的两个非球面透镜6a和6b(下文中简称为透镜)安装在透镜支架20内以维持特定位置关系,构成透镜6。透镜支架20通过调整环21借助粘接剂等固定到透镜镜筒部17的外部。调整环21置于透镜支架20外部。设于透镜支架20上的螺纹部20a和设于调整环21上的螺纹部21a一起拧紧,从而透镜支架20和调整环21彼此固定。
透镜支架20形成有将光引入透镜镜筒部17的光阑3。光阑3的孔径朝透镜镜筒部17内部变窄。在这种配置中,进入透镜镜筒部17内部的光照射到光阑3的壁表面上并散射,这减轻了散射光进入透镜的现象。这可以减小不需要的光进入透镜,且可以减小鬼影的发生。
满足所要求的折射率、所要求的透射率或者其他所要求的光学性能的树脂用于该透镜6。例如,可以使用商品名为ZEONEX(注册商标)的ZEONCorporation的产品。该两件(two-piece)结构的透镜6使用所谓的全焦点(pan-focus)特征,其中图像形成为远于特定距离。在本实施例中,透镜6调整为使得距离比约30cm更远的目标被聚焦。可以恰当地选择这些结构和性能。
光学滤光片5安装在形成有通孔10的基部7的顶面上,从而覆盖通孔10。光学滤光片5切断不需要的红外光,并透射波长在可见光区域内的光。晶体滤光片或涂覆有所谓IR涂层的玻璃滤光片用做光学滤光片5。在本实施例中,硼硅酸盐玻璃用做光学滤光片5的基材以切断紫外光。IR(红外)切断涂层涂布于基材的一侧,且抗反射的AR(抗反射)涂层涂布于另一侧。例如通过将二氧化硅(SiO2)、氧化钛(TiO2)等蒸镀到玻璃上,形成该IR涂层。例如通过将氟化镁(MgF2)、氧化钛(TiO2)、氧化锆(ZrO2)等蒸镀到玻璃上,形成该AR涂层。IR切断涂层和AR涂层的膜结构和层数目可以依据抑制可见光区域及其以外区域中的透射和反射的性能来恰当地选择。
图5示出了本实施例模式中光学滤光片5的光谱特性。在波长从约400nm至750nm的可见光区域内的透射率为约93%以上,在其他波段的透射率足够低。该光谱特性也可以适当地改变。提供光学滤光片5降低了由入射到半导体成像装置4上的除了可见光之外的其他光所致的噪声的出现。
凹槽11形成于其上安装了光学滤光片5的表面上(见图4)。这使得在制造成像设备1时空气通过凹槽11逃逸,该空气由于在从外部施加热量以固化粘接剂等而膨胀。
半导体成像装置4、未示出的芯片部件等安装在形成有通孔10的基部7的底面上(见图4)。用于安装裸半导体成像装置4的连接焊盘7c与半导体成像装置4的凸块8通过导电粘接剂8a彼此结合,并使用密封剂9密封。铜底层(undercoat)、镍、和金布线图案7b通过无电镀镀覆形成于基部7的底面上。连接焊盘7c和设于三维基板2基部7的外部的端部7a(见图2)通过布线图案7b电连接。端部7a通过焊料16连接到焊盘15a,用于连接到FPC 15。从半导体成像装置4、未示出的芯片部件等获得的图像信号和来自外部的诸如控制信号和电源的电学信号通过该布线图案7b发送和接收。
接下来将描述半导体成像装置4。半导体成像装置4为约130万像素的1/4英寸SXGA CCD传感器,并将入射光转换成所要求的电学信号。该半导体成像装置4具有横纵比为4∶3的图像帧,且每秒输出15帧图像信号。
半导体成像装置4通过SBB(柱形凸块焊接)电连接到设于三维基板2上的连接焊盘7c。半导体成像装置4的输出通过布线图案7b引导至设于基板7上的端子部分7a以连接到外部FPC 15。上文描述了半导体成像装置1的配置,该配置对于所有实施例是相同的。
图6为示出了半导体成像装置4的一个像素的放大视图。如图6所示,微透镜50、彩色滤光片51、内部透镜和保护膜52、Al布线和掩模53、绝缘层54、多晶硅55等设于光电二极管56的光入射侧上。
微透镜50收集透射穿过光学滤光片5的光并使光进入光电二极管56。由于微透镜50远离中心朝向半导体成像装置4的周边,微透镜50中心的位置朝半导体成像装置4的中心偏移。这是称为按比例缩放的方法。按比例缩放防止光电二极管56在半导体成像装置4周边的性能退化。
微透镜50的节距(图中的尺寸A)称为像素节距。Al布线和掩模的开口部分(图中的尺寸B)对应于光电二极管56的开口尺寸。通常尺寸B设置约为尺寸A的一半。
彩色滤光片51为包括透射对应于红光(R)的波长的光的滤光片、透射对应于蓝光(B)的波长的光的滤光片和透射对应于绿光(G)的波长的光的滤光片的基色滤光片。由于图6示出了一个像素,彩色滤光片51透射波长对应于R、G和B之一的波长。提供彩色滤光片51允许光电二极管56拾取RGB彩色信号作为输出。
图7示出了光电二极管56的灵敏度对波长的特性。水平轴代表波长,垂直轴代表灵敏度。如图7所示,光电二极管一直到红外区域都是灵敏的。
由于长波长的光难以衰减,因此还要求考虑从装置背侧入射的光。在本实施例中,设于FPC 15背侧上的金属箔14防止可见光和红外光进入。至于对各种颜色的灵敏度,积分并比较灵敏度特性值。灵敏度视彩色滤光片的性能、所使用的色素着色物质的特性等而变化。
接下来将参考图1描述本实施例的半导体成像装置4。在本实施例中,沿高度方向的像素尺寸针对图1所示的各条线而改变。使得布置有G和R的线L1中的像素的高度方向上的一边长于布置有B和G的线L2中的像素的高度方向上的一边。例如,布置有B和G的线L2内像素的高度方向上的一边形成为1.5μm,布置有G和R的线L1内像素的高度方向上的一边形成为2.0μm。通过如上所述地将布置有G和R的线L1内的像素的高度方向上的一边形成得更长,则布置有G和R的线L1内的光电二极管56的开口可以放大。
在图1中,光电二极管56的开口部分示意性地用点划线表示。如图1所示,开口部分具有矩形形状。各个开口部分的直径是依据穿过彩色滤光片51的光的波长来确定。也就是说,开口的直径形成为大于穿过彩色滤光片51的光的波长。由于穿过彩色滤光片51的光的波长针对R像素而言比针对G像素而言更长,R像素的开口部分40大于G像素的开口部分41。
图8是模拟得到的曲线图,示出了半导体成像装置的灵敏度相对于像素尺寸和各个波长的特性。在图8中,水平轴代表像素尺寸,垂直轴代表来自光电二极管的输出的相对值。像素尺寸是指方形像素的边长。例如,2μm代表边长为2μm的方形像素。使用了开口部分约为像素尺寸的一半的光电二极管。
图8表明当像素尺寸为1.5μm时,对靠近R灵敏度中心的650nm的灵敏度减小约15%,且对靠近G灵敏度中心的550nm的灵敏度减小约5%。因此可以理解,如果R像素的开口增大约15%且G像素的开口增大约5%,则可以防止灵敏度退化并可以获得良好的图像质量。由于通过放大开口也降低了受波性质影响的输出退化,实际开口可以制成略小于这些值,且还期望考虑到作为成像设备1的性能而恰当地选择实际开口。对于B像素,由于当像素尺寸为1.5μm时灵敏度退化约为2%,因此无需放大该开口。尽管在本实施例中像素尺寸根据像素的线而改变,但是仅要求放大开口直径从而处理光电二极管输出减小,且该开口不限于本实施例。还显而易见的是,该方法可以依据半导体成像装置的工艺而恰当地选择。根据本实施例,即使当像素尺寸为1.5μm时,灵敏度可以制成为对于R、G和B几乎相同,且图像退化可以得到防止。上文是对本实施例的成像设备1的配置的描述。
在描述本发明的成像设备1的优点之前,接下来将描述半导体成像装置的像素尺寸和灵敏度之间的关系。
从图8可以看出,当像素尺寸变小时,对长波长的相对灵敏度显著减小。这种现象的原因被认为是当向像素尺寸变小使得光电二极管的开口部分与波长大约相同尺寸时,光作为波的性能变得不可忽略。认为当像素尺寸为2.5μm以上时,光作为波的性能可以忽略,而当像素尺寸为2μm以下时,对应于长波长的像素灵敏度减小且图像退化发生。像素尺寸决定减小成像设备的尺寸和厚度方面的极限。
图9示出了对于不同尺寸的成像设备,半导体成像装置的像素尺寸和像素数目之间的关系。水平轴代表像素尺寸,垂直轴代表像素数目。从图9可以看出,当成像设备的尺寸变小时,像素尺寸趋于变小且像素数目趋于增大。图中的箭头TR表明该设备的趋势。一百万像素级别的成像设备常规上为约1/2至1/3英寸(用英寸表达),且现在实现为1/4英寸类型。如果尺寸缩小在未来继续且一百万像素装置实现为1/6英寸类型,则像素尺寸将约为2μm。因此,预期将遭受可归因于光作为波的性能的上述图像退化问题。
将在下文描述本实施例的成像设备1的优点。不同于图10所示的常规的所谓Bayer布置半导体成像装置,其中相同尺寸的方形像素均匀地布置,本实施例的成像设备1内的像素尺寸依据光电二极管56灵敏的波长而改变。具体而言,在长波长灵敏的光电二极管56的像素尺寸制成更大,使得开口部分制成更大。制成尺寸大于光波长的开口部分可以防止可归因于光作为波的性能的灵敏度降低。对于不包括长波长的R像素的线,像素尺寸制成更小,且由此半导体成像装置4可以缩小尺寸。
本实施例的半导体成像装置使用Bayer布置阵列,因此可以应用例如读取方法、颜色校正和插值的常规技术。因此,可以改善发展的效率,且也可以继承和应用各种技术诀窍。
也可以对第一实施例进行下述变化。尽管在本实施例中描述了Bayer阵列中像素尺寸改变的示例,但是本发明的原理可以应用于具有另外阵列的成像设备且可以对其进行恰当的调整。尽管在本实施例中光电二极管56的开口为矩形,但是开口可以改变为椭圆形、圆形、六角形等。
尽管在本实施例中描述了相同颜色的像素具有相同尺寸的开口,但是相同颜色的像素的开口尺寸可以改变。例如,在上述实施例中对于在中心550nm附近灵敏度降低约5%的G像素,可以组合大开口和小开口从而整体上将灵敏度提高5%。
考虑到长波长侧的半值波长依据光学滤光片5上的入射角而在数值上偏移到短波长侧,可以采用这样的配置,其中光学滤光片5上的入射角较大的半导体成像装置4像素周围的开口与中心附近相比直径增大。将详细地描述这一点。
由于光学滤光片5如前所述为反射类型,多层膜设于其一侧上。当入射角增大时,在该多层膜内的光学路径长度变得比较长。入射角的增加因此视为等效于多层膜的加厚,且长波长侧的半值的位置偏移到短波长侧。
图5示出了光学滤光片5上入射角和透射率之间的关系。图中的实线、虚线和双点划线分别示出了在光学滤光片5上入射角为0、10和20度时的透射率特性。从图5看出,当入射角改变为10和20度时,与入射角为0度相比,长波长侧的半值位置分别朝短波长侧偏移了约5nm和10nm,具体地达到745nm和740nm。图像质量评价表明,10nm变化导致视觉上不谐调的感觉,且图像质量视觉上恶化。
为了实现厚度缩小,周围像素上的入射角必须是大的。因此,光学滤光片5上入射角更大的半导体成像装置的周围像素的开口与靠近中心相比直径增大,使得由入射角增大导致的周围像素图像退化可以减小。
这种情形的确定开口直径的方法例如为,确定减小入射角影响的半导体成像装置4周围像素的开口直径,确定由波性质引起的灵敏度退化得到校正的开口直径,以及随后进行整体优化。相反,可以首先整体上确定开口直径,随后对周围像素进行校正。确定开口直径的方法可以依据成像设备的性能而恰当地改变。
当像素尺寸微型化至约1μm时,也需要来自B像素的输出来改变开口。这种情况下,给定开口从而平衡R、G和B的各个灵敏度比例。如果R、G和B的各个灵敏度比例得到平衡,则可以通过增大光电二极管56本身的灵敏度或优化曝光时间,或者通过增大读取电路侧上的增益等来整体上应对半导体成像装置4的灵敏度减小。这可以实现成像设备的尺寸和厚度缩小。
第二实施例
接下来描述本发明的第二实施例。第二实施例的成像设备配置成基本上与第一实施例的成像设备1相同,但是不同之处为,三维基板2并不透射可见光和近红外光。不透射可见光和近红外光的配置是指图像质量没有显著退化的一种配置。具体而言,透射率应约为0.5%以下,优选地0.2%以下。在本实施例中约为0.15%。
半导体成像装置4由硅制成。因此长波长侧上其灵敏度范围的上限取决于超过硅带隙能(Eg)的波长。硅带隙能约为1.12eV,且波长极限是由λ≈1240/Eg确定,其中波长为λ[nm],带隙能为Eg[eV]。因此长波长侧的灵敏度极限约为1100nm(1.1μm),这是远红外光线。
本实施例的三维基板2包括添加有对可见光和短波长侧是有效的高度分散碳黑的树脂材料(PAA),以及吸收紫外光的硼硅酸盐玻璃。三维基板2还可以具有约2重量%的铝,混合作为导热金属填充剂。这使得可见光和近红外光的灵敏度在半导体成像装置4的灵敏度范围变得足够低。评价图像退化从而优化该三维基板的树脂的材料厚度。由于为长波长的近红外光趋于透入更深,因此重要的是仔细考虑这一点。如果波长为1.1μm以下的近红外光进入半导体成像装置4,则噪声出现且图像质量退化。为了防止这一点,增加混合到树脂材料的金属填充剂的数量是有效的。附带地,当铝作为金属填充剂时,优选地使用铝氧化物(三氧化二铝,Al2O3)形式的铝从而降低电学绝缘电阻。
由于本实施例的三维基板2具有不透射可见光或近红外光的构造,本实施例可以实施于便携电话或其他设备,而无需设有用于遮蔽不需要的光到达成像设备1的遮光构件。这增加了设计便携装置时的灵活度,实现了设备的尺寸缩小,也实现了方便性的改善。
第三实施例
第三实施例的成像设备配置成基本上与参考图2至5所述第一实施例的半导体成像装置1相同。
图11为示出了半导体成像装置4的一个像素的放大视图。半导体成像装置4配置成基本上与参考图6所述第一实施例的半导体成像装置4相同。如图11所示,半导体成像装置4包括光电二极管56和光电二极管57。微透镜50、彩色滤光片51、内部透镜和保护膜52、Al布线和掩模53、绝缘层54、多晶硅55等设于光电二极管56的光入射侧上。
光电二极管56和57布置成使得各个入射表面面向相同方向。光电二极管57置于光电二极管56的入射表面的对立侧上,且是用于探测穿过光电二极管56的光的辅助光电二极管。使用相同类型的光电二极管作为光电二极管56和57。尽管在本实施例中使用相同类型的光电二极管作为光电二极管56和57,但是可以使用性能、形式等彼此不同的光电二极管作为光电二极管56和57。
来自光电二极管56和57的输出彼此累加并引至图中未示出的读取电路。读取方法为水平和垂直地发送电学电荷,如常规方法的情形那样。这种配置可以从光电二极管56和57导出输出。
光电二极管57的尺寸依据提供于光电二极管56入射侧上的彩色滤光片51透射的光的波长来确定。如果所提供的彩色滤光片51透射长波长的光,则使用大的光电二极管57,且如果所提供的彩色滤光片51透射短波长的光,则使用小的光电二极管57。如果所提供的彩色滤光片51透射短波长的光,则不需要提供光电二极管57。
图8所示灵敏度特性表明,当像素尺寸为1.5μm时,对靠近R灵敏度中心的650nm的灵敏度减小约15%,且对靠近G灵敏度中心的550nm的灵敏度减小约5%。在本实施例中,光电二极管57的尺寸设置为补偿由于像素尺寸缩小引起的灵敏度减小。例如,大尺寸的光电二极管57置于设有透射灵敏度降低较大的R(650nm)的彩色滤光片51的光电二极管56上,且小尺寸的光电二极管57置于设有透射灵敏度降低较小的G(550nm)的彩色滤光片51的光电二极管56上。大尺寸光电二极管57具有比小尺寸光电二极管57更高的灵敏度,且因此可以在大的程度上补偿灵敏度的降低。这样,光电二极管56和57输出的总和维持恒定。一般而言,长波长的光更深入半导体装置。因此,容易波动的光的波长越长,则可以从光电二极管57导出越大的输出。短波长的光难以到达光电二极管57,但是另一方面不容易波动,因此光电二极管56输出大的输出。基于这种关联,可以确定从光电二极管56和57获得的输出的变化,从而优化光电二极管57的尺寸。
图12示出了对于各种基色(R、G、B)像素,本实施例的半导体成像装置4的灵敏度对于波长λ的特性。水平轴代表波长,垂直轴代表灵敏度。该光电二极管是由硅制成,且直到近红外光区域都是灵敏的。该图示出了像素尺寸为2.5μm时对蓝光的灵敏度(光谱灵敏度)60,并以同样方式示出了对绿光的灵敏度61和对红光的灵敏度62。该图还示出了像素尺寸为1.5μm时对于红光的来自光电二极管56的输出63和来自光电二极管57的输出64。来自光电二极管56的输出63和来自光电二极管57的输出64之间的光谱特性存在一些不同。该原因被认为在于,更短波长的分量到达底侧上的光电二极管57时被衰减得更多。
如图12所示,光电二极管56一直到近红外光区域是灵敏的。由于长波长的光难以衰减,因此还要求考虑从装置背侧进入的光。在本实施例中,设于FPC 15背侧上的金属箔14防止可见光和红外光进入。至于对各种颜色的灵敏度,积分并比较灵敏度特性值。灵敏度视彩色滤光片的性能、所使用的色素着色物质的特性等而变化。上述是对本实施例的成像设备1的配置的描述。
下面描述本实施例的成像设备1的优点。如上述实施例中所述,存在这样的背景,即,当像素尺寸变小时,对长波长的相对灵敏度趋于显著降低,且由于未来的进一步尺寸缩小,预期将遭受图像退化的问题。
在本实施例的成像设备1中,光电二极管57置于光电二极管56的入射表面的对立侧上。这使得入射到半导体成像装置4上的光可以被光电二极管56和57都探测到,且探测的信号彼此累加。因此,半导体成像装置4的灵敏度可以提高。
在本实施例的成像设备1中,光电二极管57的尺寸是依据由设于各个光电二极管56入射表面侧上的彩色滤光片51透射的光的波长来确定的。也就是说,对于设有透射长波长的光的彩色滤光片51的光电二极管57而言,通过提高灵敏度来补偿波动光学效应,使得可以实现看上去灵敏度没有降低的性能。
从图12可以看出,通过累加来自光电二极管56的输出63和来自光电二极管57的输出64来补偿光电二极管56的灵敏度降低,使得可以导出与来自尺寸为2.5μm的红色像素的信号相当的信号,即处于与输出几乎没有降低的状态相同的水平。也可以按照类似的方式补偿来自绿色像素的输出的降低。
在本实施例的成像设备1中,使用相同类型的光电二极管作为光电二极管56和57,且光电二极管56和57均可以通过相同方法被光电转换。因此具有下述优点,即,可以原样地使用常规电路和各种校正等。
本实施例的半导体成像装置使用Bayer布置阵列,因此可以应用例如读取方法、颜色校正和插值的常规技术。因此,可以改善发展的效率,且也可以继承和应用各种技术诀窍。
本实施例包括不透射可见光或近红外光的三维基板2,如上述第二实施例那样。这使得本实施例和第二实施例一样实施于便携电话或其他设备,而无需设有用于遮蔽不需要的光到达成像设备1的遮光构件。这增加了设计便携装置时的灵活度,实现了设备的尺寸缩小,也实现了方便性的改善。
也可以对第三实施例进行下述变化。尽管在上述实施例中描述了使用两个光电二极管56和57的示例,但是另外光电二极管可以添加到光电二极管57底侧用于对应于长波长红光的像素。
当像素尺寸微型化至约1μm时,优选地为对应于R、G和B的各个像素的提供光电二极管57。还期望选择灵敏度从而平衡R、G和B的各个灵敏度比例。这可以实现成像设备的尺寸和厚度缩小。
考虑到长波长侧的半值波长依据光学滤光片5上的入射角而在数值上偏移到短波长侧,可以采用这样的配置,其中光学滤光片5上的入射角更大的半导体成像装置4周围像素的灵敏度相对于中心附近被提高。如前所述,周围像素上的入射角必须是大的,从而实现厚度缩小,且入射角的增大使得该周围内长波长侧上的半值位置偏移到短波长侧。
因此,光学滤光片5上入射角更大的半导体成像装置的周围像素的灵敏度相对于中心附近被提高,使得由于入射角增大所致的周围像素的图像退化可以减小。
这种情形的确定灵敏度的方法例如为,确定由于入射角影响所致的半导体成像装置4的周围像素的灵敏度降低,确定灵敏度退化得到校正的灵敏度,以及随后进行整体优化。相反,可以首先整体上确定该灵敏度,随后对周围像素进行校正。确定灵敏度的方法可以依据成像设备的性能而恰当地改变。
第四实施例
第四实施例的成像设备配置成基本上与参考图2至5所述第一实施例的半导体成像装置1相同。
图13为示出了半导体成像装置4的一个像素的放大视图。半导体成像装置4配置成基本上与参考图6所述第一实施例的半导体成像装置4相同。如图13所示,半导体成像装置4包括将入射光转换成电信号的光电二极管56。
微透镜50、彩色滤光片51、内部透镜和保护膜52、Al布线和掩模53、绝缘层54、多晶硅55等设于光电二极管56的光入射侧上。在与光电二极管56的入射表面的对立侧上,半导体成像装置4具有反射层58,用于沿光电二极管56的方向反射穿过光电二极管56的光。
铝被用于反射层58作为银白色金属。铝经常用于半导体作为电极和内部布线,且因此容易使用。铝的低密度实现了轻的重量,且单位价格低于其他银白色金属。尽管在本实施例中使用了铝,但是也可以使用其他银白色金属,例如镍、钛等。如果使用镍,光电二极管56可以被电磁屏蔽,且该功能优于EMI等。可以恰当地选择反射层的材料或者作为反射膜的厚度和尺寸,从而获得所需的反射率。
反射层58的尺寸和反射率是依据提供于光电二极管56的入射表面侧上的彩色滤光片51透射的光的波长来确定的。如果所提供的彩色滤光片51透射长波长的光,则使用大的尺寸和反射率的反射层58,且如果所提供的彩色滤光片51透射短波长的光,则使用小的尺寸和反射率的反射层58。如果所提供的彩色滤光片51透射短波长的光,则不需要包括反射层58。尽管在本实施例中,反射层58的尺寸和反射率是依据彩色滤光片51透射的光的波长来确定的,但是反射层58的改变可以仅限于尺寸或者仅限于反射率。
图8所示灵敏度特性表明,当像素尺寸为1.5μm时,对靠近R灵敏度中心的650nm的灵敏度减小约15%,且对靠近G灵敏度中心的550nm的灵敏度减小约5%。在本实施例中,设置反射层58的尺寸和反射率,从而补偿由于像素尺寸缩小引起的灵敏度减小。例如,大的尺寸和反射率的反射层58置于设有透射灵敏度降低较大的R(650nm)的彩色滤光片51的光电二极管56上,且小的尺寸和反射率的反射层58置于设有透射灵敏度降低较小的G(550nm)的彩色滤光片51的光电二极管56上。反射层58的尺寸和反射率越大,光电二极管56的灵敏度越高。
一般而言,长波长的光更深入半导体装置。因此,容易波动的光的波长越长,则从反射层58反射的光数量越大。短波长的光以少量到达反射层58,但是另一方面不容易波动,因此通过从光电二极管56的入射表面侧入射的光可以获得大的输出。基于这种关联,可以确定从反射层58反射的光获得的输出的变化,从而优化反射层58的尺寸和反射率。
光电二极管56光电转换从设有彩色滤光片51的入射表面侧入射的光以及被反射层58反射的光,并输出电信号。光电二极管56的输出被引至图中未示出的读取电路。读取方法为水平和垂直地发送电学电荷,如常规方法的情形那样。这种配置可以从光电二极管56导出输出。
图14示出了光电二极管56的灵敏度对于波长得特性。水平轴代表波长,垂直轴代表灵敏度。该光电二极管是由硅制成,且直到近红外光区域都是灵敏的。该图示出了像素尺寸为2.5μm时对蓝光的灵敏度(光谱灵敏度)60,并以同样方式示出了对绿光的灵敏度61和对红光的灵敏度62。该图还示出了像素尺寸为1.5μm时,对于红光的来自光电二极管56的输出63和从来自反射层58的光再次进入获得的输出65。来自光电二极管56的输出63和来自从反射层58的光再次进入获得的输出65之间的光谱特性存在一些不同。其原因被认为在于,更短波长的分量到达底反射层58时衰减更多。
如图14所示,光电二极管56一直到近红外光区域是灵敏的。由于长波长的光难以衰减,因此还要求考虑从装置背侧进入的光。在本实施例中,设于FPC 15背侧上的金属箔14防止可见光和红外光进入。至于对各种颜色的灵敏度,积分并比较灵敏度特性值。灵敏度视彩色滤光片的性能、所使用的色素着色物质的特性等而变化。上述是对本实施例的成像设备1的配置的描述。
下面描述本实施例的成像设备1的优点。如上述实施例中所述,存在这样的背景,即,当像素尺寸变小时,对长波长的相对灵敏度趋于显著降低,且由于未来的进一步尺寸缩小,预期将遭受图像退化的问题。
在本实施例的成像设备1中,反射层58置于光电二极管56的入射表面的对立侧上。这使得穿过光电二极管56的光被反射层58反射并再次进入光电二极管56。因此,光电二极管56的灵敏度可以提高。
在本实施例的成像设备1中,反射层58的尺寸和反射率是依据由设于各个光电二极管56入射表面侧上的彩色滤光片51透射的光的波长来确定的。也就是说,设有透射长波长的光的彩色滤光片51时,使用大的尺寸和反射率的反射层58,从而反射光的量增大且光电二极管56的灵敏度增大。这样,对于对长波长的光灵敏的光电二极管,波动光学效应得到补偿,使得可以实现看上去灵敏度没有降低的性能。
从图14可以看出,通过累加来自光电二极管56的输出63和通过反射层58获得的输出65,可以导出与来自尺寸为2.5μm的红色像素的输出相当的输出,即处于与输出几乎没有降低的状态相同的水平。按照类似的方式,也可以通过使来自反射层58的光再次进入而补偿来自绿色像素的输出的降低。
本实施例的半导体成像装置使用Bayer布置阵列,因此可以应用例如读取方法、颜色校正和插值的常规技术。因此,可以改善发展的效率,且也可以继承和应用各种技术诀窍。
本实施例包括不透射可见光或近红外光的三维基板2,如上述第二实施例那样。这使得本实施例和第二实施例一样实施于便携电话或其他设备,而无需设有用于遮蔽不需要的光到达成像设备1的遮光构件。这增加了设计便携装置时的灵活度,实现了设备的尺寸和反射率缩小,也实现了方便性的改善。
也可以对第四实施例进行下述变化。尽管在上述实施例中描述了使用银白色金属作为反射层58的示例,但是反射层58可以由半导体形成。可以通过堆叠光学折射率随掺杂材料变化的膜以形成多层,来获得该半导体反射层。作为另一方法,可以使用多晶硅层作为反射膜而非导电膜。可以恰当地选择折射率、膜的层数、反射率等。
当像素尺寸微型化至约1μm时,优选地为对应于R、G和B的各个像素的提供反射层58。还期望选择灵敏度从而平衡R、G和B的各个灵敏度比例。这可以实现成像设备的尺寸和反射率和厚度缩小。
考虑到长波长侧的半值波长依据光学滤光片5上的入射角而在数值上偏移到短波长侧,可以采用这样的配置,其中光学滤光片5上的入射角更大的半导体成像装置4周围像素的灵敏度相对于中心附近被提高。如前所述,周围像素上的入射角必须是大的,从而实现厚度缩小,且入射角的增大使得该周围内长波长侧上的半值位置偏移到短波长侧。
因此,光学滤光片5上入射角更大的半导体成像装置的周围像素的灵敏度相对于中心附近被提高,使得由于入射角增大所致的周围像素的图像退化可以减小。
这种情形的确定灵敏度的方法例如为,确定由于入射角影响所致的半导体成像装置4的周围像素的灵敏度降低,确定灵敏度退化得到校正的灵敏度,以及随后进行整体优化。相反,可以首先整体上确定该灵敏度,随后对周围像素进行校正。确定灵敏度的方法可以依据成像设备的性能而恰当地改变。
尽管已经描述了目前被视为本发明优选实施例的实施例,但是应该理解,可以对其进行各种修改和变化,且所附权利要求旨在覆盖落在本发明真实精神和范围之内的所有这些修改和变化。
工业适用性
本发明可用于设有使用半导体成像装置的成像设备的便携终端、便携电话等。

Claims (17)

1.一种成像设备,包括:
半导体成像装置,具有彩色滤光片和多个光电二极管;以及
成像光学系统,用于将光从目标引导至所述半导体成像装置,
其中所述半导体成像装置的各个光电二极管的开口直径是依据穿过设于所述光电二极管的入射表面侧上的彩色滤光片并到达所述入射表面的光的波长来确定。
2.如权利要求1所述的成像设备,包括置于所述半导体成像装置和所述成像光学系统之间的光学滤光片,
其中所述半导体成像装置的各个光电二极管的开口直径是依据进入与所述光电二极管相对应光学滤光片上的区域的光的入射角来确定。
3.如权利要求1或2所述的成像设备,其中所述半导体成像装置的统一线上的像素的高度相等。
4.一种成像设备,包括:
半导体成像装置,具有彩色滤光片和多个光电二极管;以及
成像光学系统,用于将光从目标引导至所述半导体成像装置,
其中位于所述多个光电二极管的至少一部分的入射表面的对立侧上的所述半导体成像装置具有用于探测穿过所述光电二极管的光的辅助光电二极管。
5.如权利要求4所述的成像设备,其中所述辅助光电二极管的尺寸是依据穿过设于所述光电二极管入射表面侧上的彩色滤光片并到达所述入射表面的光的波长来确定。
6.如权利要求4或5所述的成像设备,包括置于所述半导体成像装置和所述成像光学系统之间的光学滤光片,
其中所述辅助光电二极管的尺寸是依据进入与所述光电二极管相对应光学滤光片上的区域的光的入射角来确定。
7.一种成像设备,包括:
半导体成像装置,具有彩色滤光片和多个光电二极管;以及
成像光学系统,用于将光从目标引导至所述半导体成像装置,
其中位于所述多个光电二极管的至少一部分的入射表面的对立侧上的所述半导体成像装置具有用于反射穿过所述光电二极管的光的反射层。
8.如权利要求7所述的成像设备,其中所述反射层的尺寸或反射率是依据穿过设于光电二极管入射表面侧上的彩色滤光片并到达所述入射表面的光的波长来确定。
9.如权利要求7或8所述的成像设备,其中所述反射层由银白色金属形成。
10.如权利要求7或8所述的成像设备,其中所述反射层是由半导体形成。
11.如权利要求7至10任意一项所述的成像设备,包括置于所述半导体成像装置和所述成像光学系统之间的光学滤光片,
其中所述反射层的尺寸或反射率是依据进入与所述光电二极管相对应光学滤光片上的区域的光的入射角来确定。
12.如权利要求1至11任意一项所述的成像设备,包括用于容放所述半导体成像装置的三维基板,所述三维基板不透射可见光和近红外光。
13.如权利要求1至12任意一项所述的成像设备,其中所述半导体成像装置的像素节距为2微米以下。
14.一种包括如权利要求1至13任意一项所述的成像设备的便携电话设备。
15.一种半导体成像装置,包括:
多个光电二极管,用于将入射光转换成电信号;以及
彩色滤光片,设于光电二极管的入射表面侧上,
其中所述光电二极管的开口的直径是依据穿过设于所述光电二极管的入射表面侧上的彩色滤光片并到达所述入射表面的光的波长来确定。
16.一种半导体成像装置,包括:
多个光电二极管,用于将入射光转换成电信号;
彩色滤光片,设于光电二极管的入射表面侧上;以及
辅助光电二极管,布置于所述多个光电二极管的至少一部分的入射表面的对立侧上,所述辅助光电二极管具有依据从彩色滤光片入射到所述光电二极管的透射光的波长的尺寸。
17.一种半导体成像装置,包括:
多个光电二极管,用于将入射光转换成电信号;
彩色滤光片,设于光电二极管的入射表面侧上;以及
反射层,布置于所述多个光电二极管的至少一部分的入射表面的对立侧上,所述反射层具有依据从彩色滤光片入射到所述光电二极管的透射光的波长的尺寸或反射率。
CNA2006800071867A 2005-07-21 2006-06-20 成像装置 Pending CN101133495A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005210882A JP2007027602A (ja) 2005-07-21 2005-07-21 撮像装置
JP210886/2005 2005-07-21
JP210882/2005 2005-07-21
JP210883/2005 2005-07-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2009101481883A Division CN101587904A (zh) 2005-07-21 2006-06-20 成像设备

Publications (1)

Publication Number Publication Date
CN101133495A true CN101133495A (zh) 2008-02-27

Family

ID=37787931

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2009101481883A Pending CN101587904A (zh) 2005-07-21 2006-06-20 成像设备
CNA2006800071867A Pending CN101133495A (zh) 2005-07-21 2006-06-20 成像装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2009101481883A Pending CN101587904A (zh) 2005-07-21 2006-06-20 成像设备

Country Status (2)

Country Link
JP (1) JP2007027602A (zh)
CN (2) CN101587904A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103128450A (zh) * 2013-02-19 2013-06-05 深圳市海目星激光科技有限公司 一种紫外激光加工装置
CN103765590A (zh) * 2011-09-01 2014-04-30 佳能株式会社 固态图像传感器
CN106575657A (zh) * 2014-07-17 2017-04-19 Setech有限公司 固体摄像装置及其制造方法
CN108769502A (zh) * 2014-06-24 2018-11-06 麦克赛尔株式会社 摄像处理装置以及摄像处理方法
CN110007291A (zh) * 2019-04-16 2019-07-12 深圳市速腾聚创科技有限公司 一种接收系统和激光雷达
CN110324545A (zh) * 2019-06-11 2019-10-11 Oppo广东移动通信有限公司 一种像素结构、图像传感器及终端

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173542B2 (ja) * 2008-04-04 2013-04-03 キヤノン株式会社 光電変換装置
KR101648201B1 (ko) * 2009-11-04 2016-08-12 삼성전자주식회사 영상 센서 및 이의 제조 방법.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765590A (zh) * 2011-09-01 2014-04-30 佳能株式会社 固态图像传感器
US9478575B2 (en) 2011-09-01 2016-10-25 Canon Kabushiki Kaisha Solid-state image sensor
CN103765590B (zh) * 2011-09-01 2017-09-26 佳能株式会社 固态图像传感器
CN103128450A (zh) * 2013-02-19 2013-06-05 深圳市海目星激光科技有限公司 一种紫外激光加工装置
CN108769502A (zh) * 2014-06-24 2018-11-06 麦克赛尔株式会社 摄像处理装置以及摄像处理方法
CN108769502B (zh) * 2014-06-24 2020-10-30 麦克赛尔株式会社 摄像处理装置以及摄像处理方法
CN106575657A (zh) * 2014-07-17 2017-04-19 Setech有限公司 固体摄像装置及其制造方法
CN106575657B (zh) * 2014-07-17 2020-04-14 Setech有限公司 固体摄像装置及其制造方法
CN110007291A (zh) * 2019-04-16 2019-07-12 深圳市速腾聚创科技有限公司 一种接收系统和激光雷达
CN110007291B (zh) * 2019-04-16 2021-07-02 深圳市速腾聚创科技有限公司 一种接收系统和激光雷达
CN110324545A (zh) * 2019-06-11 2019-10-11 Oppo广东移动通信有限公司 一种像素结构、图像传感器及终端
CN110324545B (zh) * 2019-06-11 2022-01-28 Oppo广东移动通信有限公司 一种像素结构、图像传感器及终端

Also Published As

Publication number Publication date
JP2007027602A (ja) 2007-02-01
CN101587904A (zh) 2009-11-25

Similar Documents

Publication Publication Date Title
US20110045869A1 (en) Imaging apparatus
CN101133495A (zh) 成像装置
JP6597729B2 (ja) 撮像ユニットおよび撮像装置
US8761596B2 (en) Dichroic aperture for electronic imaging device
CN1551615B (zh) 成像装置
US5210400A (en) Solid-state imaging device applicable to high sensitivity color camera and using diffraction gratings
TWI559023B (zh) 可同時偵測紅外光和可見光之光學感測裝置
CN105393356A (zh) 固体图像传感器、固体图像传感器制造方法和电子设备
CN209805867U (zh) 一种终端
JP3948439B2 (ja) 密着イメージセンサおよびこれを用いた画像読み取り装置
US8587082B2 (en) Imaging device and camera module
KR20090067059A (ko) 디지털 이미지를 생성하는 방법 및 장치
CN114500869B (zh) 一种电子设备及屏下光检测组件
CN101388963A (zh) 成像装置及其设置方法
CN108021845A (zh) 光学指纹传感器模组
US7038722B2 (en) Optical imaging system for suppressing the generation of red-toned ghosting particularly when there is background light
WO2021168666A1 (zh) 指纹识别装置和电子设备
JP2004254259A (ja) 撮像装置及び小型電子機器
JPH0927606A (ja) Cog構造の固体撮像素子
JP2781478B2 (ja) フィルタリング及び他の用途に用いる分解及び感知装置の可変検出器幾何構造
JP2007027604A (ja) 撮像装置
KR100780338B1 (ko) 인증 시스템, 광방사 장치, 인증 장치 및 인증 방법
EP3971763B1 (en) Fingerprint recognition apparatus and electronic device
CN109791936A (zh) 摄像元件及调焦装置
JP2007027603A (ja) 撮像装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication