CN101120468A - 制造用于燃料电池的催化剂层的方法和装置 - Google Patents

制造用于燃料电池的催化剂层的方法和装置 Download PDF

Info

Publication number
CN101120468A
CN101120468A CNA2006800046761A CN200680004676A CN101120468A CN 101120468 A CN101120468 A CN 101120468A CN A2006800046761 A CNA2006800046761 A CN A2006800046761A CN 200680004676 A CN200680004676 A CN 200680004676A CN 101120468 A CN101120468 A CN 101120468A
Authority
CN
China
Prior art keywords
catalyst layer
carrier
fuel cell
dispersed
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800046761A
Other languages
English (en)
Other versions
CN100578845C (zh
Inventor
堀胜
平松美根男
加纳浩之
吉田怜
片山幸久
杉山彻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101120468A publication Critical patent/CN101120468A/zh
Application granted granted Critical
Publication of CN100578845C publication Critical patent/CN100578845C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8867Vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种制造用于燃料电池的催化剂层的方法,其包括气相沉积纳米尺寸结构例如碳纳米壁(CNW)作为催化剂层载体的步骤,和将催化剂组分和/或电解质组分放置/散布在催化剂层载体上的步骤。此方法简化了燃料电池电极层的制造过程,同时改进了催化剂组分和电解质的可散布性,并因此提高了燃料电池的发电效率。

Description

制造用于燃料电池的催化剂层的方法和装置
技术领域
本发明涉及一种用于聚合物电介质燃料电池的催化剂层,其简化了制造过程,其中可形成均匀的催化剂层薄膜,并形成充足的三相界面。本发明还涉及一种采用这种催化剂层的燃料电池以及制造用于燃料电池的催化剂层的装置。
背景技术
期望将具有聚合物电解质膜、尺寸和重量容易减小的聚合物电解质燃料电池实际用作移动车辆例如电动车、小型余热发电系统的电源等。但是,聚合物电解质燃料电池具有较低的工作温度,并且其余热不易用于有效发电的辅助设备。因此,其实际应用要求在阳极反应气体(例如纯氢)和阴极反应气体(例如空气)高利用率的工作环境中获得高发电效率和高输出功率密度。
在聚合物电解质燃料电池中,采用如下结构的膜电极组件,即将具有燃料氧化能力和氧化剂还原能力的电极电解质层设置在上述离子交换膜的两侧,并将气体扩散层进一步设置在催化剂层的外部。特别是,此结构包括由用于选择性传输氢离子的聚合物电解质膜组成的离子交换膜,在其两侧都形成有主要由负载铂族金属催化剂的碳粉末构成的电极催化剂层。在电极催化剂层的外表面上形成既有可透过燃料气体又有导电性的气体扩散层。通常,气体扩散层包括碳纸或碳布,在其上由包括氟树脂、硅、碳等粉末的浆料形成膜。上述电极催化剂层和气体扩散层称为电极。
每个聚合物电解质燃料电池的阳极和阴极的催化剂层中的电极反应在三相界面(下文称为反应部位)上进行,在这里相应的反应气体、催化剂、和含氟离子交换树脂(电解质)同时存在。因此,在聚合物电解质燃料电池中,催化剂例如金属催化剂或负载金属的催化剂(例如由大比表面积且上面负载金属催化剂例如铂的碳黑载体组成的负载金属的碳)通常涂敷有和聚合物电解质膜相同或者不同类型的含氟离子交换树脂,以提供催化剂层材料,从而实现催化剂层中反应部位所谓的三维化以扩大反应部位。
上述用以涂敷催化剂的含氟离子交换树脂的典型实例为由DuPont生产的Nafion,其为具有高离子传导性和磺酸基并且在氧化和还原空气中化学稳定的全氟化碳聚合物(下文称为硫酸型全氟化碳聚合物)。
目前,通过以下步骤制造燃料电池的电极催化剂层:制造碳黑,使碳黑负载主要由铂族组成的催化剂金属,以质子导体浸渍催化剂,制造墨汁形式的合成电解质铂/碳黑,并将墨汁施加到电解质膜上。这样,涉及大量步骤,而质子导体的散布经常不成功,造成不能充足地形成电解质、铂和载体的三相界面。如上所述,三相界面指质子传导聚合物、催化剂金属和燃料气体的界面;此界面的形成对发电有重要影响。
常规技术的问题总结如下。
(1)难以获得均匀催化剂层薄膜。
(2)低生产率(即催化剂层合成步骤较多)。
(3)因为大量生产步骤造成的成本增加。
(4)三相界面的形成不足,这造成燃料气体不能到达界面以及不能发挥电池的全部性能(即Pt利用率较低)。
认为这些问题产生的原因如下。
(1)将催化剂施加至电解质要求催化剂为墨汁形式。当施加墨汁时难以获得均匀的薄膜厚度,这造成不均匀生电。不同材料的兼容性使得难以制备墨汁。
(2)常规催化剂层制造过程需要多个步骤:使制造的载体负载催化剂组分然后混合电解质溶液,并因此造成生产率下降。
(3)大量步骤增加了所需要设备的数量和尺寸并增加了成本。
(4)因为常规催化剂层制造过程包括负载催化剂金属和随后的浸泽电解质,因此电解质覆盖催化剂组分,并造成三相界面形成不足,而这对电池性能极其重要。因此,电池性能可能会下降。
关于和催化剂层相关的技术,在Electrochem,Acta.,vol.38,No.6,p.793(1993)中提出,将碳纤维用作催化剂载体,这里将催化剂颗粒负载在碳纤维表面上。但是,如果制造负载催化剂颗粒的碳纤维并在集流体表面上形成此纤维以形成用作燃料电池的电极,那么尽管在电解质膜附近产生的电子在到达集流体之前在颗粒(纤维)之间移动的可能性较小,但是通常需要颗粒之间的多次传输,这使得难以充分提高导电性。
因此,难于以燃料电池常规电极将催化剂层的导电性提高到足够高的水平,并因此不可能实现足够高的燃料电池发电效率。日本专利公开(Kokai)2002-298861A公开了一种用于燃料电池的电极的发明,其目标在于提供一种高发电效率的燃料电池,实现此燃料电池的燃料电池电极,和制造实现此燃料电池的燃料电池电极的方法。此电极包括由导电多孔材料制成的集流体、由50%以上的尖端部分相对于集流体平面具有45°或更大仰角的碳纳米纤维组成的催化剂层、负载在碳纳米纤维表面上的电极催化剂颗粒、以及在和电极催化剂颗粒接触的碳纳米纤维表面上形成的质子导体。
发明内容
在日本专利公开(Kokai)2002-298861A公开的上述发明可简化燃料电池的包括电极催化剂层和气体扩散层的电极的制造过程,并改进催化剂层的导电性,从而可在一定程度上提高燃料电池发电效率。但是改进程度不够。
因此,考虑到现有技术的问题,本发明的目标在于简化燃料电池的包括电极催化剂层和气体扩散层的电极的制造过程,并充分形成三相界面,从而可提高燃料电池的发电效率。
本发明是基于发明人认识到,上述问题可如下解决,采用具有用于燃料电池电极的扩散层和/或催化剂层的气相生长纳米尺寸结构的具体碳多孔材料,以及尤其是在相同的腔内进行催化剂组分和/或电解质的负载和散布。
一方面,本发明提供一种制造用于燃料电池的催化剂层的方法。此方法包括以下步骤:气相生长具有纳米尺寸结构的碳多孔材料例如碳纳米壁(CNW)作为用于催化剂层的载体;以及将催化剂组分和/或电解质组分负载并散布在用于催化剂层的载体上。碳纳米壁(CNW)为具有纳米尺寸结构的碳多孔材料。下文将描述其结构、制造方法等等。本发明采用的催化剂和聚合物电解质可以是广泛已知的催化剂和聚合物电解质。
和常规燃料电池结构制造方法相比,上述方法可大大简化制造过程。此方法还可充分形成三相界面。此外,因为具有纳米尺寸结构的碳多孔材料例如碳纳米壁(CNW)具有大的比表面面积,所以可减少采用的铂族贵金属催化剂的量。
优选,在相同的腔内进行本发明的制造用于燃料电池的催化剂层的方法步骤。特别是,例如:
(a)在相同的腔内,进行步骤(1),气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体,然后同时进行步骤(2)将催化剂组分负载并散布在用于催化剂层的载体上和步骤(3)使电解质组分负载和散布在用于催化剂层的载体上。
(b)在相同的腔内,先进行步骤(1)气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体,然后进行步骤(2)将催化剂组分负载并散布在用于催化剂层的载体上,接下来进行步骤(3)使电解质组分负载和散布在用于催化剂层的载体上。
(c)在相同的腔内,进行步骤(1)气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体,然后进行步骤(3)使电解质组分负载和散布在用于催化剂层的载体上,接下来进行步骤(2)将催化剂组分负载并散布在用于催化剂层的载体上。
(b)在相同的腔内,同时进行步骤(1)气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体、步骤(2)将催化剂组分负载并散布在用于催化剂层的载体上、步骤(3)使电解质组分负载和散布在用于催化剂层的载体上。
优选,通过从下述方法选择的一种或多种方法执行步骤(2)将催化剂组分负载并散布在用于催化剂层的载体上和/或步骤(3)使电解质组分负载和散布在用于催化剂层的载体上,即激光烧蚀方法、等离子体放电方法、电弧放电方法以及将含催化剂和/或电解质的气体或溶液负载并散布在载体上。
第二方面,本发明提供一种包括通过上述方法制造的用于燃料电池的催化剂层的燃料电池。具有本发明燃料电池结构的燃料电池为平坦的或者柱状的。
第三方面,本发明提供一种制造上述用于燃料电池的催化剂层的装置。此装置包括,在相同的腔内的:等离子体发生装置,用于气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体,例如碳纳米壁(CNW);以及一种或多种发生装置,使催化剂组分和/或电解质组分负载和散布在用于催化剂层的载体上,所述一种或多种发生装置从激光烧蚀装置、等离子体放电装置和电弧放电装置中选择。
具有纳米尺寸结构的碳多孔材料包括石墨和无定形碳;实例例如富勒烯、碳纳米管、碳纳米角和碳纳米片,其中碳纳米壁在本发明中特别优选。
本发明中采用的碳纳米壁为二维碳纳米结构。其通常具有壁状结构,其中壁以基本一致的方向从基底表面上升。富勒烯(例如C60)为零维碳纳米结构。可认为碳纳米管为一维碳纳米结构。碳纳米片为与碳纳米壁相似的平面二维小片的集合体;和玫瑰花瓣相似,单片不互联;碳纳米结构相对于基底的方向性不如碳纳米壁。因此,碳纳米壁是特征与富勒烯、碳纳米管、碳纳米角或者碳纳米片完全不同的碳纳米结构。
通过将具有纳米尺寸结构的碳多孔材料例如碳纳米壁用作用于燃料电池的催化剂层中的催化剂载体,所述碳纳米壁具有微观结构例如多孔性以及宏观结构例如图形可自由改变的纳米结构的碳纳米材料,(1)可大大简化制造过程,降低了制造成本;以及(2)可形成均匀的催化剂层薄膜,并允许充分形成三相界面。结果,可获得改进的燃料电池性能。
附图说明
图1示意性示出了CNW的制造装置;
图2示出了制造CNW的SEM图像;
图3示意性示出了根据本发明的其中负载和散布催化剂金属和作为电解质的质子导体的碳纳米壁(CNW)催化剂层;
图4示意性示出了本发明中使用的催化剂层的一步制造装置的结构;
图5示意性示出了本发明中使用的催化剂层一步制造装置的另一种结构。;
图6(a)到6(b)示出了表示根据本发明的形成层的顺序的流程图;
图7示出了制备样品的SEM图像;以及
图8示出了通过RDE方法所制备样品的催化剂活性的评估结果。
具体实施方式
下面描述制造最适合作为具有纳米尺寸结构的碳多孔材料的碳纳米壁(CNW)的过程。
图1示意性示出了制造CNW的装置。图2示出了采用此装置制造CNW的SEM图像。参考图1,将H基团和例如CF4、C2F6、或CH4的含碳反应气体引入腔内的平行板电极之间,并进行PECVD(等离子体增强化学气相沉积)。此时,优选将基底加热至大约500℃。平行板电极相互隔开大约5cm;在板之间,采用13.56MHz输出为100W的RF输出装置产生电容耦合等离子体。H基团生长的位置为长度为200mm内径φ26mm的石英管,将H2气体引入其中以采用13.56MHz输出为400W的RF输出装置产生电感耦合等离子体。源气体和H2气体的流速分别为15sccm和30sccm,腔内的压力为100mTorr。此系统中生长8小时的CNW高度(CNW膜厚度)为1.4μm;但是,这仅仅为一个实例,而这些部分不限制实验条件、设备和结果。
下面参考附图描述本发明。
图3示意性示出了根据本发明的其中负载和散布催化剂金属和作为电解质的质子导体的碳纳米壁(CNW)催化剂层。没有示出的固体聚合物膜夹在图3的固体聚合物膜催化剂层之间。在图3的实例中,催化剂载体由碳纳米壁(CNW)形成,其中碳纳米壁(CNW)催化剂载体的侧壁中负载和散布有催化剂金属和质子导体。
接下来,参考实例描述本发明;但是本发明不限于任何实例。
[实例1]
描述了采用图4所示出的催化剂层一步制造装置制造催化剂层薄膜的过程。在本实例中,CNW用作扩散层载体。在相同的腔内,制造载体(CNW),同时采用激光或等离子体将催化剂组分和电解质(质子传导材料)负载和散布在载体上而制造催化剂层。对于催化剂组分和电解质(质子传导材料)的负载/散布,例如采用激光烧蚀方法、等离子体方法或者电弧放电方法。在本实例中,顺序或者同时地散布催化剂组分和电解质。
源气体由烃和含卤素烃组成。质子导体由以磺酸基、磷酸基、羟基、咪唑基、固体酸盐、环庚三烯酚酮、离子液体等作为质子载体的物质组成。催化剂材料包括:第8族金属、Cu、Ag、Au或Ce;两种或者多种这些物质的有机金属化合物;这些物质的金属盐或者金属;或者其混合物。这些催化剂材料仅仅是实例,并且可采用燃料电池领域已知的其它催化剂材料。基底可由聚合物材料、金属、碳、或陶瓷、或者两种或者多种这些材料的组合物组成。在生长后,容易剥离生长的薄膜催化剂层。
下面描述用于负载和散布催化剂组分和电解质(质子传导材料)的激光烧蚀方法、等离子体放电方法和电弧放电方法的使用实例。
激光烧蚀方法
(催化剂金属)
在制造CNW以后,将腔用Ar气替换,然后用真空泵排空而将压力设置为0.1到1mTorr。替换气体可以是其它惰性气体,例如He或者N2。用于内部辐照腔的激光器由KrF激基激光器(波长248nm)组成。将Pt金属靶设置为垂直于CNW样品,然后以脉冲能量为100到400mJ/脉冲、辐照面积为0.05cm2(即能量密度为2到8J/cm2)、频率为100Hz的激基激光器辐照1分钟,从而烧蚀Pt金属并使催化剂金属(Pt)的微粒负载在CNW上。此时,负载在CNW上的Pt重量大约为0.025到0.1mg/cm2-CNW基底,而Pt颗粒的直径大约为3nm。可以基本上与频率和辐照持续时间成比例地控制载体的Pt量。除了KrF激基激光器以外,还可采用其它激光器,例如各种激基激光器如ArF、XeCl、和XeF激光器、YAG激光器以及CO2激光器。
(质子导体)
在CNW负载催化剂金属以后,可采用相同的KrF激基激光器辐照设置为垂直于CNW样品的质子导体(DuPont制造的“Nafion”)1分钟,此激光脉冲能量为40到400mJ/脉冲、辐照面积为0.4cm2(即能量密度为0.1到1J/cm2)、频率为100Hz,从而烧蚀质子导体并使质子导体负载在负载Pt的CNW上。此时,腔压力为0.1到1mTorr;气体可以是不同于Ar的另一种惰性气体例如He或N2。负载在CNW上的质子导体重量大约为0.025到0.1mg/cm2-CNW基底。可以基本上与频率和辐照持续时间成比例地控制负载的质子导体量。除了KrF激基激光器以外,还可采用其它激光器,例如各种激基激光器如ArF、XeCl、和XeF激光器、和F2激光器。
等离子体放电方法
(催化剂金属)
在制造CNW以后,将腔用Ar气替换,然后用真空泵排空而将压力设置为50到500mTorr。采用的Ar气预先经过其中溶解铂有机材料(例如三甲基甲基环戊二烯基铂)的有机溶剂(例如己烷)。替换气体可选择地为另一种惰性气体,例如He或者N2。采用13.56MHz和100W的RF输出装置产生电容耦合等离子体。当产生等离子体的持续时间为1分钟时,负载的Pt重量大约为0.05mg/cm2。可以基本上与产生等离子体的持续时间成比例地控制负载的Pt量。
(质子导体)
在CNW负载催化剂金属后,将腔用Ar气替换,然后用真空泵排空而将压力设置为50到500mTorr。将Ar气预先经过其中溶解质子导体(DuPont制造的“Nafion”。优选较低分子量的类型。)的有机溶剂(例如乙醇)。替换气体可选择地为另一种惰性气体,例如He或者N2。采用13.56MHz和100W的RF输出装置产生电容耦合等离子体。当产生等离子体的持续时间为1分钟时,负载的质子导体量大约为0.05mg/cm2。可以基本上与产生等离子体的持续时间成比例地控制负载的质子导体量。
电弧方法
(催化剂金属)
在制造CNW以后,将腔用Ar气替换,然后用真空泵排空而将压力设置为0.1到1mTorr。替换气体可选择地为其它惰性气体,例如He或者N2。将Pt金属靶设置在安装在腔内CNW样品方向上的电弧等离子体枪(ULVAC公司制造)上。在触发电极上施加电压以蒸镀靶并使Pt颗粒负载在CNW上。电弧电压为60V;脉冲宽度为1秒;施加脉冲的次数为200。这样,负载的Pt量大约为0.1mg/cm2。可以基本上与施加脉冲的次数成比例地控制负载的Pt量。
(质子导体)
在将催化剂金属负载在CNW上以后,将腔用Ar气替换,然后用真空泵排空而将压力设置为0.1到1mTorr。替换气体可选择地为其它惰性气体,例如He或者N2。质子导体(DuPont制造的“Nafion”)靶设置在安装在腔内CNW样品方向上的电弧等离子体枪(ULVAC公司制造)上。在触发电极上施加电压以蒸镀靶并使质子导体负载在CNW上。电弧电压为60V;脉冲宽度为1秒;施加脉冲的次数为200。这样,负载的质子导体量大约为0.1mg/cm2。可以基本上与施加脉冲的次数成比例地控制负载的质子导体量。
[实例2]
接下来描述采用图5示出的另一种催化剂层一步制造装置制造催化剂层薄膜的过程。在此实例中,除了产生等离子体的高频以外,将较低的高频施加至相同的电极上。这样,通过将催化剂金属例如铂提前放置在电极表面上,金属纳米颗粒通过等离子体溅射跳入等离子体,并被负载在CNW表面上。还可将含催化剂金属的气体或溶液供应进等离子体以使催化剂金属负载在CNW上。其中,供应的方法可包括喷嘴等等。
实例1和2产生下面的效果:
(1)采用CNW消除了在随后的处理步骤中形成膜的必要。一步制造可降低成本并减小设备尺寸。(2)催化剂组分和电解质可高度散布。还可容易控制混合的电解质量,从而可防止覆盖铂族催化剂的电解质降低铂族催化剂活性的问题。可降低采用的铂族催化剂量,从而降低成本。
图6示出了根据本发明形成膜的顺序的实例的流程图。图6(a)示出了下面的情况,其中在相同的腔内:(1)气相生长碳纳米壁(CNW)作为用于催化剂层的载体;然后,(2)将催化剂组分负载并散布在用于催化剂层的载体上,并同时(3)使电解质组分负载和散布在用于催化剂层的载体上。图6(b)示出了下面的情况,其中在相同的腔内:(1)气相生长碳纳米壁(CNW)作为用于催化剂层的载体;然后,(2)将催化剂组分负载并散布在用于催化剂层的载体上,然后(3)使电解质组分负载和散布在用于催化剂层的载体上。图6(c)示出了下面的情况,其中在相同的腔内:(1)气相生长碳纳米壁(CNW)作为用于催化剂层的载体;然后,(3)使电解质组分负载和散布在用于催化剂层的载体上;然后(2)将催化剂组分负载并散布在用于催化剂层的载体上。图6(d)示出了下面的情况,其中在相同的腔内:同时执行(1)气相生长碳纳米壁(CNW)作为用于催化剂层的载体;(2)将催化剂组分负载并散布在用于催化剂层的载体上;和(3)使电解质组分负载和散布在用于催化剂层的载体上。
性能评估
描述了关于负载在采用图4所示出催化剂层一步制造装置制造的CNW上的Pt的催化能力的数据。采用图4的装置,通过电弧放电将Pt负载在CNW上。电弧电压为60V(最大:100V);脉冲宽度为1秒;放电次数为100。
图7示出了制备样品的SEM图像。图7中的黑点表示Pt,可清楚地看到其精细而高度地散布。
图8示出了通过RDE方法所制备样品的催化剂活性的评估结果。曲线图示出随着电压下降氧还原电流更大。这表明制备样品具有还原氧的催化剂功能并可用作燃料电池的电极催化剂。
工业应用性
根据本发明,具有纳米尺寸结构的碳多孔材料例如碳纳米壁用作用于燃料电池的催化剂层中的载体,从而可形成其中高度散布催化剂组分和电解质的催化剂层。因此(1)可通过一系列操作中的气相反应制造集成催化剂层,从而可大大简化燃料电池制造过程并降低制造成本;以及(2)可形成均匀的催化剂层薄膜,并形成充足的三相界面,从而可获得改进的燃料电池性能。因此,本发明有助于广泛应用燃料电池。

Claims (10)

1.一种制造用于燃料电池的催化剂层的方法,所述方法包括以下步骤:
气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体;以及
将催化剂组分和/或电解质组分负载并散布在用于催化剂层的载体上。
2.根据权利要求1的制造用于燃料电池的催化剂层的方法,其中所述具有纳米尺寸结构的碳多孔材料包括碳纳米壁(CNW)。
3.根据权利要求1或2的制造用于燃料电池的催化剂层的方法,包括以下步骤:
(1)气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体;
(2)将催化剂组分负载并散布在用于催化剂层的载体上;以及
(3)同时使电解质组分成为被负载和散布在用于催化剂层的载体上,其中在相同的腔内同时执行步骤(2)和(3)。
4.根据权利要求1或2的制造用于燃料电池的催化剂层的方法,包括以下步骤:
(1)气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体;
(2)然后将催化剂组分负载并散布在用于催化剂层的载体上;以及
(3)然后使电解质组分成为被负载和散布在用于催化剂层的载体上,所述步骤在相同的腔内执行。
5.根据权利要求1或2的制造用于燃料电池的催化剂层的方法,包括以下步骤:
(1)气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体;
(2)然后使电解质组分成为被负载并散布在用于催化剂层的载体上;以及
(3)然后将催化剂组分负载和散布在用于催化剂层的载体上,所述步骤在相同的腔内执行。
6.根据权利要求1或2的制造用于燃料电池的催化剂层的方法,包括以下步骤:
(1)气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体;
(2)将催化剂组分负载并散布在用于催化剂层的载体上;以及
(3)使电解质组分成为被负载和散布在用于催化剂层的载体上,其中在相同的腔内同时执行上述步骤。
7.根据权利要求1到6中任一个的制造用于燃料电池的催化剂层的方法,其中通过从下述方法选择的一种或多种方法执行步骤(2)将催化剂组分负载并散布在用于催化剂层的载体上和/或步骤(3)使电解质组分成为被负载和散布在用于催化剂层的载体上:激光烧蚀方法、等离子体放电方法、电弧放电方法以及将含催化剂和/或电解质的气体或溶液负载并散布在载体上的方法。
8.一种燃料电池,包括通过根据权利要求1到7中任一个的方法所制造的用于燃料电池的催化剂层。
9.一种制造用于燃料电池的催化剂层的装置,所述装置在相同的腔内包括:
等离子体发生装置,用于气相生长具有纳米尺寸结构的碳多孔材料作为用于催化剂层的载体;以及
一个或多个发生装置,其选自于激光烧蚀装置、等离子体放电装置和电孤放电装置。
10.根据权利要求9的制造用于燃料电池的催化剂层的装置,其中所述具有纳米尺寸结构的碳多孔材料包括碳纳米壁(CNW)。
CN200680004676A 2005-02-14 2006-02-14 制造用于燃料电池的催化剂层的方法和装置 Expired - Fee Related CN100578845C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005036078A JP5074662B2 (ja) 2005-02-14 2005-02-14 燃料電池用触媒層の製造方法及び製造装置
JP036078/2005 2005-02-14

Publications (2)

Publication Number Publication Date
CN101120468A true CN101120468A (zh) 2008-02-06
CN100578845C CN100578845C (zh) 2010-01-06

Family

ID=36793248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680004676A Expired - Fee Related CN100578845C (zh) 2005-02-14 2006-02-14 制造用于燃料电池的催化剂层的方法和装置

Country Status (5)

Country Link
US (1) US20080274392A1 (zh)
EP (1) EP1855335A4 (zh)
JP (1) JP5074662B2 (zh)
CN (1) CN100578845C (zh)
WO (1) WO2006085694A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073252A (zh) * 2013-02-22 2015-11-18 住友电气工业株式会社 多孔部件和催化剂部件
CN114695904A (zh) * 2022-04-21 2022-07-01 浙江理工大学 自支撑氮掺杂碳纳米管负载铂纳米簇状物的制备与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267575B2 (ja) * 2009-01-26 2013-08-21 トヨタ自動車株式会社 空気電池
JP5800294B2 (ja) * 2011-08-09 2015-10-28 株式会社Ihi 金属を担持するナノグラファイトの製造方法
US11673807B2 (en) 2018-06-11 2023-06-13 National University Corporation Tokai National Higher Education And Research System Carbon nanostructured materials and methods for forming carbon nanostructured materials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248439A (ja) 1993-02-24 1994-09-06 Matsushita Electric Ind Co Ltd レーザーアブレーション装置およびそれを用いた半導体形成法
KR100441800B1 (ko) * 2000-08-04 2004-07-27 마쯔시다덴기산교 가부시키가이샤 고분자 전해질형 연료전지 및 그 제조방법
TW523960B (en) * 2000-09-29 2003-03-11 Sony Corp Method of producing fuel cell
JP2002110176A (ja) * 2000-09-29 2002-04-12 Toshiba Corp カーボンナノファイバー複合体およびその製造方法
JP3655208B2 (ja) * 2001-03-29 2005-06-02 株式会社東芝 燃料電池、燃料電池用電極およびその製造方法
KR100759547B1 (ko) * 2002-07-29 2007-09-18 삼성에스디아이 주식회사 연료전지용 탄소나노튜브, 그 제조방법 및 이를 채용한연료전지
US20040224217A1 (en) * 2003-05-08 2004-11-11 Toops Todd Jefferson Integrated membrane electrode assembly using aligned carbon nanotubules
JP2004362960A (ja) * 2003-06-05 2004-12-24 Akio Hiraki 電子放出素子およびその製造方法
JP2005004967A (ja) * 2003-06-09 2005-01-06 Toyota Motor Corp 燃料電池用電極、その製造方法、及びこれを備えた固体高分子型燃料電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073252A (zh) * 2013-02-22 2015-11-18 住友电气工业株式会社 多孔部件和催化剂部件
CN105073252B (zh) * 2013-02-22 2018-07-24 住友电气工业株式会社 多孔部件和催化剂部件
US10105683B2 (en) 2013-02-22 2018-10-23 Sumitomo Electric Industries, Ltd. Porous member and catalyst member
CN114695904A (zh) * 2022-04-21 2022-07-01 浙江理工大学 自支撑氮掺杂碳纳米管负载铂纳米簇状物的制备与应用

Also Published As

Publication number Publication date
US20080274392A1 (en) 2008-11-06
CN100578845C (zh) 2010-01-06
WO2006085694A1 (ja) 2006-08-17
EP1855335A1 (en) 2007-11-14
JP5074662B2 (ja) 2012-11-14
JP2006222020A (ja) 2006-08-24
EP1855335A4 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
KR100590555B1 (ko) 담지 촉매 및 이를 이용한 연료전지
EP1667271B1 (en) Electrode for fuel cell, fuel cell comprising the same, and method for preparing the same
US8083905B2 (en) Carbon nanotubes for fuel cells, method for manufacturing the same, and fuel cell using the same
Daas et al. Fuel cell applications of chemically synthesized zeolite modified electrode (ZME) as catalyst for alcohol electro-oxidation-a review
US20110129759A1 (en) Electrode for polymer electrolyte membrane fuel cell and method for forming membrane-electrode assembly using the same
US20090311578A1 (en) Water repellent catalyst layer for polymer electrolyte fuel cell and manufacturing method for the same
Cai et al. Enhanced activity of Pt nanoparticle catalysts supported on manganese oxide-carbon nanotubes for ethanol oxidation
JP2004146223A (ja) 燃料電池用負極触媒
JP2007526616A (ja) 白金が少ない燃料電池、触媒およびその製造方法
US7700219B2 (en) Structure having three-dimensional network skeleton, method for producing the structure, and fuel cell including the structure
CN100578845C (zh) 制造用于燃料电池的催化剂层的方法和装置
JP4206058B2 (ja) 燃料電池用触媒層の製造方法
WO2006041212A1 (en) Membrane electrode assembly for fuel cell, method of producing same, and fuel cell
WO2010055365A1 (en) Catalyst thin layer and method for fabricating the same
CN101120469B (zh) 燃料电池结构及其制造方法
KR101117630B1 (ko) 연료전지용 막-전극 접합체 및 그 제조방법
Mohanty et al. Electrochemical generation of mesopores and residual oxygen for the enhanced activity of silver electrocatalysts
JP2008146860A (ja) 触媒粒子担持導電性粒子、触媒電極およびその製造方法、並びにそれを用いて成る膜電極接合体(mea)
KR101791103B1 (ko) 전기화학반응기 및 상기 반응기에 집적된 활성층
Li et al. Preparation of Pt/XC-72@ CN electrocatalysts by the in-situ carbonization of ionic liquid for methanol oxidation
JP2006196413A (ja) 燃料電池用膜電極接合体、その製造方法および燃料電池
Geng et al. The evidences of morphology dependent electroactivity toward Co oxidation over bismuth oxide supported Pt
US6926990B2 (en) Fuel cell having porous electrodes and method for forming same
JP2007184204A (ja) 燃料電池用膜電極接合体およびその製造方法
Mahmoodi et al. The effects of the core material (M= Co, Ni) and catalyst support (N= MWCNTs and rGO) on the performance of M@ Pd/N core–shell electrocatalysts for formate oxidation and direct formate-hydrogen peroxide fuel cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100106

Termination date: 20190214