CN101118927A - 半导体元件 - Google Patents

半导体元件 Download PDF

Info

Publication number
CN101118927A
CN101118927A CNA2007101024291A CN200710102429A CN101118927A CN 101118927 A CN101118927 A CN 101118927A CN A2007101024291 A CNA2007101024291 A CN A2007101024291A CN 200710102429 A CN200710102429 A CN 200710102429A CN 101118927 A CN101118927 A CN 101118927A
Authority
CN
China
Prior art keywords
thickness
metal
metal silication
drain region
lightly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101024291A
Other languages
English (en)
Inventor
陈宏铭
黄健朝
杨富量
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN101118927A publication Critical patent/CN101118927A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体元件,包括:半导体基底;栅极堆栈结构(gate stack)位于半导体基底上;间隙壁位于该栅极堆栈结构的侧壁上;轻掺杂源/漏极区与该栅极堆栈结构邻接;深源/漏极区与该轻掺杂源/漏极区邻接;以及分段金属硅化区位于该深源/漏极区与轻掺杂源/漏极区之上。其中该分段的金属硅化区包括第一部分,其具有第一厚度、第二部分与该第一部分邻接且具有第二厚度,而该第二厚度实质上小于该第一厚度。又其中该第二部分较该第一部分靠近通道区。

Description

半导体元件
技术领域
本发明涉及MOS元件的结构与制造,且特别涉及MOS元件的金属硅化区的制造。
背景技术
在超大型集成电路(very-large-scale integration,VLSI)中,当缩小栅极尺寸时,源极与漏极接面也要跟着缩小,以避免短通道效应(short channel effect,SCE)影响元件的性能。而缩小CMOS尺寸所遇到的主要问题为寄生电阻的增加。当源/漏极接面深度与多晶硅线宽缩小为深次微米范围时,接触电阻将变得更为显著,因此需要加以减低。
降低多晶硅栅极与源/漏极区间以及内连线的接触电阻的主要方法为形成金属硅化物。通常使用自行对准硅化物(self-aligned silicide,salicide)方法来形成硅化区。在自行对准硅化物方法中,先毯覆式沉积金属薄层于半导体基底上,且特别覆盖于露出的源/漏极与栅极。之后将晶片进行一次或多次的退火步骤,使金属选择性地与源/漏极区及栅极露出的硅产生反应,因此形成金属硅化物。由于硅化层只形成于金属材料直接接触的硅源/漏极区以及多晶硅栅极电极,因此被称为“自行对准”硅化方法。在形成硅化层之后,移除未反应的金属,且执行内连线加工方法以提供导电途径,例如形成穿过层间介电层的介层孔,且以导电金属(例如,钛)填满上述的介层孔。
然而,当集成电路形成技术逐步发展至65nm或更低时,传统的硅化方法就会产生问题。图1显示上述问题的一个实例,在基底10上包括细间隙壁2,细间隙壁2常用来降低轻掺杂源/漏极区的片电阻(sheet resistance)以及对通道区施予较大的应力。形成如图1所示的MOS元件的方法,包括形成轻掺杂源/漏极区6、形成厚间隙壁、形成深源/漏极区8与薄化厚间隙壁以形成细间隙壁2。之后形成金属硅化区4与细间隙壁2对齐。而此种方法可能导致硅化区4侵入轻掺杂源/漏极区6。在65nm以下的技术中,轻掺杂源/漏极区6的深度较浅,例如约100-150。然而,一般硅化区的厚度约为170,大于轻掺杂源/漏极区6的深度。硅化区4因此穿过轻掺杂源/漏极区与基底的接面,而造成显著的漏电流。
因此,本技术领域中亟需新方法与结构,其可结合硅化物降低电阻的优点,并同时克服先前技术的缺点。
发明内容
本发明提供一种半导体元件,包括:半导体基底;栅极堆栈结构位于半导体基底上;间隙壁位于该栅极堆栈结构的侧壁上;轻掺杂源/漏极区与该栅极堆栈结构邻接;深源/漏极区与该轻掺杂源/漏极区邻接;以及分段金属硅化区位于该深源/漏极区与轻掺杂源/漏极区之上。该分段的金属硅化区包括第一部份,其具有第一厚度、第二部分与该第一部份邻接且具有第二厚度,而该第二厚度实质上小于该第一厚度。又该第二部分较该第一部份靠近通道区。
本发明提供另一种半导体元件,包括:半导体基底;栅极堆栈结构位于半导体基底上;间隙壁位于该栅极堆栈结构的侧壁上,其中该间隙壁的厚度小于约200;轻掺杂源/漏极区与该栅极堆栈结构邻接;源/漏极区与该轻掺杂源/漏极区邻接;第一金属硅化区位于深源/漏极区之上;以及第二金属硅化区位于该第一金属硅化区与该间隙壁之间,其中该第一金属硅化区具有第一厚度,其大于该第二金属硅化区的第二厚度。
本发明又提供一种形成半导体元件的方法,包括:提供半导体基底;形成栅极堆栈结构位于半导体基底上;形成间隙壁位于该栅极堆栈结构的侧壁上;形成轻掺杂源/漏极区与该栅极堆栈结构邻接;形成源/漏极区与该轻掺杂源/漏极区邻接;形成第一金属硅化区位于该源/漏极区之上;以及形成第二金属硅化区位于第一金属硅化区与该间隙壁之间,其中该第一金属硅化区具有第一厚度,其大于该第二金属硅化区的第二厚度。
本发明提供另一种形成半导体元件的方法,包括:提供半导体基底;形成栅极堆栈结构位于半导体基底上;形成轻掺杂源/漏极区与该栅极堆栈结构邻接;形成间隙壁位于该栅极堆栈结构的侧壁上;形成源/漏极区;薄化该间隙壁以形成间隙壁其厚度小于约200;形成抛弃式间隙壁于该经薄化间隙壁的侧壁上;在形成该抛弃式间隙壁之后,形成第一金属层于该轻掺杂源/漏极区与该源/漏极区的露出部分之上;硅化该第一金属层,以形成第一金属硅化区;移除该抛弃式间隙壁;形成第二金属层至少在该轻掺杂源/漏极区与该源/漏极区的露出部分之上;以及硅化该第二金属层以形成第二金属硅化区,其中该第一金属硅化区具有第一厚度,其大于该第二金属硅化区的第二厚度。
本发明还提供另一种形成半导体元件的方法,包括:提供半导体基底;形成栅极堆栈结构位于半导体基底上;形成间隙壁位于该栅极堆栈结构的侧壁上,其中该间隙壁的厚度小于约200;提高邻接于该间隙壁的半导体基底部分;形成轻掺杂源/漏极区与该栅极堆栈结构邻接;形成抛弃式间隙壁于该间隙壁的侧壁上;形成源/漏极区;形成第一金属层在该轻掺杂源/漏极区与该源/漏极区的露出部分之上;硅化该第一金属层,以形成第一金属硅化区;移除该抛弃式间隙壁;形成第二金属层至少于该轻掺杂源/漏极区与该源/漏极区的露出部分之上;以及硅化该第二金属层以形成第二金属硅化区,其中该第一金属硅化区具有第一厚度,其大于该第二金属硅化区的第二厚度。
本发明较佳实施例所形成的MOS元件,具有较低的漏电流,且改善了在轻掺杂源/漏极区中的片电阻。
为了让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举较佳实施例,并配合所附图示,作详细说明如下:
附图说明
图1表示在传统的金属硅化物制备方法中,金属硅化区延伸进入基底且未将源/漏极区提高。
图2至图8表示本发明第一实施例形成分段金属硅化区的方法剖面图。
图9至图15表示本发明第二实施例形成分段金属硅化区且将源/漏极区提高的方法剖面图。
【主要部件符号说明】
2~细间隙壁
4~金属硅化区
6~轻掺杂源/漏极区
8~深源/漏极区
10~基底
20~基底
22~轻掺杂源/漏极区
24~深源/漏极区
26~栅极介电层
28~栅极电极
30~栅极间隙壁
301~栅极间隙壁30的二氧化硅内衬
302~栅极间隙壁30的氮化硅部分
32~抛弃式间隙壁
33~金属层
34~源/漏极(厚)金属硅化区
38~金属层
40~薄金属硅化区
42~接触蚀刻终止层
D1~轻掺杂源/漏极区22的深度
T1~间隙壁30的厚度
T2~薄化后间隙壁30的厚度
T3~抛弃式间隙壁32的厚度
T4~金属层33的厚度
T5~源/漏极金属硅化区34的厚度
T6~金属层38的厚度
T7~薄金属硅化区40的厚度
具体实施方式
图2表示MOS元件的一部份,其包括栅极介电层26、栅极电极28、轻掺杂源/漏极区22、深源/漏极区24以及栅极间隙壁30。在较佳实施例中,基底20是硅基底。在其他实施例中,可使用硅锗(SiGe)、块状半导体(bluksemiconductor)、应变半导体(strained semiconductor)、化合物半导体(compoundsemiconductor)、绝缘层上覆硅(silicon on Insulator,SOI)与一般常用的半导体材料。
如本技术领域所周知,栅极介电层26可包括二氧化硅(silicon oxide)或高介电常数材料,例如,氮氧化物(oxynitride)、含氧介电层、含氮介电层与上述的结合。在较佳实施例中,栅极电极28包括多晶硅。较佳的形成方法包括化学气相沉积(chemical vapor deposition,CVD)方法。较佳为将栅极电极28进行掺杂,以降低片电阻。在其他实施例中,栅极电极28包括非晶硅或金属。如本技术领域所周知,较佳通过在基底20上沉积栅极介电层,且于上述栅极介电层沉积栅极电极层,之后图案化上述栅极介电层与栅极电极层,以分别形成栅极介电层26与栅极电极28。之后形成轻掺杂源/漏极区22,其较佳通过注入适当的不纯物并使用栅极堆栈结构当作掩模来形成。在65nm技术中,轻掺杂源/漏极区22的深度D1约为100-150。在本实施例中,所有的尺寸皆为65nm技术所举例的尺寸。但本领域技术人员当能了解说明书中所提到的尺寸会随着集成电路的尺寸而改变。
沿着介电层26与栅极电极28的侧壁形成一对间隙壁30。如本发明领域所周知,较佳通过毯覆式沉积一个或多个介电层,之后进行非等向性蚀刻以从基底20的水平表面移除介电材料来形成间隙壁30。间隙壁30可由单层介电层或复合层(包括多于一层的介电层)来形成。在较佳实施例中,间隙壁包括氮化硅部分302位于二氧化硅内衬301上。间隙壁30的厚度T1较佳约为350-420,而更佳约为370-400。
图2也表示深源/漏极区24的形成。在较佳实施例中,通过在半导体基底20注入不纯物来形成深源/漏极区24。在接下来的源/漏极注入方法中,以间隙壁30与栅极堆栈结构当做掩模。在其他实施例中,可通过使基底20凹陷,再在凹陷处外延生长半导体材料来形成深源/漏极区24,而其中的半导体材料,例如是硅、锗、碳与上述的结合。可在外延生长的同时掺杂需要的不纯物,或于外延生长后再注入需要的不纯物。
图3表示将间隙壁30薄化。在较佳实施例中,间隙壁包括位于二氧化硅内衬301上的氮化硅部分302,通过磷酸进行湿蚀刻来薄化氮化硅部分302。之后使用氢氟酸以移除二氧化硅内衬301的露出部分。所产生的间隙壁30的厚度T2实质上小于薄化前的厚度T1(表示于图2)。在实施例中,T2小于约50%的T1。在65nm的技术中,厚度T2较佳约为150-200。
在图4中,形成抛弃式间隙壁32,其材料的蚀刻特性较佳与间隙壁30不同,且至少要与间隙壁的302部分不同。在实施例中,抛弃式间隙壁32包括氧化物,例如二氧化硅。抛弃式间隙壁32的厚度T3较佳约为200-250。更佳为抛弃式间隙壁32的外缘超过轻掺杂源/漏极区22与深源/漏极区24的交接处。
之后毯覆式沉积金属层33。金属层33较佳包括镍,但可包括其他金属,例如钴、铂与上述的组合。金属层33的厚度T4较佳约为90-110,且更佳为约100。在较佳实施例中,以物理气相沉积(physical vapor deposition,PVD)来形成金属层33,但也可使用其他常用方法,例如溅镀、低压化学气相沉积(low pressure chemical vapor deposition,LPCVD)与原子层沉积(atomic layerdeposition,ALD)。在其他实施例中,可使用无电电镀(electroless plating)来形成金属层33,其可选择性地在源/漏极区24之上形成金属层,但不在介电层(例如栅极间隙壁30)上形成。
之后执行退火方法,形成源/漏极金属硅化区34,而产生的结构表示于图5。退火方法较佳在约350℃或更低的温度下进行,退火的温度越低越好,只要金属硅化区的品质不会因此下降。如本技术领域所周知,可使用热退火(thermal annealing)、快速退火(flash annealing)、激光退火(laser annealing)或类似方法来执行退火方法。在实施例中,退火方法包括两个步骤。第一步骤包括相对较低的第一温度的第一退火。在第一步骤中,金属层33的至少一部份会与硅发生反应以形成金属硅化物。一般而言,此金属硅化物的电阻比较高。之后移除未反应的金属。第二步骤包括第二退火,以将高电阻的金属硅化物转变为低电阻的金属硅化物。一般在比第一温度高的第二温度下执行第二退火。在实施例中,为了形成金属硅化区34,第一温度为约300℃,而第二温度为约400℃。第一退火时间较佳约为50-80秒。在实施例中,第一退火时间为约60秒。产生的源/漏极金属硅化区34的厚度T5较佳为约150-190,且更佳为约170。源/漏极金属硅化区34的厚度T5可能实质上接近或甚至大于轻掺杂源/漏极区22的深度D1。
图6表示移除抛弃式间隙壁32,例如使用氢氟酸。之后形成金属层38。金属层38的厚度T6较佳为小于金属层33的厚度T4(在图4中表示)。在较佳实施例中,厚度T6为约25-50,且更佳为约30。又厚度T6较佳小于约70%的厚度T4。金属层38中的较佳金属包括镍、钴、铂与上述的组合。形成金属层38的金属可与金属层33相同,但也可包括不同的金属。
之后执行退火方法,以及形成薄金属硅化区40,如图7所示。退火方法较佳也包括于第三温度下的第一退火与第四温度下的第二退火。而第三温度较佳为小于形成金属硅化区34的第一温度。在实施例中,两个温度的差异较佳为约10-40℃,更佳为约20℃。此外,该第一退火的退火时间较佳为小于形成金属硅化区34的第一退火时间。在实施例中,形成薄金属硅化区40的第一退火时间为约30秒。由于薄金属硅化区是以较薄的金属层38、较低的第三温度及/或较短的退火时间形成,所以薄金属硅化区40的厚度T7小于金属硅化区34的厚度T5。厚度T7较佳为小于约65%的厚度T5。厚度T7较佳为小于约100,且更佳为小于约60。
在较佳实施例中,形成薄金属硅化区40中的第二退火所采用的第四温度及/或时间实质上等于形成厚金属硅化区34中的第二退火所采用的第二温度与时间。在其他实施例中,可略过金属硅化区34的第二退火步骤。在对薄金属硅化区40进行第二退火时,高电阻金属硅化区34会转变为低电阻金属硅化区34。
之后,毯覆式形成接触蚀刻终止层(contact etch stop layer,CESL)42。除了蚀刻终止的功能外,接触蚀刻终止层42也施加应力至MOS元件的通道区。对PMOS元件而言,接触蚀刻终止层42具有本征(intriusic)压缩应力,而因此实施压缩应力至通道区。对NMOS元件而言,接触蚀刻终止层42具有本征张应力,而因此施加张应力至通道区。通过细间隙壁30,接触蚀刻终止层42可施加更大的应力。
在先前的实施例中,并未将源/漏极区提高。对尺寸小于65nm的集成电路而言,较佳为将源/漏极区提高。于图9至图15中表示第二实施例制备方法流程,其表示具有提高的源/漏极区的较佳实施例,其中以相同的标号来表示曾在第一实施例中出现的相同元件。除非特别说明,否则对应的尺寸、较佳材料、形成步骤与制备条件本质上均与第一实施例相同。
图9表示基底20。于基底20上形成栅极堆栈结构,其包括栅极介电层26与栅极电极28。之后形成细间隙壁30,其较佳为与第一种实施例中的细间隙壁30(在图3中表示)具有相同的尺寸与材料。通过在薄氧化衬层上形成薄氮化硅层,之后堆栈层图案化,或者通过先形成厚间隙壁(如图2所示),再将厚间隙壁进行薄化以形成细间隙壁30。
图10表示形成半导体层23,其较佳通过外延生长形成。半导体层23的厚度较佳为约100-250,但较佳厚度会随集成电路的尺寸而改变。之后较佳通过注入适当不纯物来形成轻掺杂源/漏极区22。形成细间隙壁30之后形成轻掺杂源/漏极区22,较佳为将轻掺杂源/漏极区22倾斜注入,这样轻掺杂源/漏极区22才能比细间隙壁外缘更进一步延伸进入通道区。另外也可在形成半导体层23前,先形成轻掺杂源/漏极区22。
图11表示形成抛弃式间隙壁32,其较佳为与细间隙壁30的材料不同。之后注入形成深源/漏极区24。深源/漏极区24实质上与抛弃式间隙壁32的外缘对齐。之后毯覆式形成金属层33。
图12表示厚金属硅化区34的形成,其实质上与抛弃式间隙壁32的外缘对齐。与第一实施例相似,厚金属硅化区34的形成包括形成金属层、执行第一退火以形成金属硅化物、移除未反应金属与执行第二退火。或者是省略第二退火的步骤。
图13表示,移除抛弃式间隙壁32,且毯覆式形成金属层38,其较佳比金属层33(如图11所示)薄。之后执行第一退火。比起形成厚金属硅化区34的第一退火的温度与时间而言,上述第一退火的温度较低及/或时间较短。图14表示形成的薄金属硅化区40,其比厚金属硅化区34薄。薄金属硅化区40的底部表面实质上高于、低于或等于基底20顶部表面的高度。形成薄金属硅化区40的第二退火较佳为与厚金属硅化区34的第二退火的制备条件相同。之后形成接触蚀刻终止层42,如图15所示。
金属硅化区34与40形成分段金属硅化区。较薄的金属硅化区40可进一步延伸进入轻掺杂源/漏极区22。于是改善了轻掺杂源/漏极区22的电阻。由于薄金属硅化区40的深度小于轻掺杂源/漏极区22的深度,因此并无金属硅化区穿过交接处且导致高漏电流的风险。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与修饰,因此本发明的保护范围当视后附的权利要求书所界定者为准。

Claims (15)

1.一种半导体元件,包括:
半导体基底;
栅极堆栈结构位于半导体基底上;
间隙壁位于该栅极堆栈结构的侧壁上;
轻掺杂源/漏极区与该栅极堆栈结构邻接;
深源/漏极区与该轻掺杂源/漏极区邻接;以及
分段金属硅化区位于该深源/漏极区与轻掺杂源/漏极区之上,其中该分段的金属硅化区包括第一部份,其具有第一厚度、第二部分与该第一部份邻接且具有第二厚度,而该第二厚度实质上小于该第一厚度,且其中该第二部分较该第一部份靠近通道区。
2.如权利要求1所述的半导体元件,其特征在于该间隙壁为细间隙壁,具有小于200的厚度。
3.如权利要求1所述的半导体元件,其特征在于该第二厚度小于该第一厚度的65%。
4.如权利要求1所述的半导体元件,其特征在于该第二厚度小于100。
5.如权利要求1所述的半导体元件,其特征在于该深源/漏极区被提高。
6.如权利要求5所述的半导体元件,其特征在于该分段金属硅化区的该第二部分的底部表面高于该半导体基底的顶部表面。
7.如权利要求5所述的半导体元件,其特征在于该分级金属硅化区的该第二部分的底部表面低于该半导体基底的顶部表面。
8.如权利要求5所述的半导体元件,其特征在于该分段金属硅化区的该第二部分的内缘实质上与该间隙壁的外缘对齐。
9.如权利要求1所述的半导体元件,其特征在于该分段金属硅化区的该第一部分与该轻掺杂源/漏极区之间具有横向间隔。
10.如权利要求1所述的半导体元件,其特征在于该分级金属硅化区的该第一部分的厚度大于该轻掺杂源/漏极区的厚度。
11.一种半导体元件,包括:
半导体基底;
栅极堆栈结构位于半导体基底上;
间隙壁位于该栅极堆栈结构的侧壁上,其中该间隙壁的厚度小于约200;
轻掺杂源/漏极区与该栅极堆栈结构邻接;
深源/漏极区与该轻掺杂源/漏极区邻接;
第一金属硅化区位于该深源/漏极区之上;以及
第二金属硅化区位于该第一金属硅化区与该间隙壁之间,其中该第一金属硅化区具有第一厚度,其大于该第二金属硅化区的第二厚度。
12.如权利要求11所述的半导体元件,其特征在于该第二厚度小于该第一厚度的65%。
13.如权利要求11所述的半导体元件,其特征在于该第一金属硅化区与第二金属硅化区包括不同金属。
14.如权利要求11所述的半导体元件,其特征在于该第一金属硅化区与该第二金属硅化区包括相同金属。
15.如权利要求11所述的半导体元件,其特征在于该轻掺杂源/漏极区的深度大于该第二厚度但小于该第一厚度。
CNA2007101024291A 2006-08-01 2007-05-08 半导体元件 Pending CN101118927A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/496,857 2006-08-01
US11/496,857 US7545006B2 (en) 2006-08-01 2006-08-01 CMOS devices with graded silicide regions

Publications (1)

Publication Number Publication Date
CN101118927A true CN101118927A (zh) 2008-02-06

Family

ID=39028318

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101024291A Pending CN101118927A (zh) 2006-08-01 2007-05-08 半导体元件

Country Status (2)

Country Link
US (1) US7545006B2 (zh)
CN (1) CN101118927A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148236A (zh) * 2010-02-09 2011-08-10 台湾积体电路制造股份有限公司 半导体元件及其制造方法
CN102217050A (zh) * 2008-09-30 2011-10-12 格罗方德半导体公司 包括具有增加的应变诱发源及紧密间隔的金属硅化物区的nmos晶体管与pmos晶体管的cmos装置
CN102487015A (zh) * 2010-12-03 2012-06-06 中国科学院微电子研究所 一种半导体结构及其制造方法
CN103050524A (zh) * 2011-10-11 2013-04-17 中国科学院微电子研究所 一种半导体结构及其制造方法
CN103165453A (zh) * 2011-12-12 2013-06-19 中芯国际集成电路制造(上海)有限公司 高介电金属栅mos及其制造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268065B2 (en) * 2004-06-18 2007-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of manufacturing metal-silicide features
DE102006035665B4 (de) * 2006-07-31 2010-12-09 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Herstellung eines Feldeffekttransistors und Feldeffekttransistor
US7504292B2 (en) * 2006-12-05 2009-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Short channel effect engineering in MOS device using epitaxially carbon-doped silicon
US20090170256A1 (en) * 2007-12-26 2009-07-02 Texas Instruments Incoporated Annealing method for sige process
KR101669470B1 (ko) * 2009-10-14 2016-10-26 삼성전자주식회사 금속 실리사이드층을 포함하는 반도체 소자
TWI475602B (zh) * 2011-01-26 2015-03-01 Nat Applied Res Laboratoires 一種雙重矽、鍺化物結構的製作方法
US8652914B2 (en) * 2011-03-03 2014-02-18 International Business Machines Corporation Two-step silicide formation
US8558290B2 (en) * 2011-08-25 2013-10-15 Globalfoundries Inc. Semiconductor device with dual metal silicide regions and methods of making same
US8664060B2 (en) * 2012-02-07 2014-03-04 United Microelectronics Corp. Semiconductor structure and method of fabricating the same
US9865693B1 (en) * 2016-08-04 2018-01-09 United Microelectronics Corporation Semiconductor memory cell, semiconductor memory device, and method of manufacturing semiconductor memory device
CN108321079B (zh) * 2017-01-16 2021-02-02 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327347B1 (en) * 2000-07-22 2002-03-06 Samsung Electronics Co Ltd Metal oxide semiconductor field effect transistor having reduced resistance between source and drain and fabricating method thereof
KR100546369B1 (ko) * 2003-08-22 2006-01-26 삼성전자주식회사 콘택 마진을 확보할 수 있는 실리사이드막을 구비한고집적 반도체 소자 및 그 제조방법
US7309901B2 (en) * 2005-04-27 2007-12-18 International Business Machines Corporation Field effect transistors (FETs) with multiple and/or staircase silicide
US7423283B1 (en) * 2005-06-07 2008-09-09 Xilinx, Inc. Strain-silicon CMOS using etch-stop layer and method of manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217050A (zh) * 2008-09-30 2011-10-12 格罗方德半导体公司 包括具有增加的应变诱发源及紧密间隔的金属硅化物区的nmos晶体管与pmos晶体管的cmos装置
CN102148236A (zh) * 2010-02-09 2011-08-10 台湾积体电路制造股份有限公司 半导体元件及其制造方法
CN102148236B (zh) * 2010-02-09 2013-04-24 台湾积体电路制造股份有限公司 半导体元件及其制造方法
CN102487015A (zh) * 2010-12-03 2012-06-06 中国科学院微电子研究所 一种半导体结构及其制造方法
US8822334B2 (en) 2010-12-03 2014-09-02 The Institute of Microelectronics, Chinese Academy of Science Semiconductor structure and method for manufacturing the same
CN103050524A (zh) * 2011-10-11 2013-04-17 中国科学院微电子研究所 一种半导体结构及其制造方法
CN103050524B (zh) * 2011-10-11 2015-11-25 中国科学院微电子研究所 一种双鳍型半导体结构及其制造方法
CN103165453A (zh) * 2011-12-12 2013-06-19 中芯国际集成电路制造(上海)有限公司 高介电金属栅mos及其制造方法
CN103165453B (zh) * 2011-12-12 2015-11-25 中芯国际集成电路制造(上海)有限公司 高介电金属栅mos及其制造方法

Also Published As

Publication number Publication date
US20080029831A1 (en) 2008-02-07
US7545006B2 (en) 2009-06-09

Similar Documents

Publication Publication Date Title
CN101118927A (zh) 半导体元件
US7718500B2 (en) Formation of raised source/drain structures in NFET with embedded SiGe in PFET
US7348248B2 (en) CMOS transistor with high drive current and low sheet resistance
US6445042B1 (en) Method and apparatus for making MOSFETs with elevated source/drain extensions
Chen et al. Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65nm high-performance strained-Si device application
US7466008B2 (en) BiCMOS performance enhancement by mechanical uniaxial strain and methods of manufacture
US8569837B2 (en) MOS devices having elevated source/drain regions
US8278179B2 (en) LDD epitaxy for FinFETs
US9905474B2 (en) CMOS device with raised source and drain regions
US7405131B2 (en) Method and structure to prevent silicide strapping of source/drain to body in semiconductor devices with source/drain stressor
US20160172361A1 (en) Methods of Forming Field Effect Transistors Having Silicon-Germanium Source/Drain Regions Therein
US7164163B2 (en) Strained transistor with hybrid-strain inducing layer
US20070132038A1 (en) Embedded stressor structure and process
US20040115888A1 (en) [method for fabricating locally strained channel ]
US20090095992A1 (en) Semiconductor device including mos field effect transistor and method for manufacturing the semiconductor device
US7410875B2 (en) Semiconductor structure and fabrication thereof
US20080280413A1 (en) Methods for forming a transistor
US20090140351A1 (en) MOS Devices Having Elevated Source/Drain Regions
EP1856732A1 (en) Activated carbon selective epitaxial process
US6187642B1 (en) Method and apparatus for making mosfet's with elevated source/drain extensions
JP2004111479A (ja) 半導体装置及びその製造方法
US20110065245A1 (en) Method for fabricating mos transistor
US20090233410A1 (en) Self-Aligned Halo/Pocket Implantation for Reducing Leakage and Source/Drain Resistance in MOS Devices
US6919605B2 (en) Integrated circuit MOS transistor with reduced drain and source resistance
US20080182372A1 (en) Method of forming disposable spacers for improved stressed nitride film effectiveness

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20080206