CN101113946B - Device for Mechatronic Performance Testing of Nanowires under In-Situ Compression in Transmission Electron Microscopy - Google Patents
Device for Mechatronic Performance Testing of Nanowires under In-Situ Compression in Transmission Electron Microscopy Download PDFInfo
- Publication number
- CN101113946B CN101113946B CN2007101193158A CN200710119315A CN101113946B CN 101113946 B CN101113946 B CN 101113946B CN 2007101193158 A CN2007101193158 A CN 2007101193158A CN 200710119315 A CN200710119315 A CN 200710119315A CN 101113946 B CN101113946 B CN 101113946B
- Authority
- CN
- China
- Prior art keywords
- electron microscope
- transmission electron
- situ
- properties
- insulation spacer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 33
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 24
- 239000002070 nanowire Substances 0.000 title abstract description 24
- 238000007906 compression Methods 0.000 title abstract description 17
- 230000006835 compression Effects 0.000 title abstract description 14
- 238000004627 transmission electron microscopy Methods 0.000 title description 4
- 230000005540 biological transmission Effects 0.000 claims abstract description 28
- 239000000919 ceramic Substances 0.000 claims abstract description 25
- 238000005259 measurement Methods 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 25
- 125000006850 spacer group Chemical group 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims 9
- 239000004020 conductor Substances 0.000 claims 3
- 238000007747 plating Methods 0.000 claims 1
- 239000002086 nanomaterial Substances 0.000 abstract description 54
- 239000000463 material Substances 0.000 abstract description 6
- 238000001514 detection method Methods 0.000 abstract description 4
- 238000005452 bending Methods 0.000 abstract description 3
- 238000003384 imaging method Methods 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 20
- 238000006073 displacement reaction Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 7
- 239000002071 nanotube Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- SICLLPHPVFCNTJ-UHFFFAOYSA-N 1,1,1',1'-tetramethyl-3,3'-spirobi[2h-indene]-5,5'-diol Chemical compound C12=CC(O)=CC=C2C(C)(C)CC11C2=CC(O)=CC=C2C(C)(C)C1 SICLLPHPVFCNTJ-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 238000013142 basic testing Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 238000012625 in-situ measurement Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
一种透射电镜中纳米线原位压缩下力学电学性能测试装置,属于纳米材料性能原位检测领域。该发明设计通过压电陶瓷拉伸单元、微悬臂梁力学检测系统以及电学测量系统,对单根纳米线以及其它一维纳米材料在透射电镜中实现原位压缩,并在压缩过程中可以利用透射电镜的成像系统获得纳米尺度甚至在原子尺度上的变形信息,而且还可以实现弹性、塑性、弯曲以及断裂的力学性能定量测量,同时也可以对一维纳米材料进行电学性能测量,实现在压缩过程中的电荷输运性能的研究。本发明结构简单,便于操作,应用范围广,具有直观性和定量检测的特性,便于解释和发现纳米材料优异的力学/电学等综合性能。
The invention relates to a device for testing mechanical and electrical properties under in-situ compression of nanowires in a transmission electron microscope, which belongs to the field of in-situ detection of properties of nanometer materials. The design of the invention realizes the in-situ compression of single nanowires and other one-dimensional nanomaterials in the transmission electron microscope through the piezoelectric ceramic stretching unit, the mechanical detection system of the micro-cantilever beam and the electrical measurement system, and can use the transmission electron microscope during the compression process. The imaging system of the electron microscope can obtain deformation information at the nanometer scale or even at the atomic scale, and can also realize the quantitative measurement of the mechanical properties of elasticity, plasticity, bending and fracture. At the same time, it can also measure the electrical properties of one-dimensional nanomaterials. A study of the charge transport properties in . The invention has the advantages of simple structure, convenient operation, wide application range, intuitive and quantitative detection characteristics, and is convenient for explaining and discovering the excellent mechanical/electrical comprehensive properties of nanometer materials.
Description
技术领域:Technical field:
本发明涉及一种透射电镜中纳米线原位压缩下力电性能测试装置,属于纳米材料性能原位检测领域。The invention relates to a device for testing electromechanical properties under in-situ compression of nanowires in a transmission electron microscope, which belongs to the field of in-situ detection of properties of nanometer materials.
背景技术:Background technique:
实现对单体纳米结构的操纵和原位性能测量,是当今纳米新结构、新性质以及新器件研究的瓶颈性关键科学技术问题,尤其是在透射电子显微镜中,由于其狭小的空间,使得人们更难实现单体纳米结构的测试。Realizing the manipulation and in-situ performance measurement of monomeric nanostructures is a key scientific and technological issue that is the bottleneck in the research of new nanostructures, new properties and new devices, especially in the transmission electron microscope, due to its narrow space, people It is more difficult to realize the test of the single nanostructure.
应该指出,尽管近年来人们对单体纳米材料的力学性能和电学性能有了深入的研究,但因其难度和复杂性,至今尚未形成公认的结论。一维纳米材料作为微机电系统和纳机电系统的互连线或基本功能单元,因此充分了解单根一维纳米材料的力学性能和电学性能以及在应力作用下的电/力偶合性能是设计纳米器件的基本准则。It should be pointed out that although people have conducted in-depth studies on the mechanical and electrical properties of monomeric nanomaterials in recent years, due to their difficulty and complexity, no accepted conclusions have been formed so far. One-dimensional nanomaterials are used as interconnect lines or basic functional units of micro-electromechanical systems and nano-electromechanical systems. Therefore, fully understanding the mechanical and electrical properties of a single one-dimensional nanomaterial and the electrical/mechanical coupling performance under stress is the key to designing nanometers. Basic guidelines for devices.
目前对于单根一维纳米材料力学性能的测试手段大致可以分为以下三种。At present, the testing methods for the mechanical properties of single one-dimensional nanomaterials can be roughly divided into the following three types.
第一,以原子力显微镜或扫描隧道显微镜为基本手段的测试方法。由于这些设备具有高的力学和位移分辨率,其中一种方法是报道于《advancedmaterials》1999,vol.11,161-165页上的“有序和杂乱排列的多壁弹纳米管的弹性模量”(Elastic modulus of ordered and disordered multiwalledcarbon nanotubes),公开了一种横跨在一个洞上面的碳纳米管,利用原子力显微镜针尖压弯曲纳米管,利用原子力显微镜高的力学和位移传感特性,测试了纳米管的弹性模量,随后类似的方法多有报道用于测试其它纳米线的力学性能。另一中方法报道于《Nano Letters》2005,vol.5,1954-1958上的,“垂直阵列生长纳米线的弹性性能”(elastic property of verticallyaligned nanowires),同样是利用原子力显微镜弯曲竖直生长的氧化锌纳米线,利用弯曲位移和力的关系,计算了氧化锌纳米线的弹性模量。由于优越的力学和位移分辨率,原子力显微镜基的力学测试方法非常适合于测量单根纳米线的力学性能,但是不能原位监测纳米线变形过程中的结构变化,难于解释纳米线的变形机制和断裂过程。First, the testing method based on atomic force microscope or scanning tunneling microscope. Due to the high mechanical and displacement resolution of these devices, one of the methods is "Elastic modulus of ordered and disordered multi-walled elastic nanotubes" reported in "Advanced Materials" 1999, vol.11, pp. 161-165 "(Elastic modulus of ordered and disordered multiwalled carbon nanotubes), discloses a carbon nanotube straddling a hole, using the atomic force microscope tip to press and bend the nanotube, using the high mechanical and displacement sensing characteristics of the atomic force microscope, tested The elastic modulus of nanotubes, followed by similar methods have been reported for testing the mechanical properties of other nanowires. Another method reported in "Nano Letters" 2005, vol.5, 1954-1958, "elastic property of vertically aligned nanowires" (elastic property of vertically aligned nanowires), also uses the atomic force microscope to bend and grow vertically Zinc oxide nanowires, using the relationship between bending displacement and force, calculated the elastic modulus of zinc oxide nanowires. Due to the superior mechanical and displacement resolution, the mechanical testing method based on atomic force microscopy is very suitable for measuring the mechanical properties of a single nanowire, but it cannot monitor the structural changes of the nanowire during deformation in situ, and it is difficult to explain the deformation mechanism and Fracture process.
第二,在扫描电子显微镜中发展单根一维纳米材料性能测量的方法。2000年,《Science》vol.287,637-640上的“拉应力加载下多壁碳纳米管的强度和断裂机制”(Strength and breaking mechanism of multiwalled carbonnanotubes under tensile load)一文中报道了在扫描透射电镜中安装一套原子力探针系统,利用两个原子力探针实现了对碳纳米管的拉伸。同样是在扫描电镜中,2005年《Nature materials》,vol.4,525-529上的“超高强度金纳米线的力学性能”(Mechanical properties of ultrahigh-strength goldnanowires)文章报道了利用单个原子力探针压金纳米线的装置与方法,从而实现对纳米线的力学性能的测试。扫描显微镜与原子力探针的结合尽管能够给出测量数据以及原位的变形过程,但是由于其分辨率是在纳米量级,不能给出原子尺度的信息,对于变形机理的研究受到一定的限制。Second, develop methods for measuring the properties of single 1D nanomaterials in scanning electron microscopy. In 2000, "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load" (Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load) on "Science" vol. A set of atomic force probe system is installed in the electron microscope, and two atomic force probes are used to realize the stretching of carbon nanotubes. Also in the scanning electron microscope, the article "Mechanical properties of ultrahigh-strength gold nanowires" (Mechanical properties of ultrahigh-strength gold nanowires) on "Nature materials", vol.4, 525-529 in 2005 reported the use of a single atomic force probe A device and method for needle-pressing gold nanowires, so as to realize the test of the mechanical properties of the nanowires. Although the combination of scanning microscope and atomic force probe can provide measurement data and in-situ deformation process, its resolution is at the nanometer level and cannot provide atomic-scale information, so the study of deformation mechanism is limited.
第三,利用透射电子显微镜为基本测试手段实现单根一维纳米材料力学性能的测试。机械共振方法也是单根纳米线力学性能测试的一种方法,最早的文献报道于《Science》1999,vol.283,1513-1516页上的“碳纳米管的静电偏转和共振”(Electrostatic deflections and electromechanicalresonances of carbon nanotubes),此实验在透射电子显微镜中原位进行,利用施加在一端固定的纳米管上的交变电场诱导纳米管发生共振,利用共振频率的变化测量纳米管的弯曲模量。随后多个研究小组利用这种方法在透射电子显微镜和扫描电子显微镜中,测量了不同纳米线的弹性模量。这种方法避免了纳米线直接操纵的困难,同时可以利用透射电子显微镜原位获得纳米管/线的结构信息,但是这种方法仅限于纳米线的弹性变形范围,不能测量纳米线的塑性变形、断裂强度等其他重要的力学性能。2007年,《Nano Letter》,vol.7,452-457《陶瓷SiC纳米线低温原位大应变塑性以及它原子层次的机理》(Low temperature in situ large strain plasticity of ceramic SiCnanowires and its atomic-scale mechanism)报道了在高分辨透射电镜中利用电子束辐照一种特殊支持膜的卷曲实现对单根纳米线的弯曲,发现了SiC纳米线大应变塑性行为,并给出了原子尺度的形变过程和机理。尽管这种方法能够有效的给出原子尺度上的信息,但是不能对单根一维纳米材料的弹性系数给出量化。Third, use the transmission electron microscope as the basic test method to realize the test of the mechanical properties of a single one-dimensional nanomaterial. The mechanical resonance method is also a method for testing the mechanical properties of a single nanowire. The earliest literature report was "Electrostatic deflection and resonance of carbon nanotubes" on pages 1513-1516 of "Science" 1999, vol.283. Electromechanical resonances of carbon nanotubes), this experiment is carried out in situ in a transmission electron microscope, using an alternating electric field applied to a nanotube fixed at one end to induce the resonance of the nanotube, and measuring the bending modulus of the nanotube using the change in resonance frequency. Several research groups then used this method to measure the elastic modulus of different nanowires in transmission electron microscopy and scanning electron microscopy. This method avoids the difficulty of direct manipulation of nanowires, and at the same time, the structural information of nanotubes/wires can be obtained in situ using transmission electron microscopy, but this method is limited to the range of elastic deformation of nanowires, and cannot measure the plastic deformation of nanowires. Other important mechanical properties such as breaking strength. 2007, "Nano Letter", vol.7, 452-457 "Low temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism" ) reported the use of electron beams to irradiate a special support film in high-resolution transmission electron microscopy to bend a single nanowire, found the large-strain plastic behavior of SiC nanowires, and gave the atomic-scale deformation process and mechanism. Although this method can effectively give information on the atomic scale, it cannot quantify the elastic coefficient of a single one-dimensional nanomaterial.
以上这些方法均不能在应力状态下对单根一维纳米材料进行电学性能的测量,已经不能满足目前在微观尺度上对纳米材料力学性能,电学性能,力学电学耦合性能测试的要求。透射电子显微镜是人们依赖的可以直接揭示纳米甚至原子尺度信息的最重要的工具之一。把透射电子显微镜作为单体一维纳米材料性能测试的平台,最主要是它能够给出实时的原子尺度的信息,对应于应力状态下力学性能以及电学性能的变化给出最直接的证据,有助于我们更有效更真实的揭示事情的本质。None of the above methods can measure the electrical properties of a single one-dimensional nanomaterial under stress, and can no longer meet the current requirements for testing the mechanical properties, electrical properties, and mechanical-electrical coupling performance of nanomaterials on the microscopic scale. Transmission electron microscopy is one of the most important tools people rely on to directly reveal information at the nanometer or even atomic scale. Taking the transmission electron microscope as a platform for testing the performance of single one-dimensional nanomaterials, the most important thing is that it can give real-time atomic-scale information, and give the most direct evidence corresponding to the changes in mechanical properties and electrical properties under stress. Help us reveal the essence of things more effectively and truly.
在透射电子显微镜中原位测量单根一维纳米材料的弹性模量,塑性变形,屈服强度和断裂强度是最直接的测试方法,同时可以利用它的记录功能,原位的记录一维纳米材料在变形过程中的原子尺度上的变化细节,为揭示一维纳米材料的变形机理提供直接的实验证据。对于在透射电子显微镜中单根一维纳米材料的电学性能测试,揭示在电流,电压作用下的电学性质以及结构变化也是一维纳米材料应用的基本性能参数和重要的依据,以及在应力状态下测试一维纳米材料的电学特性,是一维纳米材料作为基本器件和功能单元在实际工作环境需要解决的重要问题,而且还可以将一维纳米材料在应力状态下电荷输运性能的变化实时的与其结构的高分辨图像结合起来,对于我们了解结构与其电学性能的关联起到至关重要的作用。In situ measurement of elastic modulus, plastic deformation, yield strength and fracture strength of a single one-dimensional nanomaterial in a transmission electron microscope is the most direct test method, and its recording function can be used to record one-dimensional nanomaterials in situ The details of the atomic-scale changes during the deformation process provide direct experimental evidence for revealing the deformation mechanism of one-dimensional nanomaterials. For the electrical performance test of a single one-dimensional nanomaterial in a transmission electron microscope, revealing the electrical properties and structural changes under the action of current and voltage are also the basic performance parameters and important basis for the application of one-dimensional nanomaterials, and in the stress state Testing the electrical properties of one-dimensional nanomaterials is an important problem that needs to be solved in the actual working environment of one-dimensional nanomaterials as basic devices and functional units, and it can also measure the changes in charge transport properties of one-dimensional nanomaterials under stress in real time. Combined with high-resolution images of their structures, they play a crucial role in our understanding of how structures relate to their electrical properties.
发明内容:Invention content:
针对现有技术存在的问题,本发明是提供一种透射电镜中纳米线原位压缩下力电性能测试装置,其目的是利用该装置实现对单根一维纳米材料原位力学性能和电学性能测量,以及在压应力作用下进行电学测量的装置,利用透射电子显微镜成像系统原位实时记录一维纳米材料在压应力场和电场作用下弹塑性变形过程、断裂失效的方式以及电荷传输特性,将一维纳米材料的力学性能,电学性能,力学和电学耦合的性能以及微观结构变化直接对应起来,从原子尺度上揭示一维纳米材料的综合性能。Aiming at the problems existing in the prior art, the present invention provides a device for testing the mechanical and electrical properties of nanowires under in-situ compression in a transmission electron microscope. Measurement, as well as the device for electrical measurement under the action of compressive stress, use the transmission electron microscope imaging system to record in situ and real-time the elastoplastic deformation process, fracture failure mode and charge transport characteristics of one-dimensional nanomaterials under the action of compressive stress field and electric field, The mechanical properties, electrical properties, mechanical and electrical coupling properties, and microstructure changes of one-dimensional nanomaterials are directly matched, and the comprehensive properties of one-dimensional nanomaterials are revealed from the atomic scale.
为了实现上面的目的,本发明中一种透射电镜中纳米线原位压缩下力电性能测试装置,其特征在于,将压电陶瓷片2放置于样品杆的密封管1内,并将压电陶瓷片2靠近样品杆的手握柄3的一端固定于样品杆的密封管1上,两根驱动导线19的一端接于压电陶瓷片2的正负两极,另一端外接与驱动电源20。连动杆5放置于承载底座4的沟槽内,连动杆5的一端与压电陶瓷片2的外端固定连接,连动杆5的另一端通过螺钉与集成块6上的金属滑块13相连接。集成块6的构造如下所述:长方体外壳7通过螺钉与承载底座4固定相接,通过拧松螺钉,可将集成块6与承载底座4脱离,实现单独操作与处理。第一绝缘垫片8和第二绝缘垫片9水平放置于长方体外壳内,并与之相固定,第二绝缘垫片9放在靠近长方体外壳7的开口端,第一绝缘垫片8放在靠近长方体外壳7的封闭端,其中第一绝缘垫片8靠近承载底座4,而第二绝缘垫片9远离承载底座4。第一绝缘垫片8和第二绝缘垫片9之间设置一条30-50微米的窄缝,便于电子束通过。第一绝缘垫片8之上平行固定一个矩形镀金属硅片10,靠近缝一侧处,利用刻蚀法刻蚀一条悬臂梁11。第二绝缘垫片9之上在垂直于悬臂梁11的方向上固定一滑轨12,滑轨12远离悬梁臂11的一端设置一凸块,在滑轨12之上安装一金属滑块13,金属滑块13的侧面可用紧固螺钉14与滑轨12固定。悬臂梁11的与金属滑块13的上表面在同一水平面上,悬臂梁11的与金属滑块13之间的缝隙宽度可通过微调旋钮15调整金属滑块13来改变。微调旋钮15安装在滑块12上的凸块内。In order to achieve the above purpose, a device for testing electromechanical properties of nanowires under in-situ compression in a transmission electron microscope in the present invention is characterized in that the piezoelectric ceramic sheet 2 is placed in the sealed tube 1 of the sample rod, and the piezoelectric One end of the ceramic sheet 2 close to the
通过驱动导线19外接的驱动电源20驱动压电陶瓷片2,使其在轴向上发生微位移,由于压电陶瓷片2的内端已固定,压电陶瓷片2只能向外侧发生位移,因此就会带动连动杆5以及与之相连的金属滑块13(之前将微调旋钮15,紧固螺钉14松开),这样,金属滑块13就会靠近悬梁臂11,从而实现两端固定的纳米线21的单轴压缩。纳米线21的压缩就会带动悬臂梁11的变形,通过透射电子显微镜中自身的实时记录功能,可以计算悬臂梁11的偏移量,根据它已知的弹性常数,可以计算出施加在纳米线21上的压力的大小。The piezoelectric ceramic sheet 2 is driven by the
电学测量系统16通过加载导线17,信号导线18与镀金硅片10和金属滑块13相连接,加载导线17与电学测量系统的控制电源相接,信号导线18与电学测量系统的场发生测试仪器相接。电学测量系统包括可控电源,电流,电压,电阻,电容,场发生测试仪器。电学性能可以在没有施加应力场作用下测量,也可以在同时施加电场和应力场作用下测量。The
本发明提供一种透射电镜中纳米线原位压缩下力电性能测试装置,可实现单根一维纳米材料在透射电子显微镜中原位的单轴压缩,可以表征其弹性性能,塑性性能以及断裂过程,可以从原子尺度上获得信息。同时它还可以测试单根一维纳米材料在压应力的状态下,其电荷输运性能的变化,实现单根一维纳米材料力电耦合性能的测试,其特征在于该方法按如下步骤进行:The invention provides a device for testing electromechanical properties of nanowires under in-situ compression in a transmission electron microscope, which can realize in-situ uniaxial compression of a single one-dimensional nanomaterial in a transmission electron microscope, and can characterize its elastic properties, plastic properties and fracture process , information can be obtained at the atomic scale. At the same time, it can also test the change of the charge transport performance of a single one-dimensional nanomaterial under the state of compressive stress, and realize the test of the electromechanical coupling performance of a single one-dimensional nanomaterial, which is characterized in that the method is carried out as follows:
1.将集成块6从样品杆上取下,拧松紧固螺钉14,在光学显微镜下调节微调旋钮15至所需缝宽,然后拧紧紧固螺钉14。1. Remove the integrated block 6 from the sample rod, loosen the
2.将一维纳米材料放入与试样不发生反应的有机溶剂(例如,乙醇、丙酮等)中,超声波分散10-60分种,将悬浮液滴在样品金属滑块和微悬臂梁的上表面。2. Put the one-dimensional nanomaterials into an organic solvent (for example, ethanol, acetone, etc.) that does not react with the sample, disperse them by ultrasonic waves for 10-60 minutes, and drop the suspension on the metal slider of the sample and the micro-cantilever beam. upper surface.
3.在扫描电子显微镜中利用微机械手将单根一维纳米材料摆好,然后利用聚焦离子束将一维纳米材料固定于金属滑块和悬臂梁上。3. Use a micromanipulator to arrange a single one-dimensional nanomaterial in a scanning electron microscope, and then use a focused ion beam to fix the one-dimensional nanomaterial on a metal slider and a cantilever beam.
4.将集成块6与样品杆连接,然后将连动杆5与金属滑块13固定好,并将集成块6与承载底座用螺钉固定。将样品杆放入透射电子显微镜中,抽好真空。4. Connect the integrated block 6 with the sample rod, then fix the linkage rod 5 and the
5.将驱动导线19,加载导线17,信号导线18分别与压电陶瓷驱动电源20以及电学测量系统的控制电源,场发生测试仪器连接好。通过控制压电陶瓷驱动电源,驱动压电陶瓷沿轴向伸张,使固定在样品台上的一维纳米材料得以单轴压缩,并通过透射电子显微镜的成像功能实时的记录压缩过程,获得一维纳米材料压缩变形的序列图像。5. Connect the
6.在一维纳米材料压缩的同时,利用透射电子显微镜记录悬臂梁的形变量,通过文献中报道的公式,以及已知的弹性系数获得一维纳米材料所受的拉力。同时,还可以利用电学测量系统实时的监控一维纳米材料在压缩过程中电学性能的变化。6. While the one-dimensional nanomaterial is being compressed, use a transmission electron microscope to record the deformation of the cantilever beam, and obtain the tensile force on the one-dimensional nanomaterial through the formula reported in the literature and the known elastic coefficient. At the same time, the electrical measurement system can also be used to monitor the changes in the electrical properties of one-dimensional nanomaterials during compression in real time.
本发明与现有技术相比,具有以下优点和突出性效果:本发明的透射电子显微镜中的一维纳米材料力学、电学测试系统具有结构简单,性能可靠,安装简便,便于操作,应用范围广的特点,可以适用于长度大于5微米的所有一维纳米材料。该发明利用微悬臂梁灵敏的力学传感性能,和压电陶瓷精确的位移传感特性,可以实现纳米量级的位移分辨和纳牛量级的力学分辨。与现有的原子力或扫描隧道显微镜一维纳米材料力学测试装置相比较,本发明在对单根一维纳米材料力学性能测试过程中利用透射电子显微镜原位的在纳米尺度甚至原子尺度记录一维纳米材料变形的微结构变化,将一维纳米材料的力学性能和微观结构直接对应起来,具有直观性和定量检测的特性,便于解释和发现一维纳米材料优异的力学性能,与现有的扫描或透射电子显微镜中测试一维纳米材料的技术方法相比,本发明可以实现对一维纳米材料的弹性,塑性和断裂过程的全部测量,可以提供原子尺度上的变形过程的信息,同时可以得到一维纳米材料在单轴压缩作用下的应力应变曲线,可以全方位解释一维纳米材料的力学性能。此外,还可以利用本发明的装置原位的测试一维纳米材料在拉应力的作用下,电荷输运性能的变化,并且可以将电学性能的变化直接与其原子尺度上结构的变化对应起来,可以揭示一维纳米材料丰富的物理性能,为一维纳米材料在微机电系统以及半导体器件、传感器等诸多领域的开发设计提供可靠的数据。Compared with the prior art, the present invention has the following advantages and outstanding effects: the one-dimensional nanomaterial mechanical and electrical testing system in the transmission electron microscope of the present invention has simple structure, reliable performance, easy installation, easy operation and wide application range The characteristics of can be applied to all one-dimensional nanomaterials with a length greater than 5 microns. The invention utilizes the sensitive mechanical sensing performance of the micro-cantilever beam and the precise displacement sensing characteristic of piezoelectric ceramics to realize displacement resolution at the nanometer level and mechanical resolution at the nanonew level. Compared with the existing atomic force or scanning tunneling microscope one-dimensional nanomaterial mechanical testing device, the present invention utilizes transmission electron microscope to record one-dimensional The microstructural change of nanomaterial deformation directly corresponds to the mechanical properties and microstructure of one-dimensional nanomaterials. Compared with the technical method of testing one-dimensional nanomaterials in the transmission electron microscope, the present invention can realize all measurements of the elasticity, plasticity and fracture process of the one-dimensional nanomaterials, can provide information on the deformation process on the atomic scale, and can obtain The stress-strain curve of one-dimensional nanomaterials under uniaxial compression can fully explain the mechanical properties of one-dimensional nanomaterials. In addition, the device of the present invention can also be used to test the change of charge transport performance of one-dimensional nanomaterials under the action of tensile stress in situ, and the change of electrical properties can be directly corresponding to the change of its atomic scale structure, which can Reveal the rich physical properties of one-dimensional nanomaterials, and provide reliable data for the development and design of one-dimensional nanomaterials in many fields such as micro-electromechanical systems, semiconductor devices, and sensors.
附图说明:Description of drawings:
图1是本发明的一种透射电镜中纳米线原位压缩下力电性能测试装置的俯视图。Fig. 1 is a top view of a device for testing electromechanical properties of nanowires under in-situ compression in a transmission electron microscope of the present invention.
图2是实现压缩纳米线功能的集成块6的俯视图。FIG. 2 is a top view of an integrated block 6 that realizes the function of compressing nanowires.
图3是实现压缩纳米线功能的集成块6的AB剖视图。FIG. 3 is an AB cross-sectional view of the integrated block 6 that realizes the function of compressing nanowires.
图4是金属滑块13与其导轨12的CD剖视图Fig. 4 is a CD sectional view of the
具体实施方式:Detailed ways:
如图1所示,压电陶瓷片2放置于样品杆的密封管1内,并将其内端固定于样品杆的密封管1上,两根驱动导线19的一端接于压电陶瓷片2的正负两极,另一端外接于驱动电源20。连动杆5属刚性材料,放置于承载底座4的沟槽内,连动杆5的一端与压电陶瓷片2的外端固定连接,连动杆5的另一端通过螺钉与集成块6上的金属滑块13相连接。两根加载导线17与两根信号导线18一端均与集成块6上的镀金硅片10和金属滑块13相连接,并且可拆卸。驱动导线19,加载导线17以及信号导线18的另一端从样品杆的手握柄3外端引出,便于与外面的压电陶瓷驱动电源20以及电学测量系统16的控制电源,场发生测试仪器相连接。并保证样品杆的密封性。As shown in Figure 1, the piezoelectric ceramic sheet 2 is placed in the sealed tube 1 of the sample rod, and its inner end is fixed on the sealed tube 1 of the sample rod, and one end of the two driving
集成块6的构造图2所示:长方体外壳7可通过螺钉与承载底座4固定相接,通过拧松螺钉,可将集成块6与承载底座4脱离,实现单独操作与处理。长方体外壳7的顶部与底部以及靠近承载底座4一侧均不封闭,其它部分封闭。长方体外壳7的尺寸根据原样品杆的规格设计。第一绝缘垫片8和第二绝缘垫片9平行放置于长方体外壳内,并与之相固定,并将第二绝缘垫片9放置在靠近承载底座4一侧,而将第一绝缘垫片8靠近长方体外壳7的封闭端。第一绝缘垫片8和第二绝缘垫片9之间设置一窄缝,缝宽为30-50微米,便于电子束通过。第一绝缘垫片8之上固定一镀金属硅片10,靠近缝一侧处,利用刻蚀法刻蚀一条悬臂梁11。在镀金属硅片10上表面引出两个电极,便于与两根加载导线17以及两根信号导线18连接。悬臂梁11长为0.3厘米,宽为600纳米,厚为800纳米,它与镀金硅片的缝宽为5微米。第二绝缘垫片9之上固定一滑轨12,在滑轨12之上安装一金属滑块13,金属滑块13可用紧固螺钉14与滑轨12固定,滑轨12远离悬梁臂11的一端设置一凸块,滑轨12的截面可设计成梯形。悬臂梁11的与金属滑块13的上表面在同一水平面上。在滑轨12上的凸块内的设置一微调旋钮15,使微调旋钮15的一端可接触金属滑块13,这样,通过调节微调旋钮15可改变悬臂梁11的与金属滑块13之间的缝隙。为了更清楚的表示出各个部件的相对位置,我们给出了两个剖视图,图3是沿AB面的剖视图,图4给出了第二绝缘垫片9,滑轨12,金属滑块13以及紧固螺钉14沿CD面的剖视图。The structure of the integrated block 6 is shown in Figure 2: the
将悬臂梁11的与金属滑块13之间的缝宽调至所需宽度后,拧紧紧固螺钉14,然后将单根一维纳米材料21在扫描电镜中利用机械手搭在镀金硅片10和金属滑块13上,再利用聚焦电子束将其固定在悬臂梁11和金属滑块上。进一步将集成块6上的长方体外壳7以及金属滑块13分别与承载底座4以及连动杆5固定好。将真个样品杆放入透射电镜中,抽好真空。将驱动导线19,加载导线17以及信号导线18的另一端引至样品杆外,与外面的压电陶瓷驱动电源20以及电学测量系统16的控制电源,场发生测试仪器连接,然后控制压电陶瓷的驱动电源实现压电陶瓷片2的横向位移,由于压电陶瓷片2的内端固定,位移只向外侧进行,带动连动杆5以及金属滑块13运动,并使金属滑块13靠近悬臂梁11,从而实现一维纳米材料的单轴压缩。进一步利用透射电镜的原位观测记录系统记录一维纳米材料的变形以及悬臂梁11的变形,根据悬臂梁11的变形量计算一维纳米材料的弹性模量。同时还可以在一维纳米材料压缩的过程中,对它进行通电,从而可以实现一边压缩一边测量电学性能的变化。After adjusting the slit width between the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101193158A CN101113946B (en) | 2007-07-20 | 2007-07-20 | Device for Mechatronic Performance Testing of Nanowires under In-Situ Compression in Transmission Electron Microscopy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101193158A CN101113946B (en) | 2007-07-20 | 2007-07-20 | Device for Mechatronic Performance Testing of Nanowires under In-Situ Compression in Transmission Electron Microscopy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101113946A CN101113946A (en) | 2008-01-30 |
CN101113946B true CN101113946B (en) | 2010-08-04 |
Family
ID=39022402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101193158A Expired - Fee Related CN101113946B (en) | 2007-07-20 | 2007-07-20 | Device for Mechatronic Performance Testing of Nanowires under In-Situ Compression in Transmission Electron Microscopy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101113946B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201700108535A1 (en) * | 2017-09-28 | 2019-03-28 | Univ Degli Studi Di Trento | DEVICE TO DETERMINE THE MECHANICAL PROPERTIES OF NANOMATERIALS AND RELATIVE METHOD |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102331376B (en) * | 2011-06-24 | 2013-02-06 | 赵宏伟 | Cross-scale micro-nano-scale in-situ three-point bending mechanical performance test platform |
CN102507870B (en) * | 2011-11-01 | 2015-01-07 | 兰州大学 | Measuring instrument for electricity in fault zone of brittleness material |
CN102565135B (en) * | 2011-12-27 | 2014-06-18 | 北京科技大学 | Electromechanical property test method based on in-situ bending of zinc oxide micron line |
CN102583216B (en) * | 2012-02-02 | 2014-07-09 | 西安电子科技大学 | Microstructure for detecting mechanical properties of one-dimensional nanometer materials |
CN103091178A (en) * | 2013-01-15 | 2013-05-08 | 天津大学 | Mechanical-thermal composite in-situ loading system |
IT201700035735A1 (en) * | 2017-03-31 | 2018-10-01 | Marcegaglia Carbon Steel S P A | Evaluation apparatus of mechanical and microstructural properties of a metallic material, in particular a steel, and relative method |
CN107991180A (en) * | 2017-11-09 | 2018-05-04 | 大连理工大学 | A kind of breaked self-healing method of single-crystal silicon carbide nano wire |
CN107991181A (en) | 2017-11-09 | 2018-05-04 | 大连理工大学 | A kind of breaked self-healing method of carborundum amorphous nanometer wire |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1815180A (en) * | 2006-03-03 | 2006-08-09 | 北京工业大学 | Single-nano-thread in-situ mechanical characteristic detection and structure analysis method and apparatus |
CN201083669Y (en) * | 2007-07-20 | 2008-07-09 | 北京工业大学 | Transmission electron microscope nanometer line in situ compressing electromechanical property test device |
-
2007
- 2007-07-20 CN CN2007101193158A patent/CN101113946B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1815180A (en) * | 2006-03-03 | 2006-08-09 | 北京工业大学 | Single-nano-thread in-situ mechanical characteristic detection and structure analysis method and apparatus |
CN201083669Y (en) * | 2007-07-20 | 2008-07-09 | 北京工业大学 | Transmission electron microscope nanometer line in situ compressing electromechanical property test device |
Non-Patent Citations (4)
Title |
---|
于灵敏,等.外加电场条件下制备定向排列的硅纳米线.机械工程材料29 4.2005,29(4),23-26. |
于灵敏,等.外加电场条件下制备定向排列的硅纳米线.机械工程材料29 4.2005,29(4),23-26. * |
陈寒元,等.低维纳米材料中五次孪晶结构的透射电镜研究.电子显微学报24 1.2005,24(1),19-38. |
陈寒元,等.低维纳米材料中五次孪晶结构的透射电镜研究.电子显微学报24 1.2005,24(1),19-38. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201700108535A1 (en) * | 2017-09-28 | 2019-03-28 | Univ Degli Studi Di Trento | DEVICE TO DETERMINE THE MECHANICAL PROPERTIES OF NANOMATERIALS AND RELATIVE METHOD |
Also Published As
Publication number | Publication date |
---|---|
CN101113946A (en) | 2008-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101109687A (en) | A device for testing the electromechanical properties of nanowires under in-situ stretching in a transmission electron microscope | |
CN101113946B (en) | Device for Mechatronic Performance Testing of Nanowires under In-Situ Compression in Transmission Electron Microscopy | |
Desai et al. | Mechanical properties of ZnO nanowires | |
Asthana et al. | In situ observation of size-scale effects on the mechanical properties of ZnO nanowires | |
Zhu et al. | A review of microelectromechanical systems for nanoscale mechanical characterization | |
CN1995962A (en) | Device and method for testing in-situ mechanical property of single nano-wire in scanning electron microscope | |
CN100520351C (en) | Single-nano-thread in-situ mechanical characteristic detection and structure analysis method and apparatus | |
CN102221499B (en) | Alignment loading device used for stretching test of nanoscale, micron-size thin film materials | |
CN100590412C (en) | Device and method for in-situ stretching of nanowires in scanning electron microscope | |
Lu et al. | A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device | |
CN107422068B (en) | A kind of strain loading system for micro-nano material more joint characterizations | |
CN1963985A (en) | A grid of transmission electronic microscope driven by thermal dual metal sheets | |
CN101793911B (en) | Nano indentation system based on scanning electron microscope | |
CN201083669Y (en) | Transmission electron microscope nanometer line in situ compressing electromechanical property test device | |
CN201066335Y (en) | A testing device for the electric performance of nano line original position downward pull force in transmission electric lens | |
CN101713788B (en) | Method for testing electromechanical properties of nano-wire/micron-scale wire in condition of in-situ bending | |
CN100511567C (en) | Transmission electron microscope slide glass for nano material in-situ structure property test | |
CN100587459C (en) | Nanomaterial Stretching Device in Scanning Electron Microscope Driven by Piezoelectric Ceramic Sheet | |
CN106706424A (en) | Uniaxial strain loading table for micro-nano material multi-field coupling testing | |
CN201034883Y (en) | In-situ mechanical comprehensive performance test device for single nanowire in scanning electron microscope | |
CN201159708Y (en) | Nanomaterial Piezoelectric Ceramic Stretching Device for Scanning Electron Microscope | |
CN113218982B (en) | In-situ mechanical test chip and preparation method thereof | |
KR101051890B1 (en) | Nano-mechanics-electric composite sensor | |
Huang et al. | Real-time quantitative electromechanical characterization of nanomaterials based on integrated MEMS device | |
Huang et al. | A dual-drive mode MEMS device for in-situ static/dynamic electro-mechanical characterization of nanomaterials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100804 Termination date: 20140720 |
|
EXPY | Termination of patent right or utility model |