CN101100661B - 一种磷酸烯醇式丙酮酸羧化酶及其编码基因 - Google Patents

一种磷酸烯醇式丙酮酸羧化酶及其编码基因 Download PDF

Info

Publication number
CN101100661B
CN101100661B CN2007101178162A CN200710117816A CN101100661B CN 101100661 B CN101100661 B CN 101100661B CN 2007101178162 A CN2007101178162 A CN 2007101178162A CN 200710117816 A CN200710117816 A CN 200710117816A CN 101100661 B CN101100661 B CN 101100661B
Authority
CN
China
Prior art keywords
sequence
pepc
leu
glu
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101178162A
Other languages
English (en)
Other versions
CN101100661A (zh
Inventor
刘进元
乔志新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN2007101178162A priority Critical patent/CN101100661B/zh
Publication of CN101100661A publication Critical patent/CN101100661A/zh
Application granted granted Critical
Publication of CN101100661B publication Critical patent/CN101100661B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种磷酸烯醇式丙酮酸羧化酶及其编码基因。该磷酸烯醇式丙酮酸羧化酶,其氨基酸残基序列如序列表中序列2所示,该磷酸烯醇式丙酮酸羧化酶编码基因的核苷酸序列如序列表中的序列1所示。该磷酸烯醇式丙酮酸羧化酶编码基因可用于提高植物中的油脂含量。

Description

一种磷酸烯醇式丙酮酸羧化酶及其编码基因
技术领域
本发明涉及一种磷酸烯醇式丙酮酸羧化酶及其编码基因。
背景技术
磷酸烯醇式丙酮酸羧化酶(phosphoenopyruvate carboxylase;EC.4.1.1.31)可将HCO3-和磷酸烯醇式丙酮酸(phosphoenopyruvate,PEP)不可逆的转化为草酰乙酸(oxaloacetate,OAA)和无机磷(Utter,M.F,and Kolenbrander,H.M.1972.Formation of oxaloactetate by CO2 fixation on phosphoenolpyruvate.In TheEnzymes(Boyer,P.D.,ed.).New York:Academic Press,pp.117-136)(图1),是由Bandurski和Greiner(Bandurski RS,Greiner CM.1953.The enzymaticsynthesis of oxalacetate from phosphoenolpyruvate and carbon dioxide.J.Biol.Chem.204,781-786)最先在菠菜叶片中发现的。在体内它是以同源四聚体的形式存在的,单体的大小为100-110kDa(O’Leary M.1982.Phosphoenolpyruvatecarboxylase:an enzymologist’s view.Annu.Rev.Plant Physiol.33:297-315)。1984年,人们第一次从E.coli中克隆到了PEPC,并由此推断出PEPC的蛋白序列(Fujita N,Miwa T,Ishijima S,Izui K,Katsuki H.1984.The primary structureof phosphoenolpyruvate carboxylase of Escherichia coli.Nucleotide sequenceof the ppc gene and deduced amino acid sequence.J.Biochem.(Tokyo)95:909-916),这一结果极大的推动了人们对PEPC的认识。到目前为止,人们已经从细菌和光合生物,例如植物、藻类(Algae)和藻青菌(Cyanobacteria)中克隆到大约60个PEPC基因。不过令人费解的是至今还没有在动物和真菌中发现PEPC基因,据推测可能是在进化过程中丢失了。在植物中,PEPC是以基因家族的形式存在的,目前已经对它的功能、结构以及调控进行了大量的研究(Chollet R,Vidal J,O’leary MH.1996.Phosphoenolpyruvate carboxylase:a ubiquitous,highlyregulated enzyme in plants.Annu Rev Plant Physiol Plant Mol Biol 47:273-298;Izui K,Matsumura H,Furumoto T,Kai Y.2004.Phosphoenolpyruvate carboxylase:a new era of structural biology.Annu Rev Plant Biol 55:69-84;Lepiniec L,Vidal J,Chollet R,Gadal P,Cretin C.1994.Phosphoenolpyruvate carboxylase:structure,regulation and evolution.Plant Science 99:111-124)。
在植物中,PEPC基因家族的不同成员具有不同的生理功能。例如在C4和CAM(Crassulaceae)植物中,有一种特定的PEPC,它们在光合组织中特异表达,催化了光合作用过程中固定CO2的第一步反应(Ernst K,Westhoff P.1997.Thephosphoenolpyruvate carboxylase(ppc)gene family of Flaveria trinervia(C4)and F.pringlei(C3):molecular characterization and expression analysis ofthe ppcB and ppcC genes.Plant Mol Biol 34:427-443;Gehrig H,Faist K,KlugeM 1998.Identification of phosphoenolpyruvate carboxylase isoforms in leaf,stem and roots of the obligate CAM plant Vanilla planifolia Salib.(Orchidaceae):a physiological and molecular approach.Plant Mol Biol38:1215-1223),这类PEPC被称之为C4型PEPC或光合型PEPC。由于C4型PEPC在光合作用中的重要作用,人们对其进行了深入的研究。与之相对应的是C3型PEPC,C3型PEPC在C3植物以及C4植物的非光合组织中发挥作用。近些年,随着对C3型PEPC的逐渐深入研究,人们逐渐认识到了它们在植物中的重要功能。
C3型PEPC可为三羧酸循环(Tricarboxylic Acid Cycle,TCA)补充中间产物。PEP是糖酵解的中间产物,在PEP被PEPC羧化为OAA后,又会很快被苹果酸脱氢酶(Malate Dehydrogenase)转化为苹果酸(Malate),因此为TCA循环补充了中间产物。而TCA循环过程中的许多中间产物都是氨基酸合成所需的底物,所以在大多数生物中,PEPC的主要作用是分流糖酵解、为TCA循环补充中间产物,最终为氨基酸的合成提供原料(Jeanneau M,Vidal J,Gousset-Dupont A,Lebouteiller B,Hodges M,Gerentes D,Perez P.2002.Manipulating PEPC levels in plants.J.Exp.Bot.53:1837-1845;Miyao M,Fukayama H.2003.Metabolic consequencesof overproduction of phosphoenolpyruvate carboxylase in C3 plants.  ArchBiochem Biophys 414:197-2033)。通过对正在生长的小麦种子的PEPC进行细胞免疫化学(Immunocytochemical)分析的实验结果也表明,PEPC为蛋白的合成提供了碳源(Araus JL,Bort J,Brown RH,Bassett CL,Cortadellas N.1993.Immunocytochemical localization of phosphoenolpyruvate carboxylase andphotosynthesis gas-exchange characteristics in ears of Triticum durum Desf.Planta 191:507-514;Gonzalez MC,Osuna L,Echevarria C,Vidal J,Cejudo FJ.1998. Expression and localization of phosphoenolpyruvate carboxylase indeveloping and germinating wheat
研究表明,C3型PEPC还参与了植物应对环境胁迫的反应。例如:磷是植物生长所必须的元素,当环境中磷匮乏时,为了摄取到更多的磷,植物的根通常会向根围区域分泌大量的有机酸,例如柠檬酸、苹果酸和琥珀酸(Raghothama KG.1999.Phosphate acquisition.Annu Rev Plant Physiol Plant Mol Biol.50:665-693),这些分泌到根围区域中的有机酸,可以酸化土壤,使植物根系更加有效的吸收土壤中的磷,而这些有机酸主要就是通过C3型PEPC合成的。因此,当环境磷缺乏时,C3型PEPC的表达量会随之增加(Neuman G,Massonneau A,Martinoia E,RomheldV.1999.Physiological adaptations to phosphorus deficiency during proteoidroot development in white lupin.Planta 208:373-382)。此外,当土壤中Al3+过量时,为减轻Al3+对植物的毒害作用,C3型PEPC的表达量也会增加,合成并外排大量的苹果酸等有机酸,酸化根围的土壤并螯合金属离子,以减轻金属离子对植物的伤害(Ryan PR,Delhaize E,Jones DL.2001.Function and mechanism of organicanion exudation from plant roots.Annu Rev Plant Physiol Plant Mol Biol52:527-560)。Gonzalez等从小麦中克隆到一个PEPC,发现其受到与水相关的环境胁迫的诱导表达。最近,Sanchez等发现拟南芥的Atppc4基因受到干旱和高盐的诱导表达,表明它可能与植物适应外界胁迫相关。在CAM植物中,PEPC也可被环境胁迫诱导表达,并促使机体由C3向CAM转化。
此外,C3型PEPC对于稳定细胞内的pH值起着重要的作用。例如:植物细胞在同化氮时会生成大量的碱性物质,为了中和这些碱性物质,植物会通过PEPC合成大量有机酸,以稳定细胞内pH值。另外PEPC可能在大麦种子发育晚期的胚乳酸化过程中起到一定的作用。此外有实验表明,PEPC也为种子合成贮藏性脂肪酸提供碳源。在大豆(Soybean)中,发现1个PEPC在根瘤中优势表达,进一步的实验表明,它可能对稳定根瘤的C/N平衡起着重要的作用。不过到目前为止,尽管人们已经对PEPC有了一定的认识,但是还不了解每个PEPC成员的具体生理功能。
目前,人们对植物PEPC的调控机制研究的还不是很清楚。通过对已经解析到的E.coli和玉米中C4型PEPC的蛋白结构进行分析发现,细菌和植物的PEPC的三维结构有较强的保守性(Kai Y,Matsumara H,Inoue T,Terada K,Nagara Y,YoshinagaT,Kihara A,Tsumura K,Izui K.1999.Three-dimensional structure ofphosphoenolpyruvate carboxylase:a proposed mechanism for allostericinhibition.Proc Natl Acad Sci USA 96:823-828;Matsumura H,Xie Y,ShirakataS,Inoue T,Yoshinaga T,Ueno Y,Izui K,Kai Y.2002.Crystal structure ofC4 form maize and quaternary complex of E.coli phosphoenolpyruvatecarboxylase.Structure 10:1721-1730)。但是二者也有一个明显的不同:即在植物PEPC的N’端有一个可逆的磷酸化位点,但在细菌的PEPC中没有。进一步分析发现,这一保守的位点中的1个Ser残基可被PEPC激酶所调控(Vidal J,Chollet R.1997.Regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase.Trends Plant Sci 2:230-237)。目前已经从很多植物中克隆到了数个PEPC激酶基因,实验证明二者存在着调控的关系(Sullivan S,Jenkins GI,Nimmo HG.2004.Roots,cycles and leaves.Expression of the phosphoenolpyruvate carboxylasekinase gene family in soybean.Plant Physiol 135:2078-2087)。
植物中不同的PEPC与底物的亲合力、以及受代谢产物的调节程度都不同。例如,C4型PEPC对PEP的亲合力较C3型PEPC弱,但更容易被6-磷酸葡萄糖所激活。此外C4型PEPC对其代谢产物:苹果酸的抑制作用也不如C3型PEPC敏感(Svensson,P.,Blasing,O.E.and Westhoff,P.1997.Evolution of the enzymaticcharacteristics of C4 phosphoenolpyruvate carboxylase.A comparison of theorthologous PPCA phosphoenolpyruvate carboxylases of Flaveria trinervia(C4)and Flaveria pringlei(C3).Eur J.Biochem.246:452-460)。Rademacher等(Rademacher T,Hausler RE,Hirsch HJ,Zhang L,Lipka V,Weier D,KreuzalerF,Peterhansel C.2002.An engineered phosphoenolpyruvate carboxylaseredirects carbon and nitrogen flow in transgenic potato plants.Plant J.32:25-39)将马铃薯的PEPC进行突变:用C4型PEPC(来自Flaveria trinervia)N’端序列(包括磷酸化调控位点)替换马铃薯的C3型PEPC的对应序列。实验结果表明,这种修饰降低了苹果酸对PEPC的抑制程度,增加了PEPC对PEP的亲合力。利用14CO2进行实验发现,转基因植株的代谢流发生了变化:淀粉和可溶性糖的合成减少了,而有机酸(主要是苹果酸)和氨基酸的合成增加了近4倍,并且苹果酸和氨基酸的增加量与淀粉和可溶性糖的量成反比例关系。
C4植物Flaveria中的C4型PEPC在其774位有一个保守的Serine残基,而在C3型的PEPC中,为Alanine所代替(Blasing OE,Westhoff P,Svensson P 2000.Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria,a conservedserine residue in the carboxyl-terminal part of the enzyme is a majordeterminant for C4-specific characteristics.J Biol Chem 275:27917-27923),这一位点是C4型和C3型PEPC的标志。实验结果表明,Flaveria的C4型PEPC的774位Serine和296到347位的区域决定着C4植物PEPC的活性(Engelmann S,Blasing OE,Westhoff P,Svensson P.2002.Serine 774 and amino acids 296 to437 comprise the major C4 determinants of the C4 phosphoenolpyruvatecarboxylase of Flaveria trinervia.FEBS Lett 524:11-14)。在C4植物中,光照会诱导对PEPC的磷酸化,以降低苹果酸的负调控。在CAM植物中,相应的磷酸化调控是在夜里进行的,即与CAM植物进行CO2固定同步进行。最近,从CAM植物Kallanchoe fedtschenkoi中克隆到了PEPC激酶基因,这一激酶在转录水平受到光的负调控,这也从分子的水平证明了PEPC的磷酸化与PEPC酶活之间的关系。同样,在C3植物中,也有类似的磷酸化调控机制,只是磷酸化的程度同样取决于特定的代谢状态和胞质的pH值。此外,PEPC还可能受到翻译后调控。
植物中的细菌型PEPC:模式植物拟南芥的基因组编码着4个PEPC,其中Atppc1、Atppc2和Atppc3和其它植物中的PEPC高度同源(84-91%),这三个成员都有着植物型PEPC的特征:N’末端保守的磷酸化区域。但是,当Atppc4被发现后,让人们感到费解,因为它所编码的PEPC没有N’端的磷酸化调控区,而且与其它植物型PEPC的同源性也较低(39-40%)。用免疫学的方法证明,这两种PEPC在结构上也有很大的不同。进一步的实验表明:拟南芥的4个PEPC的表达模式是不同的:竞争性RT-PCR的实验表明,Atppc2是组成型表达的,在所有的器官中都表达,Atppc3在根中优势表达,Atppc1在根和花中表达,Atppc4的表达模式类似于Atppc1主要在根和花中表达。由于拟南芥的4个PEPC在根中都表达,所以根部的PEPC活性是所有的器官中最高的。此外,人们还在水稻和大豆中也发现了细菌型PEPC,但是到目前为止,人们还不能确定细菌型PEPC在植物中的确切功能。
早在50年代,品质遗传育种学家就报道,油菜蛋白质含量与油脂含量呈高度负相关。80年代末,日本学者杉本博士发现大豆籽粒蛋白质含量与磷酸烯醇式丙酮酸羧化酶(PEPC)活性密切相关(Sugimoto T,Tanaka K,et al.Phosphoenolpyruvatecarboxylase level in Soybean seed highly correlates to its contents of proteinand lipid.Agric Biol Chem,1989,53:885-887;Sugimoto T,Kawasaki T,etal.cDNA sequence and expression of a phosphoenolpyruvate carboxylase genefrom soybean.Plant Mol Bio,1992,20:743-747),受此启发,后来逐步提出了“底物竞争”假说,认为籽粒的主要贮藏物质油脂、蛋白质均来自葡萄糖酵解的产物--丙酮酸,两者之间存在着底物竞争。底物竞争的平衡点,取决于两类物质代谢的关键酶,PEPC和乙酰辅酶A羧化酶(ACCase)的相对活性。PEPC催化磷酸烯醇式丙酮酸合成草酰乙酸进入蛋白质代谢;ACCase催化磷酸烯醇式丙酮酸合成乙酰辅酶A进入脂肪代谢。上述两种酶的相对活性是调控籽粒蛋白质/油脂含量比率的关键。以往的实验证明,增加油菜籽中ACCase的活性,可以提高植物种子贮藏性脂肪酸的含量达3-5%(Roesler K,Shintani D,Savage L,Boddupalli S,Ohlrogge J.1997.Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylaseto plastids of rapeseeds.Plant Physiol.113:75-81)。此外,也有人认为当油菜种子中的PEPC活性被抑制后,种子的含油量也会有提高。
发明内容
本发明的目的是提供一种磷酸烯醇式丙酮酸羧化酶及其编码基因。
本发明所提供的磷酸烯醇式丙酮酸羧化酶,名称为GhPEPC2,是如下(a)或(b)的蛋白质:
(a)由序列表中序列2的氨基酸残基序列组成的蛋白质;
(b)将序列表中序列2的氨基酸残基序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有磷酸烯醇式丙酮酸羧化酶活性的由(a)衍生的蛋白质。
其中,序列表中的序列2由971个氨基酸残基组成。
氨基酸残基序列是序列表中的序列2的GhPEPC2具有目前已知的PEPC所有功能位点:自序列表中序列2的氨基末端的第17位氨基酸残基为磷酸化调控位点;自序列表中序列2的氨基末端的第178、639位氨基酸残基为酶催化位点;自序列表中序列2的氨基末端的第184、185、233和372位氨基酸残基为6-磷酸葡萄糖结合位点;自序列表中序列2的氨基末端的第289、564、598位氨基酸残基为疏水袋位点;自序列表中序列2的氨基末端的第456、647、759、773位氨基酸残基为磷酸烯醇式丙酮酸结合位点;自序列表中序列2的氨基末端的第493、498位氨基酸残基为四聚体形成位点;自序列表中序列2的氨基末端的第566、603位氨基酸残基为镁离子结合位点;自序列表中序列2的氨基末端的第606、762-764位氨基酸残基为碳酸氢根结合位点;自序列表中序列2的氨基末端的第647、835、894、969位氨基酸残基为天冬氨酸结合位点;自序列表中序列2的氨基末端的第780位氨基酸残基为C3/C4型PEPC标志(在C3型PEPC中,此位点为A,在C4型PEPC中,此位点为S)。在其N’端(自序列表中序列3的氨基末端的第13至23位氨基酸残基)有一个PEPC保守的磷酸化调控序列(E K L A S I D A Q L R)。
所述一个或几个氨基酸残基的取代和/或缺失和/或添加是指在序列2的上述PEPC功能位点和PEPC保守的磷酸化调控序列之外进行取代和/或缺失和/或添加。
为了使(a)中的GhPEPC2便于纯化,可在由序列表中序列2的氨基酸残基序列组成的蛋白质的N端或C端连接上如表1所示的标签。
表1.标签的序列
标签 残基 序列
Poly-Arg 5-6(通常为5个) RRRRR
 Poly-His  2-10(通常为6个)  HHHHHH
 FLAG  8  DYKDDDDK
 Strep-tag II  8  WSHPQFEK
 c-myc  11  EQKLISEEDL
上述(b)中的GhPEPC2可人工合成,也可先合成其编码基因,再进行生物表达得到。上述(b)中的GhPEPC2的编码基因可通过将序列表中SEQ ID №:1的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上表1所示的标签的编码序列得到。
上述磷酸烯醇式丙酮酸羧化酶编码基因(GhPEPC2)也属于本发明的保护范围。
所述磷酸烯醇式丙酮酸羧化酶的编码基因,其核苷酸序列是编码序列表中序列2的蛋白质的多核苷酸。
所述磷酸烯醇式丙酮酸羧化酶编码基因的编码序列可为序列表中序列1的自5′末端第135位至3050位脱氧核苷酸组成的核苷酸序列。
所述磷酸烯醇式丙酮酸羧化酶编码基因,具体可为如下1)或2)的基因:
1)其核苷酸序列是序列表中的序列1;
2)在严格条件下与1)限定的DNA序列杂交且编码磷酸烯醇式丙酮酸羧化酶的DNA分子;
所述严格条件可为在6×SSC,0.5%SDS,5×Denhardt,0.1mg/mL鲑精DNA的溶液中,在65℃下杂交,并用0.1×SSPE(或0.1×SSC),0.1%SDS的溶液洗膜。
序列表中的序列1由3396个脱氧核苷酸组成,是GhPEPC2的cDNA基因序列。序列表中序列1的自5′末端第135位至3050位脱氧核苷酸为编码序列。
含有上述磷酸烯醇式丙酮酸羧化酶编码基因的重组表达载体、转基因细胞系和转基因宿主菌均属于本发明的保护范围。
在其它作物,如油菜中,利用反义RNA技术降低种子中的磷酸烯醇式丙酮酸羧化酶活性后,可将种子中的油脂含量提高约25%(陈锦清,郎春秀,胡张华等;反义PEP基因调控油菜籽粒油脂蛋白质含量比率的研究;农业生物技术学报,1997,7(4):316-320)。本发明的磷酸烯醇式丙酮酸羧化酶可广泛用于提高植物,特别是提高植物特定器官或组织中的油脂含量,如种子。
下面结合附图及实施例对本发明做进一步说明。
附图说明
图1为PEPC所催化的反应
图2为PEPC的磷酸化调控位点区域的序列比对
图3为PEPC进化树
图4A为用GhPEPC2的编码区为探针的Southern杂交结果
图4B为用GhPEPC2的3’非翻译区为探针的Southern杂交结果
图5为GhPEPC2的组织表达特征
图6为GhPEPC2的PCR扩增鉴定电泳图谱
图7为体外表达载体pGEX-PEPC2的构建流程图
图8为GhPEPC2原核表达电泳图谱
图9为GhPEPC2体外活性测定实验图
具体实施方式
下述实施例中的实验方法,如无特别说明,均为常规方法。
实施例1、GhPEPC2的获得及其表达特性
棉花材料
本实验中所用的植物材料为我国培育出的优良棉花品种:中棉35(Gossypiumhirsutum cv.zhongmian 35)。将中棉35的种子播种于小盆,在温室(25℃,16小时光照/天)中生长。生长大约两周后,取幼苗的根、茎、子叶和真叶,在液氮中速冻,然后在-80℃保存备用。取在温室生长的成年中棉35植株的花、种、胚和纤维(5天),在液氮中速冻,保存于-80℃备用。
一、GhPEPC2的克隆
经调研,搜索到了一些已克隆的PEPC,其中一个来自棉花(GhPEPC1)。根据已报导的植物PEPC的DNA序列,对不同来源的PEPC进行了序列比对,找到PEPC中的保守区域。根据这些保守的序列,在NCBI中找到了一个陆地棉的EST(登录号:AI725699)。通过分析这条EST序列发现,它不同于已经报导的GhPEPC1,因此可能编码着棉花中的另一个PEPC。根据这个EST,开始了对棉花GhPEPC2的克隆。首先设计了两条特异引物:PEP2_F1:5’-ATGGA TCTTT GCCTG GACAC AG-3’和PEP2_F2:5’-ATGCT GCAGG AGATG TACAA TG-3’。首先利用3’-Full RACE Core Set试剂盒(TaKaRa),将从中棉35子叶中提取的总RNA转化为eDNA,并以此cDNA为模板,利用3’-Full RACE Core Set试剂盒(TaKaRa),按照该试剂盒的使用说明书进行半巢式PCR,克隆到了这个基因完整的3’端共761bp。根据得到的序列,在下游设计了一个特异于棉花GhPEPC2的引物:PEP2_R1:5’-TTTCT TCAAA GTTGG TTCTCAACC-3’。由于上游的序列不知道,所以,将已经报导的PEPC序列进行比对,在翻译起始密码子大约140碱基处找到了一段保守序列,根据这段保守序列,设计了一个上游引物:PEP2_F3:5’-CGATA TTCTT CAGGA TTTGC ATGG-3’,同样用3’-FullRACE Core Set试剂盒(TaKaRa),将从中棉35子叶中提取的总RNA转化为cDNA,并以此cDNA为模板,经过半巢式PCR,克隆到了GhPEPC2中部共2435bp的片段。最后,应用染色体步行法,将这个基因5’剩余的部分端克隆完整,PCR所用引物为PEP2-WK1:5’-CCAAG TTAAG CATGT GGGAG AAAGC C-3’和PEP2-WK2:5’-TCCTC AAGTTTCTTG GGGGT ACTCT TC-3’,其中PCR模板为从中棉35叶片中提取的基因组DNA所构建的染色体步行库(Genome Walker Kit(Clontech))。所有扩增出的片段首先切胶回收,连接到pMD 18-T Vector(购自TaKaRa公司),然后送交测序公司进行测序。通过拼接,得到GhPEPC2的全长cDNA序列(序列表中的序列1)。GhPEPC2的cDNA序列长度为3396bp。GhPEPC2的编码序列为自序列表中序列1的5′端的第135位至第3050位脱氧核苷酸,编码971个氨基酸(序列表中序列2)。
为验证该拼接得到的GhPEPC2的全长cDNA序列的正确性,以中棉35的子叶的cDNA为模板(该作为模板的cDNA是利用Purescript RNA纯化试剂盒(Gentra system,USA)提取子叶的总RNA,采用3’-Full RACE Core Set试剂盒(TaKaRa)合成的cDNA第1条链),利用1对特异性引物F1:TATGC AGACG AAGTT TTTAG GAGTG,R1:AGAAG CCTCA AAAGG CATTC CTTG进行PCR扩增,扩增到了预计大小的片段3249bp(结果如图6,M:Marker(D15000+2000,TIANGEN),1:PCR鉴定电泳图谱)。扩增产物进行琼脂糖电泳分离,回收并克隆到pMD 18-T Vector载体上,进行测序分析,测序结果表明,该PCR扩增产物的核苷酸序列是序列表中序列1自5′末端第104至3353位脱氧核糖核苷酸。说明上述拼接的GhPEPC2的cDNA序列正确。将含有该PCR扩增产物的重组载体命名为pMD-GhPEPC2。
在翻译起始密码子ATG(自序列1的5′端第135-137位)上游,有一个框内的终止密码子TGA(自序列1的5′端第69-71位),表明克隆到了GhPEPC2完整的5’端。进一步对GhPEPC2的cDNA分析发现,在Poly A尾开始前60bp的位置,有一个多聚A位点:ATTAGA(自序列表中序列1的5′端的第3302-3307位脱氧核苷酸)。此外,在Poly A尾开始前122bp的位置,发现了一个胞质多聚A位点(CytoplasmicPolyadenylation Element,CPE):TTTATAT(自序列表中序列2的5′端的第3239-3245位脱氧核苷酸)。这两个位点表明,本发明克隆到了GhPEPC2完整的3’端。同时也表明,GhPEPC2可能会在转录后被精细的调控。
通过对GhPEPC2氨基酸序列进行分析,找到了目前已知的PEPC所有功能位点,(Kai Y,Matsumura H,Izui K,2003.Phosphoenolpyruvate carboxylase:three-dimensional structure and molecular mechanisms.Arch Biochem Biophys414:170-179)。自序列表中序列2的氨基端的第17位氨基酸残基为磷酸化调控位点;自序列表中序列2的氨基端的第178、639位氨基酸残基为酶催化位点;自序列表中序列2的氨基端的第184、185、233和372位氨基酸残基为6-磷酸葡萄糖结合位点;自序列表中序列2的氨基端的第289、564、598位氨基酸残基为疏水袋位点;自序列表中序列2的氨基端的第456、647、759、773位氨基酸残基为磷酸烯醇式丙酮酸结合位点;自序列表中序列2的氨基端的第493、498位氨基酸残基为四聚体形成位点;自序列表中序列2的氨基端的第566、603位氨基酸残基为镁离子结合位点;自序列表中序列2的氨基端的第606、762-764、位氨基酸残基为碳酸氢根结合位点;自序列表中序列2的氨基端的第647、835、894、969位氨基酸残基为天冬氨酸结合位点;自序列表中序列2的氨基端的第780位氨基酸残基为C3/C4型PEPC标志(在C3型PEPC中,此位点为A,在C4型PEPC中,此位点为S)。
另外,在其N’端有一个PEPC保守的磷酸化调控序列(E K L A S I D A Q L R),其中这段序列的Ser就为磷酸化位点(图2)。图2中横线表示磷酸化的位点,星号表示被磷酸化的丝氨酸残基。序列来源和GenBank登录号:GhPEP1(棉花,AF008939),AtPEP1(拟南芥,AJ532901),AtPEP2(拟南芥,AJ532902),AtPEP3(拟南芥,AF071788),SyPEP1(大豆,Q02909),PtPEP(马铃薯,CAA62469),TbPEP(烟草,CAA41758),BrPEP(油菜,BAA03094),ZmPEP1(玉米,P04711,注:C4植物中的光合型PEPC)
将GhPEPC2和部分已克隆到的PEPC进行序列比对,结果表明,在植物中,C3型PEPC的保守性都较强,同源性都在80.0%以上,最高的可以达到91.2%。但是与C4型PEPC的同源性要低一点,在76.2%-78.6%之间。和其它植物相比,拟南芥的Atppc4的同源性很低,只为35.9%-37.2%之间,其同源性甚至要比大肠杆菌的还要低(36.5%-39.2%)。这表明,细菌型PEPC与植物型的PEPC的起源可能不同。将GhPEPC2和C3型PEPC比对,发现它与马铃薯(CAA62469)的同源性最高,达到91.2%,甚至高于和棉花GhPEPC1的同源性(89.7%);与C4型PEPC的同源性相对较低(玉米,P04711),为78.3%;与细菌型PEPC的同源性最低,分别只有36.6%(拟南芥的PEPC4,ATH532903)和38.1%(大肠杆菌,P00864)(表2)。
表2、部分PEPC的氨基酸序列同源性比对(%)
Figure G071B7816220070720D000101
表2中的序列来源和GenBank登录号如下:GhPEP1(棉花,AF008939),AtPEP1(拟南芥,AJ532901),AtPEP4(拟南芥,AJ532903),SyPEP1(大豆,Q02909),PtPEP(马铃薯,CAA62469),TbPEP(烟草,CAA41758),BrPEP(油菜,BAA03094),ZmPEP1(玉米,P04711,注:C4植物中的光合型PEPC),EcPEP(大肠杆菌,P00864)。
选择了已经报导的23个来自于细菌、藻类和高等植物(包括C3和C4型)的PEPC进行了系统进化树的分析(图3),结果表明GhPEPC2与马铃薯和烟草的亲缘关系较近。而PEPC的进化过程较为复杂,例如棉花的GhPEPC1与本发明的GhPEPC2分别处于两个亚群,而拟南芥的4个PEPC被分在了3个亚群中。此外,和其它植物的PEPC相比,GhPEPC2在N’端有5个连续的天冬酰氨,这在以往的PEPC中是未发现的,目前还不知道这段序列的功能。图3中的GenBank登录号和序列来源如下:H.verticillata(AAK58635,黑藻,Hydrilla verticillata);A.sessilis(AAY28731,Alternanthera sessilis);Atppc2(A532902,拟南芥);B.napus(BAA03094,油菜);Z.mays(P04711,玉米);Atppc4(AJ532903,拟南芥);E.coli(P00864,大肠杆菌);GhPEP1(AF008939,棉花);M.truncatula(ABE82904,苜蓿);Potato(CAA62469,马铃薯);Tobacco(CAA41758,烟草);F.trinervia(AAG17619,Flaveria trinervia);F.pringlei(CAA88829,Flaveria pringlei);L.albus(AAU07998,白羽扇豆,Lupinus albus);G.max(Q02909,大豆);Lotus(BAC20365,莲花);M.crystallinum(CAA32728,冰叶日中花,Mesembryanthemum crystallinum);Atppc1(ATH532901,拟南芥);Atppc3(AF071788,拟南芥);O.sativa(NP_913781,水稻);Sorghum(CAA42549,高粱);T.aestivum(CAA07610,小麦)。
二、棉花基因组DNA的提取和Southern杂交
在植物中,PEPC是以多基因家族的形式存在的。例如,在拟南芥中,有4个PEPC,其中三个为植物型,一个为细菌型。因此,在棉花中,也可能存在着多个PEPC,而且在1997年,美国一家实验室报道从棉花中克隆到了一个PEPC基因(GhPEPC1),但是没有给出这个基因的拷贝数,也没有说明是否在棉花中也存在PEPC基因家族。因此,本发明利用Southern杂交预测GhPEPC2在棉花基因组中的拷贝数,以及棉花中是否存在PEPC基因家族。
按照文献Paterson AH,Brubaker CL,Wendel JF.1993.A rapid method forextraction of cotton genomic DNA suitable for RFLP or PCR analysis.PlantMol.Biol.Rep.11:122-127描述的方法提取棉花基因组DNA。取15μg基因组DNA,分别用DraI、EcoR I、EcoR V、HindIII和Xba I(New England Biolabs,Inc.)完全酶切后,在0.7%琼脂糖凝胶上电泳。然后用碱法(0.4mol/L NaOH,1mol/L NaCl)将DNA转移到带正电的尼龙膜(Hybond-N+,Amersham)上。杂交用了两个探针,探针1在GhPEPC2的cDNA的编码区,长度为1015bp,用引物5’-CTCAA GAGAC TTGTGGTTGA TCTCA AG-3’和5’-TTTGT TCTTC AGACC ACTCT CGGC-3’,以pMD-GhPEPC2为模板扩增得到,该探针内部没有Dra I、EcoR I、EcoR V、Hind III和Xba I的酶切位点;探针2为GhPEPC2的3’非翻译区,长度为304bp,用引物5’-CACCG ACCTACTACA CGAGG TGTG-3’和5’-AGAAG CCTCA AAAGG CATTC CTTG-3’,以pMD-GhPEPC2为模板扩增得到。带有[α-32P]dCTP的放射性探针采用随机引物标记试剂盒制备(Random Primer DNA Labeling Kit Ver.2(TaKaRa))。杂交按照Sambrook等所描述的方法(《分子克隆:实验手册》第三版,2001.p492-509)在严谨条件下进行杂交。杂交后,用X光底片于-80℃下曝光48小时(Kodak,New York,USA)。
来自于GhPEPC2的cDNA的编码区(1015bp)的探针杂交结果如图4A所示,在EcoR I、EcoR V和Hind III酶切的泳道上,出现了大量的杂交带,表明PEPC在棉花中也是以多基因家族的形式存在的。而在Dra I和Xba I酶切的泳道上,都出现了较粗的条带,可能是由于多条杂交带位置重叠的结果。第二个探针来自GhPEPC2的3’非翻译区(304bp),用PCR扩增基因组DNA表明,这段序列中没有内含子。在这段序列的中部有一个Dra I的酶切位点,但是由于长度小于了同位素标记试剂盒(Random Primer DNA Labeling Kit Ver.2,TaKaRa)所要求的最小探针长度(300bp),所以,没有得到明显的杂交带(图4B的DraI泳道)。而在EcoR I、EcoR V和Xba I的泳道上,都出现了两条杂交带,在Hind III的泳道上,出现了一条较粗杂交带,可能是两条带位置重叠的结果(图4B)。所以推测在棉花基因组中,GhPEPC2基因是以双拷贝的形式存在的。陆地棉是异源四倍体(Wendel JF.1989.New worldtetraploid cottons contain old world cytoplasm.Proc Natl Acad Sci USA86:4132-4136),由A和D两个亚基因组构成,因此,GhPEPC2可能在两个亚基因组中各含有一个拷贝。
三、棉花总RNA的提取和半定量RT-PCR
为了研究GhPEPC2的表达模式,从棉花的不同组织中提取了总RNA,进行半定量RT-PCR。
利用Purescript RNA纯化试剂盒(Gentra system,USA),从棉花的不同组织中小量提取总RNA。在紫外吸收和琼脂糖电泳检测后,于-80℃保存。然后,取1μg总RNA加入扩增级别DNase I(Sigma,USA)室温放置30分钟以去除基因组DNA的污染,操作方法参照产品说明书。PolyA mRNA第一链反转录采用Promega公司ReverseTranscription System完成,操作方法按照试剂盒说明书进行。为校正RT-PCR反应的模板浓度,通过扩增Ubiquitin7的cDNA,进行平行PCR反应作为内对照。引物为UBQ7-1:5’-AGGCA TTCCA CCTGA CCAAC-3’和UBQ7-2:5’-GCTTG ACCTT CTTCT TCTTGTGC-3’。对棉花GhPEPC2的cDNA扩增,用引物5’-CACCG ACCTA CTACA CGAGG TGTG-3’和5’-AGAAG CCTCA AAAGG CATTC CTTG-3’扩增得到。反应为30个PCR循环。PCR结果用1.2%的琼脂糖凝胶进行分离。
实验结果表明,GhPEPC2在棉花中是组成型表达的,但是在不同组织中的表达量不同。按照表达最的多少,可以大致分为3类:在根、花和胚中的表达量最多;在茎、子叶、真叶和种子中的表达量居中;而在纤维中的表达量最少。GhPEPC2在棉花的根部表达较高,这与以往报道的实验结果是一致的,这表明GhPEPC2可能与植物应对环境胁迫以及重新固定在根部呼吸过程中释放的CO2反应相关。另外,棉花的胚在生长过程中,会合成大量的储藏性蛋白,因此,GhPEPC2可能为胚中氨基酸的大量合成提供碳源。GhPEPC2在纤维中表达量要远远低于其它组织。这可能是由于棉花纤维细胞大量合成纤维素,主要进行的是糖代谢,而蛋白的合成相对比较少,因此作为分流糖酵解的中间产物、为氨基酸的合成提供前体的PEPC的表达量就会随之比较低。此外,GhPEPC2在茎中的表达量也比较少,这也可能与茎中蛋白合成量相对较少有关(图5)。图5中,RT表示根、ST表示茎、CL表示子叶、LV表示真叶、FL表示花、SD表示种子、EB表示胚和FB表示纤维;UBQ7表示Ubiquitin 7为内参,用来调整模板的浓度;GhPEPcase2表示GhPEPC2。在柱状图中,是以花(FL)的表达量为100。
半定量RT-PCR的结果表明,GhPEPC2的表达量与不同组织中蛋白的合成量成一定的正相关,所以其主要功能可能是为棉花蛋白的合成提供碳源。此外,由于GhPEPC2在种子和胚中表达量较高,因此,可以抑制种子和胚中的PEPC活性,使更多的代谢底物进入脂肪代谢的合成,通过调控籽粒蛋白质/油脂含量比率,最终提高棉花种子的贮藏性油脂含量。
四、GhPEPC2的原核表达及活性测定
为了证明所克隆的基因为磷酸烯醇式丙酮酸羧化酶,对所克隆的序列进行了原核表达,并对表达的GhPEPC2进行了活性的测定。
根据已经克隆到的GhPEPC2的cDNA序列,设计一对引物Exp_F1:GGTAC CGAATTCATG GCGAG TTTTA ATAAT和Exp_R1:GTCGA CTCGA GTTAA CCGGT GTTTT GCAT,以GhPEPC2的cDNA为模板,扩增到2930bp的目的片段,连入pMD18-T Simple(TaKaRa)载体中,并测序。然后用EcoR I和Sal I双酶切,并回收目的片段。然后用EcoR I和Sal I双酶切表达载体pGEX-6p-1(Amersham Pharmacia Biosciences),回收大片段,并与上一步回收的目的片段连接,构建成pGEX-PEPC2表达载体(构建过程见图7),然后转化表达菌株BL21(DE3)进行表达。由于在常规条件下(0.5mM IPTG,37℃),表达出的融合蛋白多以包涵体的形式存在。为了提高可溶性蛋白的比例,选择了在低IPTG(0.1mM)、低温(25℃)条件下诱导表达。表达出的融合蛋白见图8所示(1为未诱导,2、诱导表达后1小时;3、诱导表达后2小时;4、诱导表达后4小时;5、诱导表达后8小时、6、诱导表达后12小时后所取的样品)。原核表达蛋白的纯化按Sambrook等(《分子克隆:实验手册》第三版,2001.p1245-1248)所描述的方法完成。
在Mg2+存在时,磷酸烯醇式丙酮酸羧化酶可催化PEP与HCO3 -形成草酰乙酸。而形成的草酰乙酸在还原型辅酶I(NADH)存在时,可由苹果酸脱氢酶催化形成苹果酸和NAD+。NADH消耗(或NAD+形成)的速率可在室温下用分光光度计法于340nm波长下进行测定,以OD值变化的量来计算酶的活性。利用此反应,对GhPEPC2的催化反应速度进行了测定。本实验中测定的反应总体积为1ml,含50mM Tris-HCl(pH8.0)、10mM NaHCO3、5mM MgCl2、0.4mM NADH、2mM PEP、5个活性单位的苹果酸脱氢酶。测活温度为25℃,在加入适量纯化后的GhPEPC2蛋白溶液(含2.5μgGhPEPC2蛋白)后开始计时。测定在340nm下,反应开始后1分钟内样品的OD变化值(ΔOD),其中样品OD值下降0.01为1个PEPC的活性单位(U)。在上述实验中,PEP和苹果酸脱氢酶购自Sigma公司,还原型辅酶I购自Ameresco公司。该实验重复3次,结果如图9所示。其结果表明GhPEPC2具有典型的磷酸烯醇式丙酮酸羧化酶的活性。在图9中,CK为阴性对照,所用的是转入pGEX-6p-1载体的BL21(DE3),诱导表达、纯化及活性测定方法同GhPEPC2。
其中,阴性对照(CK)和GhPEPC2的具体测定结果如表3:
表3、吸光值和酶活性
Figure G071B7816220070720D000141
Figure G071B7816220070720D000151
此外,PEPC广泛的存在于细菌和植物中,而本实验所选用的表达菌株本身也有PEPC。为了确定以上实验中的PEPC活性完全来自于融合表达的GhPEPC2,而不是表达菌株的PEPC或其它不确定因素,设置了一个阴性对照(CK),即用不含GhPEPC2的pGEX-6p-1载体(该载体是一个融合表达载体,不含目的基因时表达GST蛋白)进行表达。在相同条件下,对含有pGEX-6p-1载体的菌株BL21(DE3)进行诱导、收集菌体、蛋白的纯化以及对等量的洗脱蛋白进行活性测定。结果表明,用pGEX-6p-1载体(CK)表达所纯化的蛋白质进行酶活测定的结果要远远低于含有目标基因(GhPEPC2)的载体。这一结果表明,样品中的PEPC活性来自于GhPEPC2。经计算,此时GhPEPC2的催化反应速度为7.781μmol min-1 mg-1
此外,对上述GhPEPC2催化反应中的两个重要的动力学参数:最大反应速度(Vmax)和米氏常数(Km)进行了测定。首先,在测活体系(50mM Tris-HCl,pH 8.0,10mM NaHCO3,5mM MgCl2,0.4mM NADH,5个活性单位的苹果酸脱氢酶,2.5μg GhPEPC2蛋白,25℃)中测定不同底物(PEP)浓度时的酶催化反应速度,每个反应重复测3次,取平均值。以反应速度对底物浓度作图,并根据米氏方程,用软件SigmaPlot 9.0计算GhPEPC2对PEP的Vmax和Km。结果见表4,这一结果和已经报导的磷酸烯醇式丙酮酸羧化酶的相关值相似(Svensson,P.,Blasing,O.E.and Westhoff,P.1997.Evolution of the enzymatic characteristics of C4 phosphoenolpyruvatecarboxylase.A comparison of the orthologous PPCA phosphoenolpyruvatecarboxylases of Flaveria trinervia(C4)and Flaveria pringlei(C3).Eur.J.Biochem.246:452-460)。
表4、GhPEPC2对PEP的催化动力学参数
Figure G071B7816220070720D000152
序列表
<160>2
<210>1
<211>3396
<212>DNA
<213>棉花属陆地棉(Gossypium hirsutum)
<400>1
cagggcacgc gtggtcgacg gcccgggctg gtagcttgtt gtatatcaaa tacttgatat    60
tgggtttatg atgctttggt aatttaaaat tggtaattat cttttatgca gacgaagttt    120
ttaggagtgt ggtaatggcg agttttaata ataataataa tggcaagttc gagaagttgg    180
catccattga tgcgcagtta cggcaattgg ttcctgctaa agtgagtgaa gatgataaat    240
tggtggaata tgatgctttg cttttggatc ggtttcttga tattcttcaa gatttgcatg    300
gcgaggatct taaggaaacg gttcaagaat gttatgaact ttctgctgag tatgaaggga    360
agagtacccc caagaaactt gaggagctgg ggaatgtttt gactagtttg gatccagggg    420
actccattgt tatagctaag gctttctccc acatgcttaa cttggctgac ttggctgagg    480
aagttcagat tgcttaccgg cgaaggatca agttgaagaa aggtgatttt gccgatgaga    540
actctgcaac aactgaatcg gatatcgaag aaactctcaa gagacttgtg gttgatctca    600
agaagtctcc tgaggaagtt tttgatgcac ttaagaacca gactgtggat ctggtcttca    660
ctgctcatcc tacccaatct gttcgtagat ctttacttca gaagcacgga aggataagga    720
actgtttagc tcagttgtat gctaaagata ttactccaga tgataagcag gagcttgatg    780
aagctctaca gcgtgagatt caagccgcat ttcgtacaga tgagattcga aggactcctc    840
caactcccca agatgagatg agggcgggaa tgagctactt ccatgaaacg gtatggaaag    900
gtgtccccaa attcttgcgg agagttgaca cagctttgaa gaacattgga attaatgaac    960
gtgttcccta taatgcgcca cttattcagt tttcttcatg gatgggtggt gatcgtgatg    1020
gcaatccaag ggtagctcct gaggtcacaa gggatgtttg cttgttggct agaatgatgg    1080
ctgccaattt gtactattcc caaatcgagg atctgatgtt tgagttgtca atgtggcgtt    1140
gcagtgatga gcttcgtgtt cgtgcagacg aacttcatag atcttcaagg agagatgcta    1200
aacactacat agagttctgg aaaaaagttc ctccaaatga accctaccgt gttattcttg    1260
gtgatgttag ggacaagctg tatcagacac gtgaaaggtc tcgccaaatg ttgtctcatg    1320
gtatctctga cattccagag gaggaaactt tcaccaacat tgagcagttt ttggaaccgc    1380
ttgaactatg ttataggtca ctttgctctt gtggtgaccg gccaattgct gatggaagtc    1440
ttcttgattt cttgaggcaa gtatcaactt ttggcctctc acttgtcaga cttgacattc    1500
ggcaagagtc tgaccgccac accgatgtct tagatgccat caccaagcac ttggaaattg    1560
gttcctgccg agagtggtct gaagaacaaa agcaggaatg gctattgtct gaactaggtg    1620
gaaggcgtcc attgtttggt cctgatcttc ctaaaacaga agaaattgct gatgttttgg    1680
ataccttcag tgtcctagca gagctcccgg cagacaactt tggagcatac atcatttcaa    1740
tggcaactgc tccttctgat gttcttgctg ttgagctcct acagcgtgaa tgccacgtga    1800
agcaaccatt aagagttgtt ccactgtttg agaagcttgc ggatctggag gctgcacctg  1860
ctgctttggc tcggctcttc tcgatagatt ggtacagaaa tcggatcaat ggcaagcaag  1920
aagtcatgat tgggtattct gattcgggta aagatgctgg ccgtctctct gctgcctggc  1980
agttatacaa agctcaagag gagcttatca atgttgctaa ggaatttggt gtgaagctaa  2040
cgatgttcca tggtcgtggt ggaactgttg gaagaggtgg tggtcccacc catcttgcta  2100
tattatctca accaccagaa acaattcacg gctcacttcg ggttacagtt caaggtgaag  2160
ttattgagca atcgtttgga gaggaacact tgtgctttag aacactccag cgttttactg  2220
ctgccacact tgagcatggc atgcacccac cagtttcacc aaaaccagaa tggcgtgcac  2280
tgatggatga aatggctgtc gttgctactg aggagtaccg ttccattgtc ttcaaagaac  2340
ctcgatttgt tgaatatttc cgccttgcta cgccagagtt ggagtatggt agaatgaata  2400
ttggaagccg accatcaaag cggaagccaa gtgggggtat cgaatctctt cgtgcaatcc  2460
catggatctt tgcgtggaca cagacaagat tccatctccc tgtttggctc ggatttggag  2520
ctgcatttaa acatgtcatt cagaaggaca ttaagaatct ccttatgctg caggagatgt  2580
acaatgaatg gcctttcttc agagtgacaa ttgatttggt tgaaatggtc cttgcaaaag  2640
gagatcccgg gattgcagcc ttatacgata agcttcttgt ttctgaggaa ctctggtctt  2700
tcggagagcg gttgagaacc aactttgaag aaactaaaag ccttctcctc cagattgctg  2760
ggcacaagga tcttctcgaa ggggatccct acctgaagca aagactccgg ctacgtgatt  2820
catacatcac cactctaaat gtctgccagg cctacacact caaacgtatc cgtgacccaa  2880
attacagcgt gaagttgcgg ccacatatct ctagagagat catggaatca agcaaacctg  2940
ctgatgaact tgtcaaactg aacccaacaa gcgagtatgc ccctggtttg gaggacaccc  3000
tcatcttgac catgaagggt attgctgccg gcatgcaaaa caccggttaa acaccgacct  3060
actacacgag gtgtgcttat agtcttttaa gtccagagaa gatgaattat tcatcaaaga  3120
ctgatgtcat ttcggcaaaa acctttctta taggtaaaca aaagaggcgg atatatatat  3180
aaatgctctt taaagctgta tgattatgct gttatgcttt taagactcgt tttatttttt  3240
tatatatatg tattgcggca agtgtttatt attgcccaaa agcggattgg aatggaactc  3300
cattagaact gatccattat gctttaaata caaggaatgc cttttgaggc ttctggtttt  3360
tgtttttaaa aaaaaaaaaa aaaaaaaaaa aaaaaa                            3396
<210>2
<211>971
<212>PRT
<213>棉花属陆地棉(Gossypium hirsutum)
<400>2
Met Ala Ser Phe Asn Asn Asn Asn Asn Gly Lys Phe Glu Lys Leu Ala
1               5                   10                  15
Ser Ile Asp Ala Gln Leu Arg Gln Leu Val Pro Ala Lys Val Ser Glu
            20                  25                  30
Asp Asp Lys Leu Val Glu Tyr Asp Ala Leu Leu Leu Asp Arg Phe Leu
        35                  40                  45
Asp Ile Leu Gln Asp Leu His Gly Glu Asp Leu Lys Glu Thr Val Gln
    50                  55                  60
Glu Cys Tyr Glu Leu Ser Ala Glu Tyr Glu Gly Lys Ser Thr Pro Lys
65                  70                  75                  80
Lys Leu Glu Glu Leu Gly Asn Val Leu Thr Ser Leu Asp Pro Gly Asp
                85                  90                  95
Ser Ile Val Ile Ala Lys Ala Phe Ser His Met Leu Asn Leu Ala Asp
            100                 105                 110
Leu Ala Glu Glu Val Gln Ile Ala Tyr Arg Arg Arg Ile Lys Leu Lys
        115                 120                 125
Lys Gly Asp Phe Ala Asp Glu Asn Ser Ala Thr Thr Glu Ser Asp Ile
    130                 135                 140
Glu Glu Thr Leu Lys Arg Leu Val Val Asp Leu Lys Lys Ser Pro Glu
145                 150                 155                 160
Glu Val Phe Asp Ala Leu Lys Asn Gln Thr Val Asp Leu Val Phe Thr
                165                 170                 175
Ala His Pro Thr Gln Ser Val Arg Arg Ser Leu Leu Gln Lys His Gly
            180                 185                 190
Arg Ile Arg Asn Cys Leu Ala Gln Leu Tyr Ala Lys Asp Ile Thr Pro
        195                 200                 205
Asp Asp Lys Gln Glu Leu Asp Glu Ala Leu Gln Arg Glu Ile Gln Ala
    210                 215                 220
Ala Phe Arg Thr Asp Glu Ile Arg Arg Thr Pro Pro Thr Pro Gln Asp
225                 230                 235                 240
Glu Met Arg Ala Gly Met Ser Tyr Phe His Glu Thr Val Trp Lys Gly
                245                 250                 255
Val Pro Lys Phe Leu Arg Arg Val Asp Thr Ala Leu Lys Asn Ile Gly
            260                 265                 270
Ile Asn Glu Arg Val Pro Tyr Asn Ala Pro Leu Ile Gln Phe Ser Ser
        275                 280                 285
Trp Met Gly Gly Asp Arg Asp Gly Asn Pro Arg Val Ala Pro Glu Val
    290                 295                 300
Thr Arg Asp Val Cys Leu Leu Ala Arg Met Met Ala Ala Asn Leu Tyr
305                 310                 315                 320
Tyr Ser Gln Ile Glu Asp Leu Met Phe Glu Leu Ser Met Trp Arg Cys
               325                 330                 335
Ser Asp Glu Leu Arg Val Arg Ala Asp Glu Leu His Arg Ser Ser Arg
        340                 345                 350
Arg Asp Ala Lys His Tyr Ile Glu Phe Trp Lys Lys Val Pro Pro Asn
        355                 360                 365
Glu Pro Tyr Arg Val Ile Leu Gly Asp Val Arg Asp Lys Leu Tyr Gln
    370                 375                 380
Thr Arg Glu Arg Ser Arg Gln Met Leu Ser His Gly Ile Ser Asp Ile
385                 390                 395                 400
Pro Glu Glu Glu Thr Phe Thr Asn Ile Glu Gln Phe Leu Glu Pro Leu
                405                 410                 415
Glu Leu Cys Tyr Arg Ser Leu Cys Ser Cys Gly Asp Arg Pro Ile Ala
            420                 425                 430
Asp Gly Ser Leu Leu Asp Phe Leu Arg Gln Val Ser Thr Phe Gly Leu
         435                 440                 445
Ser Leu Val Arg Leu Asp Ile Arg Gln Glu Ser Asp Arg His Thr Asp
    450                 455                 460
Val Leu Asp Ala Ile Thr Lys His Leu Glu Ile Gly Ser Cys Arg Glu
465                 470                 475                 480
Trp Ser Glu Glu Gln Lys Gln Glu Trp Leu Leu Ser Glu Leu Gly Gly
                485                 490                 495
Arg Arg Pro Leu Phe Gly Pro Asp Leu Pro Lys Thr Glu Glu Ile Ala
            500                 505                 510
Asp Val Leu Asp Thr Phe Ser Val Leu Ala Glu Leu Pro Ala Asp Asn
        515                 520                 525
Phe Gly Ala Tyr Ile Ile Ser Met Ala Thr Ala Pro Ser Asp Val Leu
    530                 535                 540
Ala Val Glu Leu Leu Gln Arg Glu Cys His Val Lys Gln Pro Leu Arg
545                 550                 555                 560
Val Val Pro Leu Phe Glu Lys Leu Ala Asp Leu Glu Ala Ala Pro Ala
                565                 570                 575
Ala Leu Ala Arg Leu Phe Ser Ile Asp Trp Tyr Arg Asn Arg Ile Asn
            580                 585                 590
Gly Lys Gln Glu Val Met Ile Gly Tyr Ser Asp Ser Gly Lys Asp Ala
        595                 600                 605
Gly Arg Leu Ser Ala Ala Trp Gln Leu Tyr Lys Ala Gln Glu Glu Leu
    610                 615                 620
Ile Asn Val Ala Lys Glu Phe Gly Val Lys Leu Thr Met Phe His Gly
625                 630                 635                 640
Arg Gly Gly Thr Val Gly Arg Gly Gly Gly Pro Thr His Leu Ala Ile
                645                 650                 655
Leu Ser Gln Pro Pro Glu Thr Ile His Gly Ser Leu Arg Val Thr Val
            660                 665                 670
Gln Gly Glu Val Ile Glu Gln Ser Phe Gly Glu Glu His Leu Cys Phe
        675                 680                 685
Arg Thr Leu Gln Arg Phe Thr Ala Ala Thr Leu Glu His Gly Met His
    690                 695                 700
Pro Pro Val Ser Pro Lys Pro Glu Trp Arg Ala Leu Met Asp Glu Met
705                 710                 715                 720
Ala Val Val Ala Thr Glu Glu Tyr Arg Ser Ile Val Phe Lys Glu Pro
                725                 730                 735
Arg Phe Val Glu Tyr Phe Arg Leu Ala Thr Pro Glu Leu Glu Tyr Gly
            740                 745                 750
Arg Met Asn Ile Gly Ser Arg Pro Ser Lys Arg Lys Pro Ser Gly Gly
        755                 760                 765
Ile Glu Ser Leu Arg Ala Ile Pro Trp Ile Phe Ala Trp Thr Gln Thr
    770                 775                 780
Arg Phe His Leu Pro Val Trp Leu Gly Phe Gly Ala Ala Phe Lys His
785                 790                 795                 800
Val Ile Gln Lys Asp Ile Lys Asn Leu Leu Met Leu Gln Glu Met Tyr
                805                 810                 815
Asn Glu Trp Pro Phe Phe Arg Val Thr Ile Asp Leu Val Glu Met Val
            820                 825                 830
Leu Ala Lys Gly Asp Pro Gly Ile Ala Ala Leu Tyr Asp Lys Leu Leu
        835                 840                 845
Val Ser Glu Glu Leu Trp Ser Phe Gly Glu Arg Leu Arg Thr Asn Phe
    850                 855                 860
Glu Glu Thr Lys Ser Leu Leu Leu Gln Ile Ala Gly His Lys Asp Leu
865                 870                 875                 880
Leu Glu Gly Asp Pro Tyr Leu Lys Gln Arg Leu Arg Leu Arg Asp Ser
                885                 890                 895
Tyr Ile Thr Thr Leu Asn Val Cys Gln Ala Tyr Thr Leu Lys Arg Ile
            900                 905                 910
Arg Asp Pro Asn Tyr Ser Val Lys Leu Arg Pro His Ile Ser Arg Glu
        915                 920                 925
Ile Met Glu Ser Ser Lys Pro Ala Asp Glu Leu Val Lys Leu Asn Pro
    930                 935                 940
Thr Ser Glu Tyr Ala Pro Gly Leu Glu Asp Thr Leu Ile Leu Thr Met
945                 950                 955                 960
Lys Gly Ile Ala Ala Gly Met Gln Asn Thr Gly
                965                 970

Claims (7)

1.磷酸烯醇式丙酮酸羧化酶,其氨基酸残基序列如序列表中序列2所示。
2.权利要求1所述的磷酸烯醇式丙酮酸羧化酶的编码基因。
3.根据权利要求2所述的编码基因,其特征在于:所述磷酸烯醇式丙酮酸羧化酶编码基因的编码序列为序列表中序列1的自5′末端第135位至3050位脱氧核苷酸组成的核苷酸序列。
4.根据权利要求2所述的编码基因,其特征在于:所述磷酸烯醇式丙酮酸羧化酶编码基因的核苷酸序列如序列表中的序列1所示。
5.含有权利要求2至4中任一所述的磷酸烯醇式丙酮酸羧化酶编码基因的重组表达载体。
6.含有权利要求2至4中任一所述的磷酸烯醇式丙酮酸羧化酶编码基因的转基因重组细胞系。
7.含有权利要求2至4中任一所述的磷酸烯醇式丙酮酸羧化酶编码基因的转基因重组菌。
CN2007101178162A 2007-06-25 2007-06-25 一种磷酸烯醇式丙酮酸羧化酶及其编码基因 Expired - Fee Related CN101100661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101178162A CN101100661B (zh) 2007-06-25 2007-06-25 一种磷酸烯醇式丙酮酸羧化酶及其编码基因

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101178162A CN101100661B (zh) 2007-06-25 2007-06-25 一种磷酸烯醇式丙酮酸羧化酶及其编码基因

Publications (2)

Publication Number Publication Date
CN101100661A CN101100661A (zh) 2008-01-09
CN101100661B true CN101100661B (zh) 2011-09-14

Family

ID=39035109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101178162A Expired - Fee Related CN101100661B (zh) 2007-06-25 2007-06-25 一种磷酸烯醇式丙酮酸羧化酶及其编码基因

Country Status (1)

Country Link
CN (1) CN101100661B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624578B (zh) * 2018-06-25 2021-09-28 中山大学 花生AhPEPC5基因片段在提高微生物对渗透胁迫与盐胁迫耐受能力中的应用
CN115806962A (zh) * 2021-09-15 2023-03-17 中国科学院天津工业生物技术研究所 磷酸烯醇式丙酮酸羧化酶突变体及其应用

Also Published As

Publication number Publication date
CN101100661A (zh) 2008-01-09

Similar Documents

Publication Publication Date Title
CN111172131B (zh) 玉米cipk42蛋白及其编码基因在调控植物耐受盐胁迫中的应用
CN109456982B (zh) 水稻OsMYB6基因及其编码蛋白在抗旱和抗盐中的应用
CN101889089B (zh) 具有增加的胁迫耐受性和产率的转基因植物
CN101679999A (zh) 具有增加的胁迫耐受性和产率的转基因植物
CN104450640A (zh) 具有提高的胁迫耐受性和产量的转基因植物
CN108048474A (zh) 一种酸性磷酸酶蛋白基因GmPAP1-like及其应用
CN103695438A (zh) 拟南芥MYB家族转录因子AtMYB17基因、编码序列及其应用
CN109666681A (zh) 植物抗旱、耐盐蛋白EeCIPK26及其编码基因和应用
CN108118040A (zh) 大豆GDPD蛋白编码基因GmGDPD1及其应用
Wang et al. Specific downregulation of the bacterial-type PEPC gene by artificial microRNA improves salt tolerance in Arabidopsis
CN101809155A (zh) 具有增加的胁迫耐受性和产量的转基因植物
Sun et al. Cloning and preliminary functional analysis of PeUGE gene from moso bamboo (Phyllostachys edulis)
CN101100661B (zh) 一种磷酸烯醇式丙酮酸羧化酶及其编码基因
WO2013056677A1 (en) USE OF OsPP18 GENE IN CONTROLLING RICE DROUGHT RESISTANCE
CN101532005B (zh) 一种大豆plp类酶及其编码基因与应用
CN101412990B (zh) 羊草果聚糖水解酶及其编码基因与应用
CN105821017B (zh) 玉米焦磷酸酶基因ZmPPase4在提高植物抗逆性中的应用
CN1919866B (zh) 一种大豆Trihelix转录因子及其编码基因与应用
CN102449154A (zh) 植物中用于胁迫耐性的方法和组合物
CN104073512A (zh) 一种调控植物内源乙烯含量的方法
CN114369616A (zh) 番茄sisps基因在提高植物耐高温性中的应用
Li et al. GmPTF1, a novel transcription factor gene, is involved in conferring soybean tolerance to phosphate starvation
CN105452452B (zh) 一种木榄液泡焦磷酸酶vp2及其编码基因与应用
CN110358774A (zh) 控制水稻开花时间的基因、蛋白质、基因表达盒、表达载体、宿主细胞、方法及应用
CN101993479B (zh) 植物耐逆性相关转录因子TaWRKY1及其编码基因与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110914

Termination date: 20140625

EXPY Termination of patent right or utility model