CN101093228A - 一种模拟近地轨道空间复合环境方法及所用装置 - Google Patents

一种模拟近地轨道空间复合环境方法及所用装置 Download PDF

Info

Publication number
CN101093228A
CN101093228A CN 200610047021 CN200610047021A CN101093228A CN 101093228 A CN101093228 A CN 101093228A CN 200610047021 CN200610047021 CN 200610047021 CN 200610047021 A CN200610047021 A CN 200610047021A CN 101093228 A CN101093228 A CN 101093228A
Authority
CN
China
Prior art keywords
oxygen
sample stage
target
vacuum chamber
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610047021
Other languages
English (en)
Other versions
CN100543472C (zh
Inventor
李美栓
胡龙飞
周延春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN 200610047021 priority Critical patent/CN100543472C/zh
Publication of CN101093228A publication Critical patent/CN101093228A/zh
Application granted granted Critical
Publication of CN100543472C publication Critical patent/CN100543472C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

本发明公开一种模拟近地轨道空间复合环境方法及所用装置。在真空环境下通过微波电子回旋共振方法耦合氧气放电产生高密度的氧等离子体,所产生的等离子体与带负电的金属靶碰撞中性化为氧原子,用紫外光源照射样品台,由加热装置和冷却装置控制样品台温度,从而产生原子氧+紫外+温度循环三因素复合环境;具体:对真空室抽真空进行真空预出气;然后通入氧气;通过磁场和微波耦合氧气放电产生的氧等离子体,氧等离子体在磁场约束下撞击施加负偏压的靶,将氧等离子体转变为中性氧原子,在样品台位置产生环境。采用本发明能够模拟出原子氧+温度循环、紫外+温度循环、原子氧+紫外+温度循环等空间复合环境。

Description

一种模拟近地轨道空间复合环境方法及所用装置
技术领域
本发明属于特殊环境模拟技术,具体是一种模拟近地轨道空间(low earthorbit,LEO)复合环境方法及所用装置。
背景技术
自LEO空间效应发现以来,各种LEO环境模拟装置层出不穷。一方面,验证了LEO空间环境效应的存在性;另一方面,开辟了研究LEO空间效应的新途径,大大减少了空间效应研究费用的开支。
LEO环境的因素包括原子氧(atomic oxygen,AO)、紫外、温度循环、微陨石等。其中原子氧是LEO环境中最主要的因素。最近几年来,原子氧+紫外辐照复合效应被证明确实存在。复合效应的研究受到重视。由于复合环境能够更真实的反映LEO的实际环境状态,大多数研究人员把研究的重点放到了复合环境的研究上来。研究近地空间环境复合效应的关键是模拟出与空间环境相吻合的地面模拟环境。受轨道高度、昼夜变化、太阳活动周期等因素的影响,空间环境中的紫外线辐射强度的最大值约是最小值的三倍,温度循环范围宽达-150~200℃。
早期的地面模拟方法利用氧离子代替氧原子进行氧化试验,与LEO环境不符。现在的地面模拟方法已经解决了模拟产生原子氧环境的问题,并开始朝模拟复合环境的方向发展。模拟的主要途径为:在真空室室内由离子源与氧气作用产生离子束,通过静电加速离子束达到适当的速度,再通过电荷交换或与带负电的金属板碰撞的方法,使氧离子束转变为中性氧原子束。其中,离子源的类型包括热等离子源、低温等离子源、电子束解附氧化物源、激光加热分解原子束源等。
虽然目前的地面模拟方法与以前相比已经有了较大进步,但是仍旧存在一定的问题:首先,只能模拟一种或两种因素的环境,如原子氧,原子氧+紫外等;其次,各种地面模拟方法得到的原子氧束流通量(AO flux)比较低,一般为1014-1015atoms·cm-2s-1,比所需原子氧束流通量1016atoms·cm-2s-1低1-2个数量级;再次,产生的原子氧能量较低,氧原子能量一般小于1eV,即原子热运动的能量,达不到LEO环境中原子氧的能量--5eV。综合来看,近地空间复合环境的地面模拟研究才刚刚开始。从研究的深度来看,复合效应研究的结论多为定性的,而非定量的。人们对空间环境复合效应的研究尚处于起步阶段。模拟出与LEO环境相近的复合环境是研究LEO环境效应的关键。
发明内容
本发明的目的在于提供一种模拟LEO复合环境方法及所用装置,该方法能模拟出原子氧+温度循环、紫外+温度循环、原子氧+紫外+温度循环等空间复合环境。
本发明的技术方案:在真空环境下通过微波电子回旋共振方法耦合氧气放电产生高密度的氧等离子体,所产生的等离子体与带负电的金属靶碰撞中性化为氧原子,用氧原子氧化试样;具体:对真空室抽真空至1.2×10-3~1.2×10-4Pa进行真空预出气;然后通入氧气,调节氧气流量和抽真空速率使工作真空度在1.5×10-2~3×10-1Pa;通过磁场和微波耦合氧气放电产生的氧等离子体,氧等离子体在磁场约束下撞击施加负偏压的靶,将氧等离子体转变为中性氧原子,在样品台位置产生环境;其中:所述微波功率为500~2000W,微波频率为2.45GHz;样品台的温度范围为-150℃~200℃;氧气流量为0.5-5.0SCCM;磁场强度为0.7~2.0mT;
对所述样品台进行循环温度控制,具体为:采用通液氮冷却方法调节温度于室温以下、大于等于-150℃之间,以加热方式调节温度于大于等于室温至200℃之间,液氮压力为0.01~0.075MPa,加热的输出功率30W~210W,调节样品台温度,以-150~200℃、200℃~-150℃的连续的温度变化为一个循环周期;在将氧等离子体转变为中性氧原子后加设紫外光光源,照射样品;紫外光的光源与样品台间的距离为5~9cm;靶上所施加负偏压为15-30V;
所用装置包括真空室、靶、紫外光源、磁场与样品台,其中真空室中部设有与正下方的样品台呈45°角的靶,真空室侧壁上通过波导管与微波源相连、通过管路与氧气发生器相连,磁力线圈设在真空室的侧壁上,所产生的磁力线穿过靶面设置;紫外光源安装在样品台上方、与水平线呈45°角;样品台为中空柱形,其中部连接冷却装置,侧壁设有加热装置;所述靶为金属钼片与不锈钢叠置结构;直流电源正极接真空室的壳体,负极接靶;
所述加热装置为电阻丝,冷却装置为液氮发生器;所述样品台通过螺旋杆与电机相连;真空室整体呈十字型。
本发明原理如下:
本发明在真空环境下通过微波电子回旋共振(ECR)技术耦合氧气放电产生高密度的氧等离子体,而后产生的等离子体与带负电的金属靶碰撞中性化为氧原子,以此来模拟LEO中的原子氧;由氘灯产生的紫外辐照来模拟LEO中来自太阳的紫外线辐射;由铂金电阻丝加热和液氮冷却控制样品台的温度,通过控制氧气的流量和抽气速率可以调节工作真空度及原子氧束流通量;通过调节样品台的位置可以得到合适的原子氧束流通量和紫外辐照强度,通过控制通入液氮的速率和加热功率调节冷热循环过程。使用本发明可以模拟出与LEO环境相近的多种复合环境。
本发明的优点是:
1、本发明可以同时模拟出LEO中的三种环境因素,原子氧、紫外和温度循环。其中模拟出高的原子氧束流通量和与LEO相近的温度循环曲线。紫外辐照与LEO中的太阳辐射具有可比拟性。
2、除能同时模拟原子氧、紫外辐照和温度循环三种空间因素外,本发明还能模拟出原子氧+紫外,原子氧+热循环,紫外+热循环复合环境,兼备一般地面模拟环境的特点。
3、采用本发明可得到的原子氧束流通量较高,  最大为1.1×1017atoms·cm-2s-1。氧原子能量可调,能够控制在5eV左右。
4、技术易于实现,操作简单,环境因素可以调节。与一般模拟技术相比,本发明通过控制样品台位置就可以得到不同的模拟环境。
5、本发明在研究LEO空间环境对材料的侵蚀效应方面有着潜在的使用价值。
附图说明
图1为本发明方法一个实施例所用装置的结构示意图。
图2a为本发明实施例1样品台距离靶不同位置时聚酰亚胺的质量损失曲线。
图2b为本发明实施例1聚酰亚胺侵蚀1h后的表面电子扫描照片。
图3为本发明实施例4模拟环境中得到的温度循环曲线。
图4为本发明实施例2模拟环境中采用的紫外氘灯的辐射光谱。
图5为本发明实施例5磁控溅射SiO2涂层在原子氧+温度循环复合环境中氧化后得到的含微裂纹表面电子扫描照片(放大1000倍)。
图6a为聚酰亚胺在现有技术中原子氧环境中暴露后得到的表面原子力显微照片。
图6b为本发明一个实施例聚酰亚胺在原子氧+紫外+温度循环复合环境中暴露后得到的表面原子力显微照片。
图7a为本发明实施例1的聚酰亚胺在3×1016atoms·cm-2s-1原子氧环境中暴露1小时用质谱仪检测到的挥发性气相产物。
图7b为本发明实施例1的聚酰亚胺在5×1016atoms·cm-2s-1原子氧环境暴露过程中用石英晶体微天平原位测量得到的质量损失曲线。
具体实施方式
下面通过实施例详述本发明。
实施例1
如图1所示,本发明方法所用装置由真空室2、靶1、磁力线圈与样品台7组成,其中真空室2整体为十字型,中部设有与正下方的样品台7呈45°角的靶;真空室侧壁通过石英窗口9、波导管与微波源相连、通过管路与氧气发生器相连;磁力线圈设在真空室2的侧壁上,其产生的磁力线穿过靶1面设置,磁场为水平磁场;所述靶1为金属钼片与不锈钢叠置结构,一电压可调的直流电源正端接真空室2的壳体,负端接靶1。紫外光源3安装在样品台7上方、与水平线呈45°角(本实施例不开紫外光源3);所述样品台7通过螺旋杆8与电机6相连,可以上下移动。
工作时:真空室采用机械泵、分子泵复合抽真空,接收微波发生器、氧气发生器发射的微波和氧气,由微波耦合氧气放电产生高密度的氧等离子体,产生的等离子体在磁场约束下与起中性化功能的靶碰撞,从而被中性化为高密度的原子氧束流。
方法:在真空环境下通过微波电子回旋共振(ECR)方法耦合氧气放电产生高密度的氧等离子体,所产生的等离子体与带负电的金属靶碰撞中性化为氧原子,产生原子氧环境,用氧原子氧化试样;具体操作如下:将经过丙酮超声清洗的、尺寸为30×30×0.5mm3的聚酰亚胺放到样品台上,由机械泵和分子泵复合对真空室抽真空至1.2×10-3进行30分钟的真空预出气(本实施例的极限真空度为6.6×10-4~6.6×10-5Pa)。随后在微波功率为1000W,微波频率为2.45GHz;氧气流量为3.0SCCM(标准立方厘米每分钟)的条件下,抽真空速率600升/秒,工作真空度在4.5×10-2Pa;调节样品台温度为45℃、与具有中性化功用的靶的距离为3cm、9cm、11cm、13cm、15cm、17cm和25cm,接通磁力线圈(产生磁场)和开启微波源(提供微波),并在靶上施加15V负偏压,通过磁场(磁场强度为0.95mT)和微波耦合氧气放电产生的氧等离子体,氧等离子体在磁场约束下撞击施加负偏压的靶,将氧等离子体转变为中性氧原子,此时真空室内产生5eV的氧原子流。对样品聚酰亚胺进行1h、2h、3h的原子氧暴露。
其结果如图2a所示。距靶3cm、9cm、11cm、13cm、15cm、17cm和25cm处所产生的原子氧束流通量为分别为11、4.8、2.9、1.5、1.2、0.67×1016atoms·cm-2s-1;原子氧束流直径大于80mm。其电子扫描照片和原子力显微照片分别如图2b和图6a所示。质谱检测及原位测量结果参见图7a、图7b。图2b显示暴露后聚酰亚胺的表面呈地毯状形貌。这与LEO环境的结果是比较吻合的。以上结果说明本发明得到模拟环境是比较真实的,且得到的原子氧束流通量具有宽的变化范围。
本发明得到的模拟环境,可以用气相质谱仪对气体成分进行实时监测。还可以与石英晶体微天平联合使用,对暴露过程进行原位测量。质谱仪的使用真空度为10-5~10-1Pa,检测精度为百万分之一;原位测量的测量精度为10-9g。
实施例2
与实施例1不同之处在于:
装置(参见图1):打开紫外光源3(本实施例采用紫外氘灯);样品台7为中空柱形,其中部通有液氮(设液氮通入口5),侧壁设有加热装置4(铂金电阻丝);样品台同时作为小型控温台。
方法:用磁控溅射方法将聚酰亚胺上镀一层厚度约为1μm的SiO2膜,并将该样品放到样品台上,对真空室抽真空至1.2×10-4进行30分钟的真空预出气。随后在微波功率为2000W,氧气流量为5SCCM的条件下,调节样品台至距靶9cm、处,开启磁场(强度为0.7mT)和微波源,并在靶上施加30V负偏压,此时真空室内产生15eV的氧原子流。所述样品台采用温度控制,具体为:采用通液氮方法调节温度于室温以下、大于等于-150℃之间,以加热方式调节温度于大于等于室温至200℃之间,液氮压力为0.075MPa,加热的输出功率210W,调节样品台温度,以-150℃~200℃、200℃~-150℃的连续的温度变化为一个循环周期;在原子氧+温度循环条件下对样品进行暴露。本实施例工作真空度为3.0×10-1Pa。
实施例3
与实施例2不同之处在于:
将丙酮超声清洗后的尺寸为30×30×0.5mm3的聚酰亚胺放到样品台上,对真空室抽真空至1.2×10-4进行60分钟的真空预出气。随后在微波功率为500W,氧气流量为0.5SCCM的条件下,调节样品台至距靶9cm、处,开启磁场(调节磁场强度为0.9mT)和微波源,并在靶上施加20V负偏压,此时真空室内产生6.5eV的氧原子流。调节通入液氮压力为0.01MPa,加热功率为30W;打开紫外光源(紫外氘灯,波长为115-400nm)电源,照射样品台,调节紫外光源与样品台的距离为7cm,辐射强度约为5个太阳数;在原子氧+紫外+温度循环条件下对样品进行暴露。本实施例工作真空度为1.5×10-2Pa。
SiO2膜暴露后的电子扫描照片如图5所示。聚酰亚胺暴露后的原子力照片如图6b所示。SiO2膜表面产生了微裂纹,这是一般无机涂层在LEO暴露后共有的表面特征,是由于涂层与基体的热膨胀系数不同造成的。
实施例2、3表明:采有用本发明能同时模拟出LEO中的三种复合环境:原子氧+紫外+温度循环,也能同时模拟其中的任意两种环境。模拟得到的环境与LEO环境相近,环境中的原子氧束流通量较高,而且氧原子的能量可调,能够有效地进行地面模拟试验。
实施例4
与实施例1不同之处在于:不打开微波源,由机械泵和分子泵复合对真空室抽真空至5×10-4Pa。氧气流量为1.0SCCM(标准立方厘米每分钟),磁场强度为2.0mT,在通入液氮压力为0.04MPa,加热功率为100W的条件下测定样品台的温度循环曲线。在此真空度下打开紫外光源,测定距紫外光源5cm、9cm处的光谱。
温度循环曲线结果如图3所示。从图中可以看出完成一次温度循环约需105min。距紫外光源5cm处的辐射光谱如图4所示。考虑辐射面积及均匀性等,紫外光源的辐射强度为7个太阳数。
实施例5
在实施例1基础之上打开紫外光源,模拟出原子氧加紫外的复合环境,结果接近于实施例3中的三因素复合环境。
值得说明的是:将实施例1和实施例3中聚酰亚胺在原子氧和原子氧+紫外+温度循环中暴露后的原子力照片,图6a为原子氧环境暴露后聚酰亚胺的表面形貌原子力照片,图6b为原子氧+紫外+温度循环复合环境下暴露后聚酰亚胺的表面形貌原子力照片,两图对比可以看出,复合环境下暴露后的表面形貌更为粗糙,说明原子氧+紫外+温度循环的复合效应是存在的,本发明能够模拟出LEO中三种因素的复合效应。

Claims (9)

1.一种模拟近地轨道空间复合环境方法,其特征在于:在真空环境下通过微波电子回旋共振方法耦合氧气放电产生高密度的氧等离子体,所产生的等离子体与带负电的金属靶碰撞中性化为氧原子,用氧原子氧化试样;具体:对真空室抽真空至1.2×10-3~1.2×10-4Pa进行真空预出气;然后通入氧气,调节氧气流量和抽真空速率使工作真空度在1.5×10-2~3×10-1Pa;通过磁场和微波耦合氧气放电产生的氧等离子体,氧等离子体在磁场约束下撞击施加负偏压的靶,将氧等离子体转变为中性氧原子,在样品台位置产生环境;其中:所述微波功率为500~2000W,微波频率为2.45GHz;样品台的温度范围为-150℃~200℃;氧气流量为0.5-5.0SCCM;磁场强度为0.7~2.0mT。
2.按照权利要求1所述方法,其特征在于:对所述样品台进行循环温度控制,具体为:采用通液氮冷却方法调节温度于室温以下、大于等于-150℃之间,以加热方式调节温度于大于等于室温至200℃之间,液氮压力为0.01~0.075MPa,加热的输出功率30W~210W,调节样品台温度,以-150~200℃、200℃~-150℃的连续的温度变化为一个循环周期。
3.按照权利要求1所述方法,其特征在于:在将氧等离子体转变为中性氧原子后加设紫外光光源,照射样品。
4.按照权利要求3所述方法,其特征在于:紫外光的光源与样品台间的距离为5~9cm。
5.按照权利要求1~4之一所述方法,其特征在于:靶上所施加负偏压15-30V。
6.一种按照权利要求1所述方法的所用装置,其特征在于:包括真空室、靶、紫外光源、磁场与样品台,其中真空室中部设有与正下方的样品台呈45°角的靶,真空室侧壁上通过波导管与微波源相连、通过管路与氧气发生器相连,磁力线圈设在真空室的侧壁上,所产生的磁力线穿过靶面设置;紫外光源安装在样品台上方、与水平线呈45°角;样品台为中空柱形,其中部连接冷却装置,侧壁设有加热装置;所述靶为金属钼片与不锈钢叠置结构;直流电源正极接真空室的壳体,负极接靶。
7.按照权利要求6所述方法的所用装置,其特征在于:所述加热装置为电阻丝,冷却装置为液氮发生器。
8.按照权利要求6所述方法的所用装置,其特征在于:所述样品台通过螺旋杆与电机相连。
9.按照权利要求6所述方法的所用装置,其特征在于:真空室整体呈十字型。
CN 200610047021 2006-06-23 2006-06-23 一种模拟近地轨道空间复合环境方法及所用装置 Expired - Fee Related CN100543472C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610047021 CN100543472C (zh) 2006-06-23 2006-06-23 一种模拟近地轨道空间复合环境方法及所用装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610047021 CN100543472C (zh) 2006-06-23 2006-06-23 一种模拟近地轨道空间复合环境方法及所用装置

Publications (2)

Publication Number Publication Date
CN101093228A true CN101093228A (zh) 2007-12-26
CN100543472C CN100543472C (zh) 2009-09-23

Family

ID=38991591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610047021 Expired - Fee Related CN100543472C (zh) 2006-06-23 2006-06-23 一种模拟近地轨道空间复合环境方法及所用装置

Country Status (1)

Country Link
CN (1) CN100543472C (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339655A (zh) * 2011-08-30 2012-02-01 中国科学院微电子研究所 温控可充气真空辐射设备
CN102494917A (zh) * 2011-12-13 2012-06-13 江苏达胜加速器制造有限公司 空间环境辐射模拟装置
CN102706791A (zh) * 2012-05-10 2012-10-03 清华大学 一种小型低地球轨道空间环境模拟装置
CN102829947A (zh) * 2012-08-17 2012-12-19 中国航天空气动力技术研究院 一种基于空间稀薄流环境的模拟方法
CN102830315A (zh) * 2012-09-05 2012-12-19 清华大学 一种模拟航天航空环境电子器件失效的装置及方法
CN102967688A (zh) * 2012-11-12 2013-03-13 中国航天科技集团公司第五研究院第五一〇研究所 导电黑色聚酰亚胺薄膜空间环境作用下失效分析方法
CN102116732B (zh) * 2009-12-31 2013-03-20 北京卫星环境工程研究所 大辐照面积原子氧束流模拟系统
CN102085920B (zh) * 2009-12-04 2013-06-19 北京卫星环境工程研究所 低地轨道空间原子氧、紫外、电子综合环境地面模拟系统
CN103415134A (zh) * 2013-07-18 2013-11-27 北京东方计量测试研究所 双源ecr等离子体源装置
CN103424352A (zh) * 2012-05-22 2013-12-04 莱茵豪森等离子有限公司 用于材料耐候性测试的方法和装置
CN105158617A (zh) * 2015-10-01 2015-12-16 汪金龙 一种基于电子诱发的充放电模拟器
CN104375161B (zh) * 2014-11-05 2017-02-15 北京卫星环境工程研究所 原子氧束流能量测试系统
CN106553775A (zh) * 2015-09-28 2017-04-05 东莞前沿技术研究院 环境模拟试验箱及其环境模拟方法
CN107024496A (zh) * 2017-03-29 2017-08-08 北京卫星环境工程研究所 航天器材料原子氧与热循环效应试验方法
CN109580884A (zh) * 2018-12-18 2019-04-05 哈尔滨工业大学 空间多因素环境地面模拟及原位分析试验舱装置
CN116075033A (zh) * 2023-03-17 2023-05-05 佛山巧鸾科技有限公司 一种产生氧原子束流脉冲的方法及其应用
GB2622114A (en) * 2022-08-25 2024-03-06 Inst Geochemistry Cas Experimental system for simulating high or low temperature vacuum environment of planet

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102085920B (zh) * 2009-12-04 2013-06-19 北京卫星环境工程研究所 低地轨道空间原子氧、紫外、电子综合环境地面模拟系统
CN102116732B (zh) * 2009-12-31 2013-03-20 北京卫星环境工程研究所 大辐照面积原子氧束流模拟系统
CN102339655A (zh) * 2011-08-30 2012-02-01 中国科学院微电子研究所 温控可充气真空辐射设备
CN102339655B (zh) * 2011-08-30 2015-07-08 中国科学院微电子研究所 温控可充气真空辐射设备
CN102494917A (zh) * 2011-12-13 2012-06-13 江苏达胜加速器制造有限公司 空间环境辐射模拟装置
CN102706791A (zh) * 2012-05-10 2012-10-03 清华大学 一种小型低地球轨道空间环境模拟装置
CN103424352A (zh) * 2012-05-22 2013-12-04 莱茵豪森等离子有限公司 用于材料耐候性测试的方法和装置
US9234832B2 (en) 2012-05-22 2016-01-12 Maschinenfabrik Reinhausen Gmbh Method and apparatus for the weatherability testing of a material
CN102829947A (zh) * 2012-08-17 2012-12-19 中国航天空气动力技术研究院 一种基于空间稀薄流环境的模拟方法
CN102830315A (zh) * 2012-09-05 2012-12-19 清华大学 一种模拟航天航空环境电子器件失效的装置及方法
CN102830315B (zh) * 2012-09-05 2015-07-08 清华大学 一种模拟航天航空环境电子器件失效的装置及方法
CN102967688A (zh) * 2012-11-12 2013-03-13 中国航天科技集团公司第五研究院第五一〇研究所 导电黑色聚酰亚胺薄膜空间环境作用下失效分析方法
CN103415134A (zh) * 2013-07-18 2013-11-27 北京东方计量测试研究所 双源ecr等离子体源装置
CN104375161B (zh) * 2014-11-05 2017-02-15 北京卫星环境工程研究所 原子氧束流能量测试系统
CN106553775B (zh) * 2015-09-28 2024-02-23 深圳光启空间技术有限公司 环境模拟试验箱及其环境模拟方法
CN106553775A (zh) * 2015-09-28 2017-04-05 东莞前沿技术研究院 环境模拟试验箱及其环境模拟方法
CN105158617A (zh) * 2015-10-01 2015-12-16 汪金龙 一种基于电子诱发的充放电模拟器
CN109142924A (zh) * 2015-10-01 2019-01-04 景祝强 一种基于电子诱发的充放电模拟方法
CN105158617B (zh) * 2015-10-01 2019-06-07 景祝强 一种基于电子诱发的充放电模拟器
CN107024496A (zh) * 2017-03-29 2017-08-08 北京卫星环境工程研究所 航天器材料原子氧与热循环效应试验方法
CN109580884A (zh) * 2018-12-18 2019-04-05 哈尔滨工业大学 空间多因素环境地面模拟及原位分析试验舱装置
GB2622114A (en) * 2022-08-25 2024-03-06 Inst Geochemistry Cas Experimental system for simulating high or low temperature vacuum environment of planet
CN116075033A (zh) * 2023-03-17 2023-05-05 佛山巧鸾科技有限公司 一种产生氧原子束流脉冲的方法及其应用
CN116075033B (zh) * 2023-03-17 2023-09-26 佛山巧鸾科技有限公司 一种产生氧原子束流脉冲的方法及其应用

Also Published As

Publication number Publication date
CN100543472C (zh) 2009-09-23

Similar Documents

Publication Publication Date Title
CN100543472C (zh) 一种模拟近地轨道空间复合环境方法及所用装置
Winter Wall conditioning of fusion devices by reactive plasmas
Tachibana Current status of microplasma research
CN101892461A (zh) 激光直写薄膜和激光直写微纳图形的方法
JP2007031817A5 (zh)
Zhao et al. A study of the reaction characteristics and mechanism of Kapton in a plasma-type ground-based atomic oxygen effects simulation facility
Zhang et al. New cermet solar coatings for solar thermal electricity applications
CN105842767B (zh) 采用显微图案电极热极化制备衍射光学元件的设备及方法
CN110034228A (zh) 多层膜结构、其制备方法及应用
Dobrosavljević et al. The L3A facility at the Vinča Institute: Surface modification of materials, by heavy ion beams from an electron cyclotron resonance ion source
CN109916881A (zh) 激光剥蚀-大气压辉光放电原子发射光谱装置
Bouclier et al. Ageing studies with microstrip gas chambers
CN104131260A (zh) 金属Pd纳米颗粒阵列的制备方法
Cravens et al. The ionosphere and airglow of Venus: Prospects for Pioneer Venus
Cuthbertson et al. High‐flux source of low‐energy neutral beams using reflection of ions from metals
Chang et al. First helicon plasma physics and applications workshop
Vietzke Energy distributions of CD4 and CD3 chemically released from graphite by D+ and D0/Ne+ impact
Smith et al. Low energy (10 to 700 eV) angularly resolved sputtering yields for D+ on beryllium
Howson et al. Reactive sputtering with an unbalanced magnetron
CN108732846A (zh) 采用网格电极热极化制备具有周期性显微二阶非线性极化率光学元件的制备方法
Cuthbertson et al. ATOMIC OXYGEN BEAM SOURCE FOR ORBITAL ENVIRONMENT EXPERIMENTS
Xiaoyan et al. Investigations on the time evolution of the plasma density in argon electron-beam plasma at intermediate pressure
Miljević Hollow‐cathode magnetron ion source
JPH07183284A (ja) 薄層をエッチングするための装置および方法
Bering et al. Progress toward the development of a 50 kW VASIMR engine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090923

Termination date: 20110623