CN101088591B - 具有改进的高纯度产物回收率的变压吸附工艺 - Google Patents

具有改进的高纯度产物回收率的变压吸附工艺 Download PDF

Info

Publication number
CN101088591B
CN101088591B CN2007101103363A CN200710110336A CN101088591B CN 101088591 B CN101088591 B CN 101088591B CN 2007101103363 A CN2007101103363 A CN 2007101103363A CN 200710110336 A CN200710110336 A CN 200710110336A CN 101088591 B CN101088591 B CN 101088591B
Authority
CN
China
Prior art keywords
gas
product
contactor
adsorbent bed
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007101103363A
Other languages
English (en)
Other versions
CN101088591A (zh
Inventor
R·D·怀特利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of CN101088591A publication Critical patent/CN101088591A/zh
Application granted granted Critical
Publication of CN101088591B publication Critical patent/CN101088591B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40003Methods relating to valve switching
    • B01D2259/40005Methods relating to valve switching using rotary valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/4002Production
    • B01D2259/40022Production with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • B01D2259/40032Depressurization with three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • B01D2259/40037Equalization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40069Eight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0078Noble gases
    • C01B2210/0082Argon

Abstract

变压吸附工艺中的工艺步骤,其采用以循环工艺步骤运行的多个平行吸附剂床以从包含至少一种较弱可吸附组份和至少一种较强可吸附组份的原料气混合物中回收较弱可吸附组份,其中每个吸附剂床有原料端和产物端,其中每个床至少经受原料/产物步骤、一个或更多减压步骤、其中富集了较弱可吸附组份的净化气被引入到床的产物端并且净化排出气被从床的原料端抽出的净化步骤,以及一个或更多再增压步骤。工艺步骤包含在除第二吸附剂床中原料/产物步骤期间之外的任何时间,把至少一部分来自第一吸附剂床的净化排出气引入到第二吸附剂床的原料端。

Description

具有改进的高纯度产物回收率的变压吸附工艺
背景技术
变压吸附是用于分离大量气体混合物和纯化含有低浓度的不希望组份的气流的公知方法。为了更广范围的原料气、操作条件、产物纯度和产物回收率,已经对这种方法进行了发展和修改。许多变压吸附系统利用两个或更多以循环顺序运行的吸附剂床,以在所选择的床经历包含吸附、降压、排空、净化、压力均化、再增压和别的相关步骤的不同步骤时维持不变的产物流速。人们要求采用了众多工艺步骤的多吸附剂床以获得对诸如氢、碳氧化物类、合成气、轻质烃和类似物的有价值气体产物的高纯度和/或回收率。为了包括便携式医学氧集中器的各种应用,采用了这些工艺步骤的多吸附剂床也被用来从空气中回收氧。
这些变压吸附工艺中的许多部分地在低于大气压的压力下运行,它们在本领域中被描述为诸如真空变压吸附(VSA)或压力-真空变压吸附(PVSA)工艺。在本说明书中,不管运行压力水平如何,变压吸附(PSA)被用作描述所有类型的循环吸附系统的通用术语。
在变压吸附工艺循环中,需要用于净化和和再增压步骤的气体由别的工艺步骤获得的气体供应。再增压可以通过利用最终产物气、床间压力均化获得的中间气、原料气或它们的结合来实现。可以通过来自别的床的中间减压气和/或通过最终产物气来提供净化。
原料再增压被公开于有代表性的美国专利第4,406,675号和第5,540,758号中,以及欧洲专利公开第0354259号中。产物气用于净化和/或再增压的使用存在于代表性的美国专利第5,328,503号、第5,411,578号、第5,429,666号和第5,656,067号中。美国专利第5,330,561号和第5,203,888号公开了采用了增压原料气或产物气的床再增压。
为了增加产物回收率,人们期望在变压吸附工艺中最小化用来净化和再增压的产物气的量。由于原料气组成、产物纯度要求以及产物回收率要求,在许多情况下这可能很困难。在大多数变压吸附工艺中,例如,在产物纯度和产物回收率之间有一个折衷,其中增加的产物纯度是由产物回收率的降低来实现的。在本领域中有对允许在更高产物纯度水平下增加的产物回收率的改进的工艺循环的需求,这种需求由下述的发明提出并定义于随后的权利要求中。
发明内容
本发明的第一个实施方式包括在变压吸附工艺中采用在循环工艺步骤下运行的多个平行吸附剂床(adsorbent bed)以从包含至少一种较弱可吸附组份(less strongly adsorbable component)和至少一种较强可吸附组份(morestrongly adsorbable component)的原料气混合物中回收较弱可吸附组份的工艺步骤,其中每个吸附剂床有原料端(feed end)和产物端(product end),其中每个床至少经受原料/产物步骤(feed/product step)、一个或更多减压步骤、其中富集了较弱可吸附组份的净化气被引入到床的产物端并且净化排出气(purge effluent gas)被从床的原料端抽出的净化步骤、以及一个或更多再增压步骤。工艺步骤包含在除第二吸附剂床中原料/产物步骤期间之外的任何时间,把至少一部分从第一吸附剂床抽出的净化排出气引入到第二吸附剂床的原料端。
另一个实施方式涉及用于从包含至少一种较弱可吸附组份和至少一种较强可吸附组份的原料气混合物中回收较弱可吸附组份的变压吸附工艺,其中工艺包括在许多个吸附剂床中实施循环工艺步骤,每个床有原料端、产物端和选择性吸附较强可吸附组份的吸附材料(adsorbent material),在循环工艺步骤中每个床依次运行,该循环工艺步骤包括原料/产物步骤、其中气体在减压时被从床中抽出的一个或更多减压步骤、其中富集了较弱可吸附组份的净化气被引入到床的产物端并且净化排出气被从床的原料端抽出的净化步骤,以及其中气体在增压时被引入床中的一个或多个再增压步骤。一个再增压步骤包含在除第二吸附剂床中原料/产物步骤期间之外的任何时间,把至少一部分从第一个床的原料端抽出的净化排出气引入到第二个床的原料端。
一个可选实施方式包括用于分离包含至少一种较强可吸附组份和至少一种较弱可吸附组份的原料气的变压吸附工艺,该工艺包含步骤:
(1)把原料气引入含有优先吸附较强可吸附组份的吸附材料的第
一吸附剂床的原料端,从第一吸附剂床的产物端抽出富集了较弱可吸附组份的产物气;
(2)持续把原料气引入第一吸附剂床并从第一吸附剂床抽出产物气,以及把一部分产物气引入第二吸附剂床的产物端经历再增压步骤;
(3)停止把原料气引入第一吸附剂床和从第一吸附剂床抽出产物气,从它的产物端抽出减压气,以及把从它的产物端抽出的减压气引入第三吸附剂床的产物端经历再增压步骤;
(4)抽出来自第一吸附剂床产物端的另外的减压气并把从那抽出的减压气引入第四吸附剂床的产物端经历净化步骤;
(5)排空来自第一吸附剂床原料端的气体;
(6)在持续从其原料端排空气体时把净化气引入第一吸附剂床的产物端,以及把至少一部分从其原料端排空的气体引入第四吸附剂床的产物端经历再增压步骤;
(7)把再增压气引入第一吸附剂床产物端,其中再增压气由从第三吸附剂床抽出经历了减压步骤的减压气提供;
(8)把另外的减压气引入第一吸附剂床产物端,其中另外的减压气由一部分从第四吸附剂床抽出经历了原料/产物步骤的产物气提供,以及把净化排出气引入第一吸附剂床原料端,其中净化排出气由至少一部分从第二吸附剂床的原料端排空的经历了净化步骤的气体提供;以及
(9)以循环方式重复步骤(1)至(8)。
本发明的一个相关实施方式包括用于分离包含至少一种较强可吸附组份和至少一种较弱可吸附组份的原料气的变压吸附系统,该系统包含:
(a)众多吸附容器(adsorber vessel),每个吸附容器有原料端、产物端以及含有至少一种适于选择吸附较强可吸附组份的吸附剂的吸附材料床;
(b)管线和阀,其适于把原料气引入每个吸附容器的原料端并从每个吸附容器的产物端抽出富集了较弱可吸附组份的产物气;以及
(c)管线和阀,其适于把来自第一吸附容器产物端富集了较弱可吸附组份的减压气转移到第二吸附容器产物端并在除第三吸附容器中原料/产物步骤期间之外的任何时间把来自第二吸附容器原料端的净化排出气转移进第三吸附容器原料端。
本发明的另一个相关实施方式包括用于分离包含至少一种较强可吸附组份和至少一种较弱可吸附组份的原料气的变压吸附系统。该系统包含:
(a)四个吸附容器,每个吸附容器有原料端、产物端以及含有至少一种适于选择吸附较强可吸附组份的吸附剂的吸附材料床以及
(b)管线和阀,其适于:
(1)把原料气引入第一吸附容器的原料端并从第一吸附容器的产物端抽出富集了较弱可吸附组份的产物气;
(2)把一部分富集了较弱可吸附组份的产物气转移进第二吸附容器的产物端;
(3)从第一吸附容器的产物端抽出减压气并把抽出的减压气引入第三吸附容器的产物端;
(4)从第一吸附容器的产物端抽出减压气并把抽出的减压气引入第四吸附容器的产物端;
(5)利用真空泵或鼓风机(blower)从第一吸附容器的原料端抽出气体并把抽出的气体作为废气排放;
(6)把净化气引入第一吸附容器的产物端,其中当从原料端排空第一吸附容器并把至少一部分排空的净化排出气引入第四吸附容器的原料端时,净化气由第二吸附容器提供;
(7)通过把再增压气引入第一吸附容器的产物端增压第一吸附容器,其中再增压气由第三吸附容器提供;以及
(8)通过把从第四吸附容器获得的产物气引入第一吸附容器的产物端并把净化排出气引入第一吸附容器的原料端来增压第一吸附容器,其中净化排出气获自第二吸附容器。
附图说明
图1是本发明实施方式的PSA循环步骤期间气流到达和离开吸附剂床的示意图。
图2是在图1实施方式的PSA循环步骤中的两个时间区间之中四个吸附剂床之间气流关系的示意图。
图3是对于实施例1,2和3在任何给定床的入口端的压力对比时间图表。
具体实施方式
本发明的实施方式利用变压吸附工艺循环来分离气体混合物,其中至少一部分来自吸附剂床经历了净化步骤的净化排出气被用来在除别的吸附剂床原料/产物步骤期间之外的任何时间再增压另一个吸附剂床。例如,利用众多按照改进的工艺循环运行的吸附室,该工艺可以用来增加空气中高纯度氧的回收率。
在当前公开中,术语产物气意思是从吸附剂床抽出并被送到(有或没有中间存储)终端使用的有足够产物纯度的气体。原料/产物步骤的定义为把原料气引入床的原料端和从床的产物端抽出产物气。虽然在这个步骤期间压力可能增加,然而这个步骤不同于下面定义的再增压步骤。减压的定义为伴随着降低床压力气体从吸附剂床的抽出。可以通过从超大气压力(superatomospheric pressure)直接向大气排气或把气体转移到处于更低压力的另外的处理容器或封闭体积中来获得减压。也可以通过排空(evacuation)获得减压,它被定义为通过真空泵或鼓风机从床抽出气体。排空可以在床压的任何范围进行,但是一般在负压下,也就是真空下进行。再增压被定义为在除原料/产物步骤其间之外的任何时间把气体引入包含吸附剂床的容器,伴随着增加床压。来自一个容器的减压气被用作另一个容器中的增压气的转移在本领域通常被称为压力均化(pressureequalization),但是两个床中的压力在这个步骤的末端不一定变的相同。
净化(purge)被定义为当净化排出气从容器原料端抽出时净化气到容器产物端的引入。净化可以在降低床压时、增加床压时、固定床压时或它们的任意结合时进行。当有益产物是较弱可吸附组份时,在负大气压力(subatmosphericpressure)下净化一般最有效。净化气(当被用于变压吸附工艺来从包含至少一种较弱可吸附组份和至少一种较强可吸附组份的原料气混合物中回收较弱可吸附组份时)被定义为任何富集了较弱可吸附组份的气体。净化排出气中较强可吸附组份的浓度比在净化气中高。净化再增压被定义为在除原料/产物步骤期间之外的任何时间把至少一部分来自吸附剂床的原料端经历了净化步骤的净化排出气转移到另一个床的原料端经历再增压步骤。
应用于变压吸附工艺中的气流的术语“富集”意思是气流含有比在原料气中该组份的浓度高的组份浓度。空隙空间气被定义为吸收容器中包含于空隙或粒间体积的未吸附气体,包含管线和容器死体积中未被吸收剂占用的气体。大气空气是直接从环境大气获得的未压缩空气。
亨利选择性定律描述了给定吸收剂对在包含两种组份的气体混合物中从第二组份分离出第一组份的选择性。亨利选择性定律被定义为在选定条件下第一组份吸附在吸附材料上的亨利定律常数与在同样杂件下第二组份吸附在同样吸附材料上的亨利定律常数的比率。亨利定律常数被定义为描述作为气体压力函数的吸附的组份量的等温线的起始斜率,优选在23℃的参考温度下。
术语“较强可吸附的”和“较弱可吸附的”,当被用来描述通过变压或真空变压吸附工艺来分离的气体混合物中的组份时,描述了在吸附剂床中吸附材料上的气体混合物中的组份的相对吸附性能。在平均的工艺温度和压力下,吸附材料对较强可吸附组份(作为纯组份)的平衡吸附能力比对较弱可吸附组份(作为纯组份)的平衡吸附能力强。
这里所用的非限定冠词“一个”(“a”)和“一个”(“an”)当被用于记载于说明书和权利要求中的本发明实施方式中的任何特征时表示一个或更多。除非特别指出这种限定的情况下,“一个”(“a”)和“一个”(“an”)的使用并不限定其意思为单个特征。在单个名词或多个名词或名词句前的限定冠词“the”表示一个特别指定的特征或多个特别指定的特征并且可能具有一个或多个内涵,这依赖于使用它的上下文。形容词“任何”(“any”)表示一个、一些或不加选择的任何量的全部。位于第一实体和第二实体之间的术语“和/或”表示(1)第一实体、(2)第二实体和(3)第一实体和第二实体这三者之一。
这里所用的通用术语“变压吸附”(PSA)适于所有在最大和最小压力之间运行的吸附分离系统。最大压力典型地是超大气压的,最小压力可以是超大气压的或负(低于)大气压的。当最小压力是低于大气压并且最大压力是超大气压时,系统一般被称为压力真空变压吸附(PVSA)系统。当最大压力处于或低于大气压并且最小压力低于大气压时,系统一般被称为真空变压吸附(VSA)系统。
在所有实施方式中,原料气包含至少一种较强可吸附组份和至少一种较弱可吸附组份,以及通过对较强可吸附组份的吸附而相对于原料气产物气富集了较弱可吸附组份。通过下述的减压、排空和净化步骤把较强可吸附组份从吸附剂上除去。原料气可以低于、处于或高于大气压。
可以采用众多以循环步骤运行的吸附剂床来实施本发明的实施方式并用其分离任何包含较强可吸附组份和较弱可吸附组份的气体混合物。这些实施方式可以用于包括PVSA和VSA的任何PSA分离工艺中。因此用来再增压的净化排出气的使用可以应用于任何PSA、VSA或PVSA用于任何气体混合物的分离。下述的特定实施方式特别适于从空气中或别的带有氩和/或氮的氧混合物中回收氧产物,这些实施方式可以提供纯度在97体积%以上和可能在99体积%以上的氧气产物。
本发明一个示范性实施方式采用了四个吸附剂床,通过表1的循环步骤和表2的图表对其进行了阐释。对于第一床下面的表1给出了每个循环步骤的说明,其中第一至第四床相应于表2的床1至4。
表1
循环步骤说明
  步骤数   循环步骤 说明
  1   原料/产物 把原料气引入第一床的原料端并从第一床的产物端抽出产物气
  2   原料/产物+提供产物再增压 把原料气引入第一床的原料端,从第一床的产物端抽出产物气,以及利用一部分产物气来再增压第二床经历步骤8
  3   提供压力均化 从第一床的产物端抽出减压气并把抽出气引入第三床的产物端经历步骤7
  4   提供净化 从第一床的产物端抽出减压气并把抽出气引入第四床的产物端经历步骤6
  5   排空 通过使用真空泵或鼓风机从第一床的原料端抽出气体并把抽出气作为废气排放
  6 接受净化+排空/提供净化再增压 把净化气引入第一床的产物端,其中当从原料端排空第一床并把至少一部分排空的净化排出气引入到第四床的原料端经历步骤8时,净化气由第二床经历步骤4提供
  7   接受压力均化 通过把再增压气引入第一床的产物端来增压第一床,其中再增压气由经历步骤3的第三床提供
8   接受产物再增压+接受净化再增压 通过把步骤2中获自第四床的产物气引入第一床的产物端并把净化排出气引入第一床的原料端来增压第一床,其中所述净化排出气获自经历步骤6的第三床
表2
循环图表
Figure G071B0336320070628D000071
在步骤4和/或步骤4之后步骤5之前的至少一部分期间可以采用一个可选排放步骤(blowdown step),其中废气被从床的原料端直接排放到大气中直到床达到接近大气压,在这一点排空步骤5开始。
图1显示了床1的示意流量图来阐释该床经历了顺序的重复步骤1至8。在如图2所示的交错的时间周期(time period)期间,床2,3和4经历同样的步骤顺序。图2阐释了在时间周期T1和T2期间床1,2,3和4之间的气流关系。在时间周期T3至T8期间,四个床之间类似的气流关系顺序发生。采用适当的压力/真空变压吸附系统可以实施这个工艺循环,该系统包含原料压缩机或鼓风机、真空泵或鼓风机、吸附剂、四个吸附容器、管线和流动控制系统。这种PVSA系统在吸附气体分离领域中是众所周知的。如果可以获得适当压力下的原料气,那么就不需要原料压缩机或鼓风机。可以通过本领域公知的任何适当的阀和多头管系来控制原料气、产物气和床间气流。例如,系统可以利用多个控制器操纵的球阀来影响适当的循环步骤。可选的,一个或更多旋转阀可以用于这个目的。例如,这里可使用的示范性的旋转阀例子描述于2005年8月5日提出的美国专利申请系列第10/197,859号中,通过参考将该申请结合于此。
虽然上面的实施方式阐释了采用四个床的PVSA循环,然而包含使用来自一个床的净化排出气来再增压别的床的特征的别的循环也是可行的。例如,在有适当的循环步骤下可以使用两或三个床,但是可能需要一个或更多气体存储罐。如果期望另外的压力均化步骤,那么可以使用超过四个床。
上述工艺特别适于从空气或带有氩和/或氮的别的氧混合物中回收高纯氧(即包含超过97体积%氧),其中净化排出再增压步骤容许至少10%的氧回收。另外,使用净化排出气来再增压床减少了用来再增压的产物气的量。由于产物气处于比净化排出气高的压力,净化排出再增压的采用节约了压缩能并降低了整个工艺的能量需求。同样,上述工艺容许使用与PVSA系统中一般使用的吸附剂相比具有较低的氧亨利定律选择性的吸附剂来从空气或别的含氧气体中回收氧。本发明各个实施方式使用的吸附剂对于较强可吸附组份相对较弱可吸附组份来说可以具有低于大约2.0,可能低于大约1.5的亨利定律选择性。在分离空气获得高纯度氧产物中,较强可吸附组份是氩,较弱可吸附组份是氧。
上述工艺可以使用任何选择性吸附氮和/或氩的吸附剂或吸附剂的复合来从空气或别的带有氩和/或氮的氧混合物中回收氧。用于本工艺来从这些气体混合物的任何一个中回收氧的示范性吸附剂床可以包含:包括活性氧化铝、NaX、NaKLSX(低二氧化硅X)或其结合的吸附剂的组合作为除去水、二氧化碳和别的杂质的预处理区,接着是非必需的LiX或LiLSX沸石的层,然后是AgLiLSX沸石的层。可以用于本工艺的示范性的AgLiLSX沸石层被公开于美国专利第6,432,170号中,通过参考将其结合于此。
在用于从空气中回收高纯度氧的本实施方式进展期间,我们意识到在净化步骤的后半段期间净化排出气中的氧浓度比在环境空气中高。由于真空泵可以在任何期望的排放压力运行,如上所述的那样排放的净化排出气可以用来再增压。至少一部分净化排出气被用来在除该床的原料/产物步骤之外的任何时间来再增压吸附剂床,如果希望的话,所有净化排出气可以用来再增压。
在一个典型的用来从空气中回收氧的PVSA工艺中,净化与原料比(P/F)被维持在或接近选定的设计值,该值依赖于包括氧纯度的不同的操作参数。净化与原料比(P/F)被定义为在一个循环期间从床的原料端抽出的实际气体体积与在该循环期间被引入到床的原料端的实际气体体积之比。实际体积被定义为利用摩尔流速、温度和压力的即时值对特定步骤的全过程积分的值。可以参考图1把(P/F)比解释为在步骤5和6期间从床1的原料端抽出的实际气体体积之和与在步骤1,2和8期间被引入床1的原料端的实际气体体积之和的比。
从空气中回收氧中的净化与原料比通常大于大约1.5并且对于高于97体积%得氧产物纯度可能大于大约2.5。所需的P/F比随产物纯度增加而增加。仅仅通过排出排空流或通过排出排空流和净化排出流的第一部分(其可能具有低氧浓度),可以维持期望的P/F比。然后净化排出流的剩余部分可以用来再增压。除了在原料/产物步骤把原料气引入床中期间之外,使用全部或一部分净化排出流用于再增压有助于把比原料气氧浓度高的气流再循环入床中。通过使用净化排出再增压一定程度上抵消了对于具有低选择性吸附剂为了高纯度产物采用高P/F比对氧产物回收率的消极影响。
在表1和2的循环中,通过同时把净化排出气引入床的原料端和把产物气引入床的产物端来实施再增压步骤8。可选的,产物端再增压的实施完全可以在净化气再增压之前或之后,或者如期望的那样产物端再增压的周期可以与净化气再增压的周期重叠。
下面的实施例阐释了本发明的实施方式,但是并没有把本发明限定于其中描述的任何具体的细节。
实施例1
用SIMPAC模拟了VPSA工艺,SIMPAC是一种细致的吸附工艺模拟装置。SIMPAC考虑了多组份吸附等温线、各种物质转移模型、多个吸附层以及总的工艺流程图。SIMPAC的更多详情讨论于Kumar等人的化学工程科学(ChemicalEngineering Science),49卷,18期,3115-3125页。该实施例中的循环类似于表1和2中描述的循环,但是没有净化再增压,也就是说,步骤6期间从床排空的所有净化气流出被排放而不是用来再增压另一个床。用等价实际体积的原料气代替步骤8中的净化再增压流以在床入口端维持类似的压力经历。每个循环步骤具有1.75秒的持续时间,总循环时间为14秒。四个吸附剂床的每一个具有42.7毫米的直径,其包含位于惰性材料的原料端代表用来除去水和二氧化碳的吸附剂的厚度为43毫米的第一层、厚度为25毫米的LiLSX第二层以及厚度为145毫米的40%Ag-交换的LiLSX第三层。采用2.57大气压的最大空气原料压力和5.05的原料端压力比(最大原料压比最小排空压),系统在31℃的原料温度下运行,获得1.28标准升/分(Slpm)的纯度为99.0摩尔%的氧。净化与原料比(上面定义的)为3.33,氧气产物回收率是20.85%。
实施例1中每个给定床入口端的压力经历列于图3中。
实施例2
重复实施例1对表1和2描述的循环的模拟,其中包括步骤8的净化再增压而不是原料再增压。净化与原料比类似,为3.30。氧回收率增加到23.43%。
实施例2中每个给定床入口端的压力分布图列于图3中。
实施例3
按照表1和2中描述的循环运行四床中试VPSA装置以获得循环的试样结果数据。每个循环步骤具有1.75秒的持续时间。中试装置由以环形模式排列的6个柱体组成,每个柱体的原料和产物端带有电磁阀排。阀与柱体环内的金属圆筒连接。通道相交于圆筒内以确保所有柱体间相等的流动路径。该元件是完全仪表的以保证物质平衡闭合并提供温度、压力和各种流的流速。可变程序逻辑控制器操作循环并记录数据。每个床包含于具有42.7毫米内径的柱体中。四个吸附剂层设置于每个柱体中,包括位于原料端包含厚度为26毫米的20×28目Alcan活性氧化铝的第一层、包含厚度为17.0毫米平均粒径为0.6毫米的NaX沸石的第二层,包含具有25毫米的厚度和0.4毫米的平均粒径的低锂硅石X沸石的第三层以及包含厚度为145.0毫米的AgLiLSX(平均粒径为0.4毫米的40%银离子交换的锂低硅石X沸石)的第四层。
采用37磅/平方英寸(绝对压力)大气压的最大空气原料压力和5.5的原料端压力比(最大原料压比最小排空压),中试装置在接近31℃的原料着床温度下运行,获得0.70标准升/分(S1pm)的纯度为98.9摩尔%的氧。氧产物回收率是15.5%。
实施例3中每个给定床入口端的压力分布图列于图3中。

Claims (29)

1.一种变压吸附工艺中的工艺步骤,其采用以循环工艺步骤运行的多个平行吸附剂床以从包含至少一种较弱可吸附组份和至少一种较强可吸附组份的原料气混合物中回收较弱可吸附组份,其中每个吸附剂床有原料端和产物端,其中每个床至少经受原料/产物步骤、一个或更多减压步骤、其中富集了较弱可吸附组份的净化气被引入到床的产物端并且净化排出气被从床的原料端抽出的净化步骤,以及一个或更多再增压步骤,其中所述工艺步骤包含把至少一部分来自第一吸附剂床的原料端的净化排出气引入到第二吸附剂床的原料端以再增压第二吸附剂床。
2.权利要求1的工艺步骤,其中净化气由从第三吸附剂床的产物端抽出的减压气提供。
3.权利要求1的工艺步骤,其中通过泵从第一吸附剂床的原料端抽出净化排出气并且至少一部分泵排放被引入到第二吸附剂床的原料端。
4.权利要求3的工艺步骤,其中在至少一部分工艺步骤期间,第二吸附剂床中的压力比第一吸附剂床中的压力大。
5.权利要求4的工艺步骤,其中在至少一部分工艺步骤期间,第一吸附剂床中的压力低于大气压。
6.权利要求1的工艺步骤,其中每个吸附剂床包含具有低于2.0的亨利定律选择性的吸附剂,其中所述亨利定律选择性是对于所述较强可吸附组份相对所述较弱可吸附组份来说的。
7.权利要求6的工艺步骤,其中所述较强可吸附组份相对较弱可吸附组份的亨利定律选择性低于1.5。
8.一种变压吸附工艺,用于从包含至少一种较弱可吸附组份和至少一种较强可吸附组份的原料气混合物中回收较弱可吸附组份,其中该工艺包含:在多个吸附剂床中实施循环工艺步骤,每个床有原料端、产物端和选择性吸附所述较强可吸附组份的吸附材料,在循环工艺步骤中每个床依次运行,该循环工艺步骤包括原料/产物步骤、其中气体在减压时被从床中抽出的一个或更多减压步骤、其中富集了较弱可吸附组份的净化气被引入到床的产物端并且净化排出气被从床的原料端抽出的净化步骤,以及其中气体在增压时被引入床中的一个或多个再增压步骤,其中一个再增压步骤包含把至少一部分从第一个吸附剂床的原料端抽出的净化排出气引入到第二个吸附剂床的原料端以再增压第二吸附剂床。
9.权利要求8的工艺,其中通过从第三吸附剂床的产物端抽出的减压气,净化气被提供给第一床的产物端。
10.权利要求8的工艺,其中通过泵从第一吸附剂床的原料端抽出净化排出气并且至少一部分泵排放被引入到第二吸附剂床的原料端。
11.权利要求10的工艺,其中在至少一部分工艺步骤期间,第二吸附剂床中的压力比第一吸附剂床中的压力大。
12.权利要求11的工艺,其中在至少一部分工艺步骤期间,第一吸附剂床中的压力低于大气压。
13.权利要求8的工艺,其中吸附材料包含对于较强可吸附组份相对较弱可吸附组份来说具有低于2.0的亨利定律选择性的吸附剂。
14.权利要求13的工艺,其中所述较强可吸附组份相对较弱可吸附组份的亨利定律选择性低于1.5。
15.一种变压吸附工艺,用于分离包含至少一种较强可吸附组份和至少一种较弱可吸附组份的原料气,该工艺包含步骤:
(1)把原料气引入含有优先吸附较强可吸附组份的吸附材料的第一吸附剂床的原料端,从第一吸附剂床的产物端抽出富集了较弱可吸附组份的产物气;
(2)持续把原料气引入第一吸附剂床并从第一吸附剂床抽出产物气,以及把一部分产物气引入第二吸附剂床的产物端经历再增压步骤;
(3)停止把原料气引入第一吸附剂床和从第一吸附剂床抽出产物气,从它的产物端抽出减压气,以及把从它的产物端抽出的减压气引入第三吸附剂床的产物端经历再增压步骤;
(4)抽出来自第一吸附剂床产物端的另外的减压气并把从那抽出的减压气引入第四吸附剂床的产物端经历净化步骤;
(5)排空来自第一吸附剂床原料端的气体;
(6)在持续从其原料端排空气体时把净化气引入第一吸附剂床产物端,以及把至少一部分从其原料端排空的气体引入第四吸附剂床的原料端经历再增压步骤;
(7)把再增压气引入第一吸附剂床的产物端,其中再增压气由从第三吸附剂床抽出经历了减压步骤的减压气提供;
(8)把另外的再增压气引入第一吸附剂床产物端,其中另外的再增压气由一部分从第四吸附剂床抽出经历了原料/产物步骤的产物气提供,以及把净化排出气引入第一吸附剂床原料端,其中净化排出气由至少一部分从第二吸附剂床的原料端排空的经历了净化步骤的气体提供;以及
(9)以循环方式重复步骤(1)至(8)。
16.权利要求15的工艺,其中原料气包含氧、氮和氩。
17.权利要求16的工艺,其中原料气是空气并且产物气包含至少97摩尔%的氧。
18.权利要求16的工艺,其中原料气是空气并且产物气包含至少99摩尔%的氧。
19.权利要求16的工艺,其中原料气中至少10%的氧被回收于产物气中。
20.权利要求16的工艺,其中吸附材料包含一种或更多选自由银交换丝光沸石、银交换X沸石、银交换低硅X沸石以及部分银交换锂低硅X沸石组成的组的吸附剂。
21.权利要求16的工艺,其中吸附材料包含对于氩相对氧来说具有低于2.0的亨利定律选择性的吸附剂。
22.权利要求16的工艺,其中氩相对氧的亨利定律选择性低于1.5。
23.一种变压吸附系统,用于分离包含至少一种较强可吸附组份和至少一种较弱可吸附组份的原料气,包含:
(a)多个吸附容器,每个吸附容器有原料端、产物端以及含有至少一种适于选择吸附较强可吸附组份的吸附剂的吸附材料床;
(b)管线和阀,其适于把原料气引入每个吸附容器的原料端并从每个吸附容器的产物端抽出富集了较弱可吸附组份的产物气;以及
(c)管线和阀,其适于把来自第一吸附容器产物端富集了较弱可吸附组份的减压气转移到第二吸附容器产物端并把来自第二吸附容器原料端的净化排出气转移进第三吸附容器原料端以再增压第三吸附剂床。
24.权利要求23的变压吸附系统,包含管线和阀,其适于把一部分富集了较弱可吸附组份的产物气转移进第三吸附容器的产物端。
25.权利要求23的变压吸附系统,包含泵,其适于把来自第二吸附容器原料端的净化排出气转移进第三吸附容器原料端。
26.一种变压吸附系统,用于分离包含至少一种较强可吸附组份和至少一种较弱可吸附组份的原料气,包含:
(a)四个吸附容器,每个吸附容器具有原料端、产物端以及含有至少一种适于选择吸附较强可吸附组份的吸附剂的吸附材料床以及
(b)管线和阀,其适于:
(1)把原料气引入第一吸附容器的原料端并从第一吸附容器的产物端抽出富集了较弱可吸附组份的产物气;
(2)把一部分富集了较弱可吸附组份的产物气转移进第二吸附容器的产物端;
(3)从第一吸附容器的产物端抽出减压气并把抽出的减压气引入第三吸附容器的产物端;
(4)从第一吸附容器的产物端抽出减压气并把抽出的减压气引入第四吸附容器的产物端;
(5)利用真空泵或鼓风机从第一吸附容器的原料端抽出气体并把抽出的气体作为废气排放;
(6)把净化气引入第一吸附容器的产物端,其中当从原料端排空第一吸附容器并把至少一部分排空的净化排出气引入第四吸附容器的原料端时,净化气由第二吸附容器提供;
(7)通过把再增压气引入第一吸附容器的产物端增压第一吸附容器,其中再增压气由第三吸附容器提供;以及
(8)通过把从第四吸附容器获得的产物气引入第一吸附容器的产物端并把净化排出气引入第一吸附容器的原料端来增压第一吸附容器,其中净化排出气获自第二吸附容器。
27.权利要求26的变压吸附系统,包含泵,其适于把来自第一吸附容器原料端的净化排出气转移进第四吸附容器原料端。
28.权利要求27的变压吸附系统,其中吸附剂适于从空气中选择性吸附氮和氩,且具有对于氩相对氧来说低于2.0的亨利定律选择性。
29.权利要求27的变压吸附系统,其中吸附材料包含一种或更多选自由银交换丝光沸石、银交换X沸石、银交换低硅X沸石以及部分银交换锂低硅X沸石组成的组的吸附剂。
CN2007101103363A 2006-06-13 2007-06-13 具有改进的高纯度产物回收率的变压吸附工艺 Active CN101088591B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/451663 2006-06-13
US11/451,663 US7651549B2 (en) 2006-06-13 2006-06-13 Pressure swing adsorption process with improved recovery of high-purity product

Publications (2)

Publication Number Publication Date
CN101088591A CN101088591A (zh) 2007-12-19
CN101088591B true CN101088591B (zh) 2011-04-20

Family

ID=38565576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101103363A Active CN101088591B (zh) 2006-06-13 2007-06-13 具有改进的高纯度产物回收率的变压吸附工艺

Country Status (8)

Country Link
US (1) US7651549B2 (zh)
EP (1) EP1867379B1 (zh)
KR (1) KR100964854B1 (zh)
CN (1) CN101088591B (zh)
AT (1) ATE529172T1 (zh)
ES (1) ES2371564T3 (zh)
PL (1) PL1867379T3 (zh)
TW (1) TWI331545B (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7954490B2 (en) 2005-02-09 2011-06-07 Vbox, Incorporated Method of providing ambulatory oxygen
MY154251A (en) 2007-11-12 2015-05-29 Exxonmobil Upstream Res Co Methods of generating and utility gas
US7722698B2 (en) 2008-02-21 2010-05-25 Delphi Technologies, Inc. Method of determining the purity of oxygen present in an oxygen-enriched gas produced from an oxygen delivery system
US8075676B2 (en) 2008-02-22 2011-12-13 Oxus America, Inc. Damping apparatus for scroll compressors for oxygen-generating systems
AU2009241530C1 (en) 2008-04-30 2016-12-01 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
CN101502740B (zh) * 2009-02-17 2013-12-18 杨皓 一种中甲烷浓度瓦斯变压吸附提浓甲烷的方法
US20110209707A1 (en) * 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Method And Apparatus For Oxygen Reprocessing Of Expiratory Gases In Mechanical Ventilation
US9067168B2 (en) 2010-05-28 2015-06-30 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
TWI495501B (zh) 2010-11-15 2015-08-11 Exxonmobil Upstream Res Co 動力分餾器及用於氣體混合物之分餾的循環法
BR112013018276A2 (pt) 2011-03-01 2019-09-24 Exxonmobil Upstream Res Co métodos de remover contaminantes de uma corrente de hidrocarbonetos por adsorção oscilante e aparelhos e sistemas relacionados
CN103429339B (zh) 2011-03-01 2015-06-10 埃克森美孚上游研究公司 具有封闭式吸附剂接触器的装置和系统及与其相关的变吸附方法
US9162175B2 (en) 2011-03-01 2015-10-20 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
CA2825148C (en) 2011-03-01 2017-06-20 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
WO2012161828A1 (en) 2011-03-01 2012-11-29 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
EP2680948A4 (en) * 2011-03-01 2015-05-06 Exxonmobil Upstream Res Co APPARATUS AND SYSTEMS WITH VALVE ASSEMBLY ROTARY POWER SUPPLY AND BALANCED ADSORPTION PROCESS THEREFOR
WO2012118757A1 (en) 2011-03-01 2012-09-07 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
RU2486943C1 (ru) * 2011-12-30 2013-07-10 Виталий Леонидович Бондаренко Способ обогащения неоногелиевой смеси и установка для его реализации
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
CA2949262C (en) 2014-07-25 2020-02-18 Shwetha Ramkumar Cyclical swing absorption process and system
AU2015347232B2 (en) 2014-11-11 2018-02-01 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
RU2668917C1 (ru) 2014-12-10 2018-10-04 Эксонмобил Рисерч Энд Инджиниринг Компани Полимерные волокна с внедренным адсорбентом в контакторах с упакованным слоем и тканевых контакторах и использующие их способы и устройства
CN107635644A (zh) 2014-12-23 2018-01-26 埃克森美孚上游研究公司 结构化吸附床,其生产方法及其用途
CN104591093B (zh) * 2014-12-26 2017-03-29 湖南泰瑞医疗科技有限公司 Psa制氧机
AU2016265110B2 (en) 2015-05-15 2019-01-24 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
EA201792488A1 (ru) 2015-05-15 2018-03-30 Эксонмобил Апстрим Рисерч Компани Аппарат и система для процессов короткоцикловой адсорбции, связанные с ней, содержащие системы продувки среднего слоя
US10080991B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CA2996139C (en) 2015-09-02 2021-06-15 Exxonmobil Upstream Research Company Process and system for swing adsorption using an overhead stream of a demethanizer as purge gas
SG11201802606VA (en) 2015-10-27 2018-05-30 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto having a plurality of valves
SG11201802394SA (en) 2015-10-27 2018-05-30 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto having a plurality of valves
CN108348837B (zh) 2015-10-27 2021-02-19 埃克森美孚上游研究公司 具有主动控制的进料提升阀和被动控制的产物阀的装置和与其相关的用于摆动吸附方法的系统
CA3005448A1 (en) 2015-11-16 2017-05-26 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
EP3429727A1 (en) 2016-03-18 2019-01-23 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10427091B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10427089B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
RU2019107147A (ru) 2016-09-01 2020-10-01 Эксонмобил Апстрим Рисерч Компани Процессы адсорбции при переменных условиях для удаления воды с использованием структур цеолитов 3a
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
RU2720940C1 (ru) 2016-12-21 2020-05-14 Эксонмобил Апстрим Рисерч Компани Самоподдерживающиеся структуры, имеющие активные материалы
KR102260066B1 (ko) 2016-12-21 2021-06-04 엑손모빌 업스트림 리서치 캄파니 발포형 기하구조 및 활물질을 갖는 자체-지지 구조물
US10799827B2 (en) * 2017-04-11 2020-10-13 Praxair Technology, Inc. Mid-range purity oxygen by adsorption
WO2019147516A1 (en) 2018-01-24 2019-08-01 Exxonmobil Upstream Research Company Apparatus and system for temperature swing adsorption
WO2019168628A1 (en) 2018-02-28 2019-09-06 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10744450B2 (en) 2018-08-14 2020-08-18 Air Products And Chemicals, Inc. Multi-bed rapid cycle kinetic PSA
US10835856B2 (en) * 2018-08-14 2020-11-17 Air Products And Chemicals, Inc. Carbon molecular sieve adsorbent
US10730006B2 (en) 2018-08-14 2020-08-04 Air Products And Chemicals, Inc. Port separation for rotary bed PSA
WO2020131496A1 (en) 2018-12-21 2020-06-25 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
EP3962641A1 (en) 2019-04-30 2022-03-09 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Rapid cycle adsorbent bed
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
EP4045173A1 (en) 2019-10-16 2022-08-24 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Dehydration processes utilizing cationic zeolite rho

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302233A2 (en) * 2001-10-12 2003-04-16 Air Products And Chemicals, Inc. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas
CN1552505A (zh) * 2003-06-06 2004-12-08 四川天一科技股份有限公司 从混合气体中脱除乙烯、二氧化碳的吸附分离法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406675A (en) * 1981-12-10 1983-09-27 Union Carbide Corporation RPSA Process
CA1325182C (en) 1987-12-29 1993-12-14 Union Carbide Corporation Pressure swing adsorption process
GB8826584D0 (en) 1988-11-14 1988-12-21 Boc Group Plc Pressure swing adsorption process
US4915711A (en) * 1989-05-18 1990-04-10 Air Products And Chemicals, Inc. Adsorptive process for producing two gas streams from a gas mixture
US5042995A (en) * 1989-12-28 1991-08-27 Uop Pressure swing adsorption with intermediate product recovery using two adsorption zones
US5203888A (en) * 1990-11-23 1993-04-20 Uop Pressure swing adsorption process with multiple desorption steps
FR2682611B1 (fr) * 1991-10-17 1993-12-03 Air Liquide Procede et installation d'epuration d'un gaz par adsorption.
US5354346A (en) 1992-10-01 1994-10-11 Air Products And Chemicals, Inc. Purge effluent repressurized adsorption process
US5248322A (en) * 1992-10-01 1993-09-28 Air Products And Chemicals, Inc. Depressurization effluent repressurized adsorption process
US5328503A (en) * 1992-11-16 1994-07-12 Air Products And Chemicals, Inc. Adsorption process with mixed repressurization and purge/equalization
CA2121312A1 (en) 1993-04-21 1994-10-22 Shivaji Sircar Adsorption process to produce 99+% oxygen from air
US5429666A (en) * 1994-02-03 1995-07-04 Air Products And Chemicals, Inc. VSA adsorption process with continuous operation
US5540758A (en) * 1994-02-03 1996-07-30 Air Products And Chemicals, Inc. VSA adsorption process with feed/vacuum advance and provide purge
US5411578A (en) * 1994-05-10 1995-05-02 Air Products And Chemicals, Inc. Vacuum swing adsorption process with mixed repressurization and provide product depressurization
US5542966A (en) * 1994-10-21 1996-08-06 Nitrotec Corporation Helium recovery
US5632803A (en) * 1994-10-21 1997-05-27 Nitrotec Corporation Enhanced helium recovery
US5707425A (en) * 1994-10-21 1998-01-13 Nitrotec Corporation Helium recovery from higher helium content streams
US5656067A (en) * 1996-02-23 1997-08-12 Air Products And Chemicals, Inc. VSA adsorption process with energy recovery
JP2001507982A (ja) 1996-12-31 2001-06-19 ボーイ ゴードン キーファー 高頻度圧力変動による吸着
US6007606A (en) 1997-12-09 1999-12-28 Praxair Technology, Inc. PSA process and system
US6083299A (en) * 1999-01-21 2000-07-04 The Boc Group, Inc. High pressure purge pressure swing adsorption process
FR2788993B1 (fr) * 1999-01-29 2001-02-23 Air Liquide Procede d'epuration d'un gaz par adsorption
US6245127B1 (en) 1999-05-27 2001-06-12 Praxair Technology, Inc. Pressure swing adsorption process and apparatus
US6432170B1 (en) * 2001-02-13 2002-08-13 Air Products And Chemicals, Inc. Argon/oxygen selective X-zeolite
US20030047071A1 (en) * 2001-09-04 2003-03-13 Dolan William B. CO2 rejection from natural gas
US6605136B1 (en) 2002-07-10 2003-08-12 Air Products And Chemicals, Inc. Pressure swing adsorption process operation and optimization
FR2853257B1 (fr) 2003-04-02 2006-05-26 Air Liquide Systeme embarque de production de flux gazeux enrichi en oxygene et procede pour alimenter les voies aeriennes d'occupants d'un aeronef
US7179324B2 (en) * 2004-05-19 2007-02-20 Praxair Technology, Inc. Continuous feed three-bed pressure swing adsorption system
US7279029B2 (en) * 2004-05-21 2007-10-09 Air Products And Chemicals, Inc. Weight-optimized portable oxygen concentrator
JP4541825B2 (ja) * 2004-10-15 2010-09-08 キヤノン株式会社 動画像符号化装置及びその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302233A2 (en) * 2001-10-12 2003-04-16 Air Products And Chemicals, Inc. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas
CN1552505A (zh) * 2003-06-06 2004-12-08 四川天一科技股份有限公司 从混合气体中脱除乙烯、二氧化碳的吸附分离法

Also Published As

Publication number Publication date
ATE529172T1 (de) 2011-11-15
KR100964854B1 (ko) 2010-06-24
EP1867379A2 (en) 2007-12-19
CN101088591A (zh) 2007-12-19
TWI331545B (en) 2010-10-11
TW200744739A (en) 2007-12-16
US7651549B2 (en) 2010-01-26
EP1867379B1 (en) 2011-10-19
EP1867379A3 (en) 2008-07-02
KR20070118980A (ko) 2007-12-18
ES2371564T3 (es) 2012-01-05
US20070283807A1 (en) 2007-12-13
PL1867379T3 (pl) 2012-03-30

Similar Documents

Publication Publication Date Title
CN101088591B (zh) 具有改进的高纯度产物回收率的变压吸附工艺
KR100254295B1 (ko) 단일 흡착 베드를 이용한 압력 스윙 흡착 방법
EP0112640B1 (en) Process for obtaining high concentration argon by pressure-swing-adsorption
CA2656692C (en) Vpsa process and enhanced oxygen recovery
US6752851B2 (en) Gas separating and purifying method and its apparatus
ES2276997T3 (es) Proceso de adsorcion con vacio oscilante con extraccion de gas residual controlada.
US7122073B1 (en) Low void adsorption systems and uses thereof
US8128734B2 (en) Two stage pressure swing adsorption process for producing enriched-oxygen
US6425938B1 (en) Single bed pressure swing adsorption process
EP0590562A1 (en) Depressurization effluent repressurized adsorption process
EP0590615A1 (en) Purge effluent repressurized adsorption process
JPH06104176B2 (ja) 多成分気体分離の急速断熱圧力変動吸着法とその装置
JPS6137968B2 (zh)
CN101869797B (zh) 一种从空气中提取高纯度氮气的方法与装置
US4690696A (en) Oxidation of carbonaceous material
KR20140020723A (ko) 아르곤 가스의 정제 방법 및 정제 장치
GB2154465A (en) Gas separation method and apparatus
US6428607B1 (en) Pressure swing adsorption process which provides product gas at decreasing bed pressure
WO2009116674A1 (ja) 高炉ガスの分離方法
CN102080000A (zh) 一种利用变压吸附法从水煤气中分离并提纯co的方法
JP2009249571A (ja) バイオガス中の硫化水素の除去方法
JPH01262919A (ja) 空気中の窒素および酸素の分離回収方法
KR101195145B1 (ko) 고순도 산소 생산 장치 및 그 제어 방법
TW200304849A (en) Pressure swing adsorption process with controlled internal depressurization flow
JPS5922624A (ja) 選択的吸着方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant