CN101082670A - 一种宽带合成孔径雷达的有源外定标器及其定标方法 - Google Patents

一种宽带合成孔径雷达的有源外定标器及其定标方法 Download PDF

Info

Publication number
CN101082670A
CN101082670A CN 200610083335 CN200610083335A CN101082670A CN 101082670 A CN101082670 A CN 101082670A CN 200610083335 CN200610083335 CN 200610083335 CN 200610083335 A CN200610083335 A CN 200610083335A CN 101082670 A CN101082670 A CN 101082670A
Authority
CN
China
Prior art keywords
signal
aperture radar
synthetic
modulation
scaler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610083335
Other languages
English (en)
Other versions
CN100526912C (zh
Inventor
乔明
梁兴东
丁赤飚
张培杰
韩冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Original Assignee
Institute of Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS filed Critical Institute of Electronics of CAS
Priority to CNB200610083335XA priority Critical patent/CN100526912C/zh
Publication of CN101082670A publication Critical patent/CN101082670A/zh
Application granted granted Critical
Publication of CN100526912C publication Critical patent/CN100526912C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明属于雷达探测技术领域,具体地涉及一种新的宽带合成孔径雷达外定标器及其标定方法。对接收合成孔径雷达信号的正弦幅度进行调制,使定标器的合成孔径雷达方位多普勒信号两侧产生对称的镜像频谱;利用方位滤波提取镜像频率,可将合成孔径雷达信号与地物杂波分离。定标器主要包括接收、发射天线,射频模块和调制模块。本发明提供了可与地杂波完全分离开来的外定标信号,能够精确地实现一个不受地杂波影响的雷达收发系统、天线、传输路径和外定标器闭环测试回路,即使在复杂、高地物杂波的情况下,也能大大提高外定标的精度。

Description

一种宽带合成孔径雷达的有源外定标器及其定标方法
技术领域
本发明属于雷达探测技术领域,具体地涉及一种新的宽带合成孔径雷达外定标器。
背景技术
合成孔径雷达(SAR)采用综合孔径原理提高方位向分辨率,而距离向分辨率的提高则求助于脉冲压缩技术,由于合成孔径雷达可全天时、全天候对地成像、并具有一定穿透植被和伪装的能力,因此,被广泛的应用于军事、海洋、农林、资源、灾害监控、地形测绘等领域,并特别受到世界各国的重视。目前,分辨率作为合成孔径雷达的核心技术指标之一,已从初期的百米量级,提高到亚米级,例如德国的PAMIR已经达到0.1米。外定标技术作为检验合成孔径雷达成像分辨率、校准合成孔径雷达系统误差的主要手段也亟待发展,适应高分辨率、现代模式成像雷达外定标的需求。一般而言,要求外定标器的物理尺寸必须小于一个分辨率单元。在这样的限制条件下,随着分辨率的提高,传统无源角反射器的雷达截面积(RCS)很低,极易被场景杂波所掩盖,很难适用于高分辨率合成孔径雷达的外定标测试。相比之下有源定标技术依靠接收并转发合成孔径雷达信号来模拟地面目标,因此,只要提高收发系统的增益就可以获得较大的RCS,与物理尺寸无关。同时,在转发之前可对合成孔径雷达信号附加调制或编码,增加冗余信息,进一步提高外定标信号的信噪比,降低对外定标场的要求,满足现代高分辨率合成孔径雷达的外定标需求。
发明内容
为了满足合成孔径雷达高分辨率成像以及诸如对城区等强地杂波背景成像的外定标技术要求,本发明的目的是提高有源定标收发系统的增益,获得较大的雷达截面积(RCS),同时,在转发之前可对合成孔径雷达信号附加调制或编码,增加冗余信息,进一步提高外定标信号的信噪比,降低对外定标场的要求,满足现代高分辨率合成孔径雷达的外定标需求,为此,本发明将要提供一种宽带合成孔径雷达的有源外定标器及其定标方法。
本发明的第一个方面,一种宽带合成孔径雷达的有源外定标方法,如下步骤:
接收合成孔径雷达脉冲线性调频信号,然后进行放大、滤波;
对该合成孔径雷达脉冲线性调频信号进行正弦幅度调制,使得该定标器回波信号的方位多普勒频谱两侧产生对称的镜像频谱;
对该调制信号进行定量衰减来设置等效雷达横截面积RCS,然后功率放大并转发回给合成孔径雷达;
对包含该定标器调制信号的合成孔径雷达回波数据进行距离向压缩后,方位滤波提取该镜像多普勒频率。
所述正弦幅度调制可用压控衰减器或其它功率衰减可连续控制的器件实现,应满足如下关系式:
Sr(t)=(1+Acos(ωt))St(t)
其中St(t)为接收的合成孔径雷达脉冲线性调频信号,Sr(t)为定标器调制后转发回合成孔径雷达的信号,A为调幅指数,ω为调制角频率;
调幅指数A由压控衰减器或其他功率可连续控制器件的最大衰减深度决定,满足:
2log((1+A)/(1-A))≤最大衰减深度
调制角频率ω由合成孔径雷达脉冲重复频率PRF及方位多普勒带宽Δfdoppler决定,应满足:
2πΔfdoppler≤ω≤PRF/2。
本发明的第二个方面,一种宽带合成孔径雷达的有源外定标器包括:接收及发射天线装置、射频模块、调制模块;接收天线,发射天线接收合成孔径雷达脉冲线性调频信号并发射输出外标定信号,射频模块放大、调制并转发合成孔径雷达脉冲线性调频信号,并生成幅度调制的外标定信号;调制模块产生压控信号和数控信号分别控制射频模块的压控衰减器和数控衰减器。
本发明的有益效果:本发明描述了一种基于幅度调制的有源定标器(有源定标器:Amplitude Modulation Transponder),该定标器简单易实现,它对接收的合成孔径雷达信号进行幅度调制,然后转发给合成孔径雷达,经方位向处理之后,由于调幅,在原有多普勒频谱的上下边带分别产生镜像,可提供与地杂波完全分离开来的外定标信号,精确地实现一个不受地杂波影响的雷达收发系统、天线、传输路径和外定标器闭环测试回路,即使在复杂、高地物杂波的情况下,也能大大提高外定标的精度。利用该镜像多普勒频谱,还可以估计出有源定标器未调制回波信号,该信号的相位包含了有源定标器到载机平台的距离信息。因此,结合差分全球定位系统/捷联惯导系统DGPS/SINS用卡尔曼滤波的方法还可以高精度的估计出载机平台的运动轨迹,提高运动补偿的精度,这对于高分辨率合成孔径雷达十分重要。
附图说明
通过以下结合附图的详细描述,本发明的上述和其它方面、特征和优点将变得更加显而易见。附图中:
图1是本发明宽带合成孔径雷达的有源外定标器系统结构方框图
图2是本发明宽带合成孔径雷达的有源外定标器系统结构图
图3是本发明发射模块结构图
图4是本发明调制模块结构图
图5是经本发明有源定标器接受、转发的未调制信号频谱
图6是经本发明有源定标器接受、转发的调制信号频谱
图7和图8是本发明实施例的有源定标器外观照片
具体实施方式
下面结合附图对本发明作具体说明。应该指出,所描述的实施例仅仅视为说明的目的,而不是对本发明的限制。
根据本发明,图1所示宽带合成孔径雷达的有源外定标器系统结构方框图,图2是本发明宽带合成孔径雷达的有源外定标器系统结构图,图中包括:
接收天线1、调制模块2、射频模块3和发射天线4;射频模块分别与接收天线的输出和发射天线输入连接,射频模块的另一输入与调制模块输出连接;接收天线1接收合成孔径雷达信号,并由发射天线2发射输出外标定信号,调制模块2用于产生压控信号和数控信号控制射频模块3;射频模块3用于放大、调制并转发合成孔径雷达脉冲线性调频信号,生成调幅调制的外标定信号,并将该信号放大,放大的增益由数控信号来控制。调制模块产生压控信号端和数控信号端分别与射频模块的压控衰减器和数控衰减器连接,控制射频模块的压控衰减器和数控衰减器。
根据本发明图3,是发射模块结构图,图中包括:
所述射频模块3主要构成依次互连为低噪声放大器21、带通滤波器22、压控衰减器23、数控衰减器24、功率放大器25、隔离器26,其中压控衰减器23的控制端与调制模块2的压控信号端相连,数控衰减器24的控制端与调制模块2的数控信号端相连;
低噪声放大器21对来自接收天线1的合成孔径雷达脉冲线性调频信号进行第一级低噪声放大并输出至带通滤波器22;
带通滤波器22抑制输入信号的带外杂波,输出至压控衰减器23射频输入端;
压控衰减器23根据来自调制模块2的压控信号对射频输入端的信号进行相应的幅度调制,并输出至数控衰减器24射频输入端;
数控衰减器24根据来自调制模块2的数控信号对射频输入端的信号进行相应的定量衰减,并输出至功率放大器25;
功率放大器25将输入的信号进行末级功率放大,输出至隔离器26;
隔离器26将输入的信号输出至发射天线4,并隔离来自发射天线4的反射信号及杂波信号。
根据本发明图4,是调制模块结构图,图中:
所述调制模块2主要构成包括:计算机31、串口接口单元32、FPGA波形存储单元33、时钟单元34、D/A数模转换电路35、滤波单元36、电平转换单元37;
计算机31输入4bit数控码和调制波形码给串口接口单元32,串口接口单元32的一个输出端将4bit数控码输出到电平转换单元37的一个输入端(生成数控信号);串口接口单元32的另一个输出端将调制波形码输出到FPGA存储单元33的输入端;
FPGA存储单元33的另一输入端与时钟单元34的输出端相连,控制FPGA存储单元33的读取速度输出;
FPGA存储单元33的输出端与D/A数模转换电路35输入端连接,完成调制波形码数字向模拟的转换;D/A数模转换电路35的输出端与滤波单元36的输入端连接,由滤波单元36滤除高频噪声,然后输入到电平转换单元37,产生压控信号。
根据本发明,一种宽带合成孔径雷达的有源外定标器实施例的具体设计如下:
I.有源定标器系统结构
有源定标器工作频段设计在X波段,中心频率为9.8GHz,带宽为1.6GHz,其结构框图如图1所示。
图1中接收天线1和发射天线4选择3dB波束宽度为E面24度H面30度的X波段标准喇叭天线;图2的低噪声放大器21选择增益大于45dB、噪声系数小于2.5dB的宽带X波段低噪放;带通滤波器22选择9.8GHz,带宽为1.6GHz的腔体带通滤波器;压控衰减器23选择最大衰减深度大于40dB,压控信号范围为0-5V的X波段宽带亚控衰减器;数控衰减器24选择4位数控信号、衰减步进为2dB的X波段宽待数控衰减器;功率放大器25选择P1dB大于10dBm的X波段宽待功率放大器;隔离器26选择工作频率在X波段。
本发明一种宽带合成孔径雷达的有源外定标器的工作前,先由计算机31输入4bit数控码和调制波形码给串口接口单元32,串口接口单元32的将4bit数控码输出到电平转换单元37生成数控信号,设置射频模块3的增益;串口接口单元32的同时将调制波形码装载到FPGA存储单元33;
有源定标器工作时,FPGA存储单元33以时钟单元34的时钟频率,输出调制波形码到D/A数模转换电路35,完成调制波形码数字向模拟的转换,然后输出到滤波单元36滤除高频噪声,然后输入到电平转换单元37,产生压控信号。
合成孔径雷达信号经接收喇叭天线1通过低噪声带通滤波器22后,由压控衰减器23根据调制模块2产生的压控信号对合成孔径雷达脉冲信号进行幅度调制,再经放大后由发射喇叭天线4发送至合成孔径雷达的载机平台。
II.有源定标器等效雷达截面积RCS的设计:
根据所述宽带合成孔径雷达的有源外定标方法和所述有源外定标器,所述用定量衰减来设置等效雷达截面积RCS的步骤包括:
首先确定有源定标器的等效雷达截面积RCS由下式确定:
σ = λ 2 4 π G G tr G tr
其中σ表示等效雷达截面积RCS,λ表示合成孔径雷达脉冲线性调频信号的载波波长,G表示有源定标器射频模块的增益,Gtr表示有源定标器收发天线的增益;
用N位数控衰减器实现定量衰减,数控衰减信号其N位控制端的高低电平可确定2N个衰减状态,可用Nbit数控码表示,在本发明实施例中采用了4位数控衰减器,故使用4bit数控码;
由计算机将需要的Nbit数控码发送给调制模块,产生并输出相应的数控衰减信号并输出到数控衰减器的控制端,改变有源定标器射频模块的增益G,从而改变有源定标器的等效雷达截面积RCS;
Nbit数控码对应2N个不同的等效雷达横截面积RCS。
等效雷达截面积具体的实现是:依据合成孔径雷达系统的工作参数,运用雷达方程,导出有源定标器所模拟的目标雷达横截面积RCS与有源定标器系统增益的关系。
假设有源定标器的等效雷达截面积为σ,射频模块2的增益为G,根据有源定标器的接收天线1和发射天线4的E面H面3dB波束宽度可确定其增益为Gtr=15dB。已经知道,有源定标器的接收天线1末端接收功率为:
P rf _ in = P t G t G tr ( 4 π R 2 ) λ 2
其中,Pt为合成孔径雷达发射机输出功率,Gt为合成孔径雷达发射天线4增益,λ为合成孔径雷达脉冲线性调频信号的载波波长,R为合成孔径雷达距测绘带中心点的斜距,则有源定标器转发的发射功率为:
Prf_out=GPrf_in
合成孔径雷达接收天线末端的接收回波功率为:
P r = P rf _ out G tr G r ( 4 π R 2 ) λ 2 = P rf _ in G G tr G r ( 4 π R 2 ) λ 2 = P t G t G r ( 4 π ) 3 R 4 λ 2 ( λ 2 4 π G G tr G tr )
其中Gr为合成孔径雷达接收天线增益,单基站情况下Gr与Gt相等。对于雷达截面积RCS为σc的点目标,合成孔径雷达接收天线末端的接收回波功率为:
P r = P t G t G r ( 4 π ) 3 R 4 λ 2 σ c
因此,所述有源定标器的等效雷达截面积RCS与有源定标器增益的关系如下:
σ = σ c = λ 2 4 π G G tr G tr = G - 11.5 dB
所述有源定标器采用4bit数据通过串口接口单元2由控制计算机31发送至调制模块2中,经电平转逻辑单元35换后形成数控衰减器控制信号,达到控制系统增益,实现模拟16个不同RCS点目标的功能。
III.有源定标器调幅速率的设计
所述有源定标器调制模块2采用固定时钟单元34的时钟频率,通过FPGA存储单元33调整不同的调制波形存储长度来改变调幅速率,该调幅速率的选择取决于多普勒历史的带宽以及合成孔径雷达脉冲重复频率。
为了保证有源定标器对合成孔径雷达信号幅度调制后产生的镜像多普勒频谱能够被无失真的采样记录,不产生混叠现象,,必须满足合成孔径雷达的脉冲重复频率PRF值至少是调制角频率ω的两倍,同时ω/2π
至少大于合成孔径雷达方位多普勒带宽Δfdoppler,即满足下式:
2πΔfdoppler≤ω≤PRF/2
在工程上PRF值还应该乘以过采样系数Ga=1.2。以0.5米方位向分辨率为例,其多普勒带宽大约为500Hz,假定调制速率设置为625Hz,调制后带宽为875Hz,则PRF值理论上最低取1750Hz,工程上应至少取2100Hz。
IV.有源定标器天线、结构及电源设计
所述有源定标器接收天线1、发射天线4均采用标准角锥喇叭天线,H面、E面3dB波束宽度应保证充分的指向宽度,一般取对应合成孔径雷达天线H面、E面3dB波束宽度的5倍,在本实施例中E面和H面3dB波束宽度分别设计为30°、24°。接收天线1、发射天线4固定在八角转动平台上,保持H面平行,E面耦合,转动八角转动平台可改变接收天线1、发射天线2的极化方式;接收天线1、发射天线4的隔离度至少应比射频模块3、接收天线1、发射天线4增益之和大10dB,(该描述限定了接收天线1、发射天线4的空间位置关系)在本设计中接收天线1、发射天线4的间距取30cm,以保证隔离度大于60dB;同时支架结构具有调节水平和角度指向的功能,用胶木制成,天线托盘采用铝合金材质,表面加贴薄型x波段吸波材料,可大大减小支架结构对雷达波的反射。图7和图8是本发明设计实例的有源定标器外观照片。
有源定标器工作电压为19V-28V,系统总功耗≤500mA,电源模块采用两块12V、40Ah的松下铅酸蓄电池、并联后可提供26伏左右的直流电压,使用时间最长为80小时,充电时间8小时,可充分保证外场供电需求。
本发明一种宽带合成孔径雷达的有源外定标方法,原理设计如下:
有源定标器的原理是通过幅度调制实现多普勒频谱的搬移,假设接收合成孔径雷达的发射信号为
S t ( t ) = u ( t ) e j ω c t
其中u(t)表示合成孔径雷达的宽带脉冲线性调频信号,ωc代表发射信号载波频率。经过一段时间延迟α′后,有源定标器接收信号为
S tr ( t ) = u ( t - α ′ ) e j ω c ( t - α ′ )
对接收合成孔径雷达信号的正弦幅度进行调制,调制后转发给合成孔径雷达载机平台,接收信号可由下式表示
S r = { 1 + A cos ( ω ( t - α ′ ′ ) ) } u ( t - α ′ - α ′ ′ ) e j ω c ( t - α ′ - α ′ ′ )
= u ( t - α ) e j ω c ( t - α ) + A 2 u ( t - α ) e j ω c ( t - α ) jω ( t - α ′ ′ ) + A 2 u ( t - α ) e j ω c ( t - α ) + jω ( t - α ′ ′ )
= u ( t - α ) e j ω e ( t - α ) + A 2 u ( t - α ) e j ( ω c - ω ) t - j ( ω c α - ω α ′ ′ ) + A 2 u ( t - α ) e j ( ω c + ω ) t - j ( ω c α + ω α ′ ′ )
其中α是脉冲线性调频信号从发射到接收的总时延,ω是幅度调制的调制速率,ω由合成孔径雷达脉冲重复频率PRF及方位多普勒带宽Δfdoppler决定,应满足:
2πΔfdoppler≤ω≤PRF/2
调幅指数A由压控衰减器或其他功率可连续控制器件的最大衰减深度决定,应满足:
2log((1+A)/(1-A))≤最大衰减深度
α″是调制转发到合成孔径雷达接收的时延,由上式可知,e-j(ωcα±ωα″)是固定的相位差,它在我们的分析中不起重要作用,ej(ωc±ω)t将在多普勒频谱上下边带±ω处产生一对儿镜像,即使定标器的合成孔径雷达方位多普勒信号两侧产生对称的镜像频谱,该镜像频谱不包含任何场景杂波。只要合成孔径雷达系统的PRF值足够高,满足奈奎斯特采样定律,就可以提取由调幅产生的镜像多普勒频谱。
在本设计实施例中,以频率为9.8GHz,功率为-40dBm的点频信号作为有源定标器射频模块3的输入信号,设置调制速率ω=625Hz,调幅指数A=0.9,对有源定标器的调制功能作了测试验证。如图5是本发明有源定标器接收、转发的未调制信号频谱,图6是经本发明有源定标器接收、转发的调制信号频谱示出。对比图5和图6可以看出,在原点频信号频率9.8GHz上下两侧±625Hz处产生了镜像频率,并且能量最大的杂波比镜像频率低了34dB,这说明有源定标器很好的实现了对接收点频信号的正弦幅度调制。
所述镜像多普勒频谱,还可以估计出有源定标器未调制回波信号,该信号的相位包含了有源定标器到载机平台的距离信息。因此,结合差分全球定位系统/捷联惯导系统(DGPS/SINS)用卡尔曼滤波的方法还可以高精度的估计出载机平台的运动轨迹,提高运动补偿的精度,这对于高分辨率合成孔径雷达十分重要。
上面描述是用于实现本发明及其实施例,各个步骤均为示例,因此,本发明的范围不应由该描述来限定。本领域的技术人员应该理解,在不脱离本发明的范围的任何修改或局部替换,均属于本发明权利要求来限定的范围。

Claims (7)

1、一种宽带合成孔径雷达的有源外定标方法,其特征在于:包括如下步骤:
接收合成孔径雷达脉冲线性调频信号,然后进行放大、滤波;
对该合成孔径雷达脉冲线性调频信号进行正弦幅度调制,使得该定标器回波信号的方位多普勒频谱两侧产生对称的镜像频谱;
对该调制信号进行定量衰减来设置等效雷达横截面积RCS,然后功率放大并转发回给合成孔径雷达;
对包含该定标器调制信号的合成孔径雷达回波数据进行距离向压缩后,方位滤波提取该镜像多普勒频率。
2、根据权利要求1所述宽带合成孔径雷达的有源外定标方法,其特征在于:所述正弦幅度调制可用压控衰减器或其它功率衰减可连续控制的器件实现,满足如下关系式:
Sr(t)=(1+Acos(ωt))St(t)
其中St(t)为接收的合成孔径雷达脉冲线性调频信号,Sr(t)为定标器调制后转发回合成孔径雷达的信号,A为调幅指数,ω为调制角频率;
调幅指数A由压控衰减器或其他功率可连续控制器件的最大衰减深度决定,满足:
2log((1+A)/(1-A))≤最大衰减深度
调制角频率ω由合成孔径雷达脉冲重复频率PRF及方位多普勒带宽Δfdoppler决定,满足:
2πΔfdoppler≤ω≤PRF/2。
3、一种宽带合成孔径雷达的有源外定标器,其特征在于,该定标器包括:接收天线及发射天线、射频模块、调制模块;接收天线、发射天线接收合成孔径雷达脉冲线性调频信号并发射输出外标定信号,射频模块放大、调制并转发合成孔径雷达脉冲线性调频信号,并生成幅度调制的外标定信号;调制模块产生压控信号和数控信号分别控制射频模块的压控衰减器和数控衰减器。
4、根据权利要求3所述宽带合成孔径雷达的有源外定标器,其特征在于:射频模块主要构成包括:依次互连为低噪声放大器、带通滤波器、压控衰减器、数控衰减器、功率放大器、隔离器;其中:压控衰减器的控制端与调制模块的压控信号端相连,数控衰减器的控制端与调制模块的数控信号端相连;低噪声放大器,对来自接收天线的合成孔径雷达脉冲线性调频信号进行第一级低噪声放大并输出至带通滤波器;带通滤波器,抑制输入信号的带外杂波,输出至压控衰减器射频输入端;压控衰减器,根据来自调制模块的压控信号对射频输入端的信号进行相应的幅度调制,输出至数控衰减器射频输入端;数控衰减器,根据来自调制模块的数控信号对射频输入端的信号进行相应的定量衰减,输出至功率放大器;功率放大器,将输入的信号进行末级功率放大,输出至隔离器;隔离器,将输入的信号输出至发射天线,并隔离来自发射天线的反射信号及杂波信号。
5、根据权利要求3所述宽带合成孔径雷达的有源外定标器,其特征在于:所述调制模块主要构成包括:计算机、串口接口单元、FPGA波形存储单元、时钟单元、数模转换电路D/A、滤波单元、电平转换单元;
由计算机输入数控码和调制波形码给串口接口单元,串口接口单元的一个输出端将数控码输出到电平转换单元的一个输入端,生成数控信号;串口接口单元的另一个输出端将调制波形码输出到FPGA存储单元的输入端;
FPGA存储单元的另一输入端与时钟单元的输出端相连,控制FPGA存储单元的读取速度输出;
FPGA存储单元的输出端与数模转换电路D/A输入端连接,完成调制波形码数字向模拟的转换;数模转换电路D/A的输出端与滤波单元的输入端连接,由滤波单元滤除高频噪声,然后输入到电平转换单元,产生压控信号。
6、根据权利要求3所述宽带合成孔径雷达的有源外定标器,其特征在于:所述接收天线、发射天线采用标准X波段喇叭天线,H面E面3dB波束宽度保证充分的指向宽度,取对应合成孔径雷达天线H面、E面3dB波束宽度的5倍;接收天线、发射天线固定在八角转动平台上,使得H面平行,E面耦合,接收天线、发射天线的隔离度至少应大于射频模块、接收天线、发射天线增益之和10dB;通过旋转八角转动平台来调整接收天线、发射天线的极化方式。
7、根据权利要求1所述宽带合成孔径雷达的有源外定标方法,标器,其特征在于:所述用定量衰减来设置等效雷达截面积RCS的步骤包括:
首先确定有源定标器的等效雷达截面积RCS由下式确定:
σ = λ 2 4 π G G tr G tr
其中σ表示等效雷达截面积RCS,λ表示合成孔径雷达脉冲线性调频信号的载波波长,G表示有源定标器射频模块的增益,Gtr表示有源定标器收发天线的增益;
用N位数控衰减器进行定量衰减,数控衰减信号其N位控制端的高低电平确定2N个衰减状态,用Nbit数控码表示;
由计算机将需要的Nbit数控码发送给调制模块,产生并输出相应的数控衰减信号并输出到数控衰减器的控制端,改变有源定标器射频模块的增益G,从而改变有源定标器的等效雷达截面积RCS;
Nbit数控码对应2N个不同的等效雷达横截面积RCS。
CNB200610083335XA 2006-06-02 2006-06-02 一种宽带合成孔径雷达的有源外定标器及其定标方法 Expired - Fee Related CN100526912C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB200610083335XA CN100526912C (zh) 2006-06-02 2006-06-02 一种宽带合成孔径雷达的有源外定标器及其定标方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB200610083335XA CN100526912C (zh) 2006-06-02 2006-06-02 一种宽带合成孔径雷达的有源外定标器及其定标方法

Publications (2)

Publication Number Publication Date
CN101082670A true CN101082670A (zh) 2007-12-05
CN100526912C CN100526912C (zh) 2009-08-12

Family

ID=38912341

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200610083335XA Expired - Fee Related CN100526912C (zh) 2006-06-02 2006-06-02 一种宽带合成孔径雷达的有源外定标器及其定标方法

Country Status (1)

Country Link
CN (1) CN100526912C (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129069A (zh) * 2010-12-17 2011-07-20 浙江大学 基于多fpga的波束形成器输出数据带宽控制装置
CN102790650A (zh) * 2012-07-06 2012-11-21 北京理工大学 一种宽带lfm信号的分数域奇偶交替信道化接收方法
CN103091666A (zh) * 2011-11-07 2013-05-08 中国科学院电子学研究所 非理想定标器条件下的机载p波段极化sar定标方法
WO2013113808A1 (de) * 2012-02-01 2013-08-08 Rst Radar Systemtechnik Gmbh Verfahren zur bildung einer synthetischen apertur auf modulationsfrequenzbasis zur erstellung eines 3d-modells von vegetationsoberflächen
CN103454620A (zh) * 2013-09-23 2013-12-18 中国科学院空间科学与应用研究中心 一种基于转发信号重建体制的跟踪型有源定标器
CN103645466A (zh) * 2013-12-16 2014-03-19 中国科学院电子学研究所 一种基于平台姿态时变性补偿的极化定标方法
CN103675773A (zh) * 2013-11-29 2014-03-26 西安空间无线电技术研究所 一种定标器与卫星指向对准的确定方法
CN103777184A (zh) * 2014-01-13 2014-05-07 中国科学院空间科学与应用研究中心 一种星载高度计与有源定标器的信号匹配方法
CN104090276A (zh) * 2014-07-02 2014-10-08 西南民族大学 一种射频隐身的机载合成孔径雷达
CN104270101A (zh) * 2014-09-30 2015-01-07 绵阳雷迪创微电子科技有限公司 多级低噪声放大装置
CN104898100A (zh) * 2015-04-30 2015-09-09 中国电子科技集团公司第三十八研究所 基于弱布设角反射器的机载sar辐射外定标处理方法
CN104995794A (zh) * 2012-11-08 2015-10-21 法国国立应用科学学院 拥有经适配(最大化或最小化)等效雷达截面积的扁平化二面形装置
CN106291487A (zh) * 2016-08-04 2017-01-04 上海无线电设备研究所 一种基于agc电压和回波数据的雷达接收功率和rcs估计方法
CN108008363A (zh) * 2016-10-27 2018-05-08 北京遥感设备研究所 一种用于定量测量雷达的标定系统
CN108169727A (zh) * 2018-01-03 2018-06-15 电子科技大学 一种基于fpga的动目标雷达散射截面测量方法
CN108414996A (zh) * 2018-03-15 2018-08-17 北京环境特性研究所 用于电磁散射特性测量的有源定标设备
CN109239682A (zh) * 2018-03-23 2019-01-18 北京遥感设备研究所 一种用于定量测量雷达系统的外定标系统及方法
CN109917345A (zh) * 2019-05-05 2019-06-21 北京无线电测量研究所 单脉冲雷达定向灵敏度标定方法及装置
CN110441745A (zh) * 2019-08-16 2019-11-12 北京环境特性研究所 一种基于宽带雷达俯视测量目标rcs的方法和系统
CN111273242A (zh) * 2020-03-05 2020-06-12 北京环境特性研究所 一种无人直升机载电磁有源定标设备、系统及方法
CN111371470A (zh) * 2020-03-13 2020-07-03 上海航天测控通信研究所 定标噪声源分配网络装置
CN112684421A (zh) * 2019-10-17 2021-04-20 零八一电子集团有限公司 线性调频连续波雷达相参标校源系统
CN112731298A (zh) * 2020-12-17 2021-04-30 南京隼眼电子科技有限公司 天线装置及雷达装置
CN113552549A (zh) * 2021-07-28 2021-10-26 北京环境特性研究所 利用有源校准设备进行机载下视测量标定的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19822957C1 (de) * 1998-05-22 2000-05-25 Deutsch Zentr Luft & Raumfahrt Verfahren zur Detektion und Unterdrückung von Störsignalen in SAR-Daten und Einrichtung zur Durchführung des Verfahrens
US6608585B2 (en) * 2001-03-02 2003-08-19 Massachusetts Institute Of Technology High-definition imaging apparatus and method
DE10146643C1 (de) * 2001-09-21 2003-08-14 Eads Deutschland Gmbh Verfahren zur Kalibrierung der Radarsignale an den Subaperturen der Antenne eines zweikanaligen SAR/MTI Radarsystems
CN1303431C (zh) * 2002-12-13 2007-03-07 中国科学院电子学研究所 机载合成孔径雷达测量区域定位系统
EP1719206B1 (en) * 2004-02-27 2008-12-10 Agence Spatiale Europeenne Pulse-coded remote calibration of an active phased array system
CN200944136Y (zh) * 2006-06-02 2007-09-05 中国科学院电子学研究所 一种宽带合成孔径雷达的有源外定标器

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129069A (zh) * 2010-12-17 2011-07-20 浙江大学 基于多fpga的波束形成器输出数据带宽控制装置
CN102129069B (zh) * 2010-12-17 2012-05-09 浙江大学 基于多fpga的波束形成器输出数据带宽控制装置
CN103091666B (zh) * 2011-11-07 2015-02-04 中国科学院电子学研究所 非理想定标器条件下的机载p波段极化sar定标方法
CN103091666A (zh) * 2011-11-07 2013-05-08 中国科学院电子学研究所 非理想定标器条件下的机载p波段极化sar定标方法
WO2013113808A1 (de) * 2012-02-01 2013-08-08 Rst Radar Systemtechnik Gmbh Verfahren zur bildung einer synthetischen apertur auf modulationsfrequenzbasis zur erstellung eines 3d-modells von vegetationsoberflächen
CN102790650B (zh) * 2012-07-06 2014-12-24 北京理工大学 一种宽带lfm信号的分数域奇偶交替信道化接收方法
CN102790650A (zh) * 2012-07-06 2012-11-21 北京理工大学 一种宽带lfm信号的分数域奇偶交替信道化接收方法
CN104995794B (zh) * 2012-11-08 2018-04-20 法国国立应用科学学院 拥有经适配(最大化或最小化)等效雷达截面积的扁平化二面形装置
CN104995794A (zh) * 2012-11-08 2015-10-21 法国国立应用科学学院 拥有经适配(最大化或最小化)等效雷达截面积的扁平化二面形装置
CN103454620A (zh) * 2013-09-23 2013-12-18 中国科学院空间科学与应用研究中心 一种基于转发信号重建体制的跟踪型有源定标器
CN103454620B (zh) * 2013-09-23 2015-04-15 中国科学院空间科学与应用研究中心 一种基于转发信号重建体制的跟踪型有源定标器
CN103675773A (zh) * 2013-11-29 2014-03-26 西安空间无线电技术研究所 一种定标器与卫星指向对准的确定方法
CN103675773B (zh) * 2013-11-29 2015-10-21 西安空间无线电技术研究所 一种定标器与卫星指向对准的确定方法
CN103645466A (zh) * 2013-12-16 2014-03-19 中国科学院电子学研究所 一种基于平台姿态时变性补偿的极化定标方法
CN103645466B (zh) * 2013-12-16 2015-07-15 中国科学院电子学研究所 一种基于平台姿态时变性补偿的极化定标方法
CN103777184A (zh) * 2014-01-13 2014-05-07 中国科学院空间科学与应用研究中心 一种星载高度计与有源定标器的信号匹配方法
CN103777184B (zh) * 2014-01-13 2016-01-20 中国科学院空间科学与应用研究中心 一种星载高度计与有源定标器的信号匹配方法
CN104090276A (zh) * 2014-07-02 2014-10-08 西南民族大学 一种射频隐身的机载合成孔径雷达
CN104270101A (zh) * 2014-09-30 2015-01-07 绵阳雷迪创微电子科技有限公司 多级低噪声放大装置
CN104898100B (zh) * 2015-04-30 2017-10-03 中国电子科技集团公司第三十八研究所 基于弱布设角反射器的机载sar辐射外定标处理方法
CN104898100A (zh) * 2015-04-30 2015-09-09 中国电子科技集团公司第三十八研究所 基于弱布设角反射器的机载sar辐射外定标处理方法
CN106291487B (zh) * 2016-08-04 2019-01-08 上海无线电设备研究所 一种基于agc电压和回波数据的雷达接收功率和rcs估计方法
CN106291487A (zh) * 2016-08-04 2017-01-04 上海无线电设备研究所 一种基于agc电压和回波数据的雷达接收功率和rcs估计方法
CN108008363A (zh) * 2016-10-27 2018-05-08 北京遥感设备研究所 一种用于定量测量雷达的标定系统
CN108008363B (zh) * 2016-10-27 2021-05-07 北京遥感设备研究所 一种用于定量测量雷达的标定系统
CN108169727A (zh) * 2018-01-03 2018-06-15 电子科技大学 一种基于fpga的动目标雷达散射截面测量方法
CN108169727B (zh) * 2018-01-03 2019-12-27 电子科技大学 一种基于fpga的动目标雷达散射截面测量方法
CN108414996A (zh) * 2018-03-15 2018-08-17 北京环境特性研究所 用于电磁散射特性测量的有源定标设备
CN109239682A (zh) * 2018-03-23 2019-01-18 北京遥感设备研究所 一种用于定量测量雷达系统的外定标系统及方法
CN109917345B (zh) * 2019-05-05 2020-07-10 北京无线电测量研究所 单脉冲雷达定向灵敏度标定方法及装置
CN109917345A (zh) * 2019-05-05 2019-06-21 北京无线电测量研究所 单脉冲雷达定向灵敏度标定方法及装置
CN110441745B (zh) * 2019-08-16 2021-04-30 北京环境特性研究所 一种基于宽带雷达俯视测量目标rcs的方法和系统
CN110441745A (zh) * 2019-08-16 2019-11-12 北京环境特性研究所 一种基于宽带雷达俯视测量目标rcs的方法和系统
CN112684421A (zh) * 2019-10-17 2021-04-20 零八一电子集团有限公司 线性调频连续波雷达相参标校源系统
CN111273242A (zh) * 2020-03-05 2020-06-12 北京环境特性研究所 一种无人直升机载电磁有源定标设备、系统及方法
CN111273242B (zh) * 2020-03-05 2022-05-03 北京环境特性研究所 一种无人直升机载电磁有源定标设备、系统及方法
CN111371470A (zh) * 2020-03-13 2020-07-03 上海航天测控通信研究所 定标噪声源分配网络装置
CN111371470B (zh) * 2020-03-13 2021-10-29 上海航天测控通信研究所 定标噪声源分配网络装置
CN112731298A (zh) * 2020-12-17 2021-04-30 南京隼眼电子科技有限公司 天线装置及雷达装置
CN113552549A (zh) * 2021-07-28 2021-10-26 北京环境特性研究所 利用有源校准设备进行机载下视测量标定的方法及装置
CN113552549B (zh) * 2021-07-28 2023-05-12 北京环境特性研究所 利用有源校准设备进行机载下视测量标定的方法及装置

Also Published As

Publication number Publication date
CN100526912C (zh) 2009-08-12

Similar Documents

Publication Publication Date Title
CN100526912C (zh) 一种宽带合成孔径雷达的有源外定标器及其定标方法
CN200944136Y (zh) 一种宽带合成孔径雷达的有源外定标器
CN104166126B (zh) 一种用于连续波雷达的回波信号模拟方法
Kawanishi et al. TRMM precipitation radar
CN102565767B (zh) 一种星载海洋雷达高度计地面检定仪
CN100541227C (zh) 子孔径雷达高度计
CN101082666B (zh) 基于自动测试系统实现对雷达脉冲信号高精度调制的方法
CN101923157B (zh) 一种星载双通道角跟踪校准系统
CN110515050B (zh) 一种基于gpu的星载sar实时回波模拟器
CN104898107B (zh) 一种多发多收合成孔径激光雷达信号处理方法
CN106353748A (zh) 用于fmcw雷达测距系统的信号处理装置及方法
CN116136584B (zh) 基于fpga及ddr4的大带宽超视距雷达距离模拟装置及方法
CN110133654A (zh) 一种高轨卫星sar动目标检测方法
CN113671537B (zh) 一种三频信标信号电离层信道仿真方法
CN202794515U (zh) 一种fmcw船用导航雷达
CN108597234A (zh) 一种基于高分辨率雷达的智能交通检测仪
CN103135108A (zh) 大气波导实时探测和诊断方法及终端
CN109975775A (zh) 一种雷达回波半实测数据仿真方法
CN113608183B (zh) 一种高超声速宽频带射频目标模拟系统
CN104569938A (zh) 一种合成孔径雷达回波仿真器
CN103645475B (zh) 全极化星载topsar提高交叉极化rasr的方法
CN103727960A (zh) 一种基于drfm的无线电高度表干扰信号产生方法
CN211577419U (zh) 相位编码不饱和调制装置和激光雷达系统
CN112684421A (zh) 线性调频连续波雷达相参标校源系统
CN112068087B (zh) 一种岸基多通道雷达仿机载海杂波测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090812

Termination date: 20180602

CF01 Termination of patent right due to non-payment of annual fee