CN101056577A - 医疗检查设备 - Google Patents

医疗检查设备 Download PDF

Info

Publication number
CN101056577A
CN101056577A CNA2005800387494A CN200580038749A CN101056577A CN 101056577 A CN101056577 A CN 101056577A CN A2005800387494 A CNA2005800387494 A CN A2005800387494A CN 200580038749 A CN200580038749 A CN 200580038749A CN 101056577 A CN101056577 A CN 101056577A
Authority
CN
China
Prior art keywords
equipment
mirror
cavity
patient
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800387494A
Other languages
English (en)
Other versions
CN100525704C (zh
Inventor
C·L·G·哈姆
F·A·德格拉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101056577A publication Critical patent/CN101056577A/zh
Application granted granted Critical
Publication of CN100525704C publication Critical patent/CN100525704C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/283Intercom or optical viewing arrangements, structurally associated with NMR apparatus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明涉及医疗检查设备,尤其是MR设备。已知的MR设备具有用于容纳要检查的患者的腔体,该腔体仅给患者提供了有限的空间。这有限的空间可能导致危害检查结果的幽闭恐惧症反应。根据本发明,在腔体(1)的内部设置平行于病床(3)的主表面(5)布置的镜子(4)。该镜子(4)模拟了腔体内部更大的空间,提高了患者的舒适感。

Description

医疗检查设备
技术领域
本发明涉及一种医疗检查设备,包括腔体和位于腔体中的病床,其中目标或患者在腔体中可接受电磁波。本发明尤其涉及用于MR(磁共振)系统、MRI(磁共振成像)系统、CT(计算机X射线断层照相)系统或PET扫描仪的医疗检查设备。
背景技术
MR系统包括至少部分封闭的腔体,患者或患者身体的一部分位于腔体中。在由腔体限定的检查空间中产生充满该空间的静磁场。RF(射频)发射器的信号耦合到身体中,这引起身体中所选细胞核的磁弱化。细胞核吸收RF能量,并且在驰豫时间内将该能量消散。对驰豫时间分布的3D(三维)研究使得能够获得患者组织的3D图像。
为了获得组织精确的3D图象,患者不允许移动。但是,在腔体中提供的有限空间使多许多患者感觉不舒适,甚至焦虑。幽闭恐惧症使患者移动,甚至离开MR腔体。CT系统也存在类似的问题。
US 2003/0128034 A1公开了一种管状的医疗检查设备。管状设备内部是立体成像载体,其模拟在患者所在场所的检查空间内布置有更大的空间。立体成像(例如,全息图)模拟的更大的空间有助于防止幽闭恐惧忧虑症。
W0 01/22108 A1公开了一种在腔体中使用镜子的磁共振设备。镜子的表面相对于病床倾斜。镜子使患者能够与外界保持视觉接触。
发明内容
本发明的目的是提供一种开篇段落中所述的具有模拟比实际大的空间的腔体的医疗检查设备。
为了实现所述目的,根据本发明的医疗检查设备的特征为所述设备还包括平行于所述病床的主表面布置的大致为平面的镜子。
下文中,其描述仅指的是人或动物,也就是“患者”在腔体中检查的情形。但是本发明不限于这种情形,例如本领域的技术人员会容易地理解,还可在腔体中检查其它目标,如植物或其它非生物材料。
本发明建立在如下概念的基础上:当在患者的脸的上方平行于病床主表面布置平面镜时,会影响患者对腔体空间的感受。病床的主表面定义为检查期间患者所躺的表面。在这种情形下,患者可看见自己,并且可以更容易从腔体内看见腔体内部。根据镜子的尺寸,患者甚至可从腔体中看到整个腔体。与在腔体中没有镜子的情形相比,患者的感受是患者空间增大了2倍甚至更多。感受到的空间看起来比没有镜子大,其中感受到的空间定义为当患者处于腔体中时,他或她感受到的空间。结果,提高了患者的舒适感和其对设备的接受度。
本发明的优选实施例涉及MR设备。所述MR设备可为具有封闭圆柱形腔的传统形式,其中圆柱形腔体具有位于垂直腔体纵轴的平面内的两个开口。最优选实施例为敞开式MR系统,其中除了上述开口处,当患者躺在病床上时,在他或她的左右侧上腔体也是敞开的。所述MR设备产生达大约3T的磁场。如果磁场为1T,那么RF场的频率为42MHz,其频率与磁场强度成比例。
所述镜子可设置在形成磁体盖子的患者空间的内壁上。特别地,所述镜子可集成进所述盖子中。
为了增大患者感受到的空间,所述镜子的表面优选地选择成比成年人的脸的表面大,并且优选地直径大于约26cm。
所述镜子的形状可适于所述腔体的几何形状。如果选择传统的MR设备,那么镜子可沿所述圆柱形腔体纵轴的主要部分延伸。主要部分定义为当沿着纵轴方向测量时,至少患者空间长度的三分之一。所述镜子可沿着该长度的三分之一、一半或者甚至三分之二延伸,并且所述镜子可为矩形。如果所述纵轴估计为2米长,那么镜子沿该方向的长度为66cm,或者甚至1.3m。使用尺寸为1m×26cm的矩形形状会获得良好的效果。
如果选择敞开式MR设备,那么可选择圆形镜子。其直径为至少约80cm,优选为至少约1m。
由于曲面镜会导致对腔体的视觉扭曲,所以所述镜子选择为大致平面的镜子。在这方面,非扭曲平面镜更加舒适,并会避免奇异的反应。
在这方面,平面镜平行于病床的布置使得能够将镜子布置为相对地远离患者的脸,尤其是与镜子相对于病床主表面成一定角度的情形相比。在后述情形中,镜子距离患者眼睛的距离大概为10cm,而在第一种情形中可能达到15cm。应当清楚,眼睛可接受物体较长时间的最小距离通常为25cm。这意味着在镜子平行于病床布置的情形中,患者可不费力地看见自己的脸。
所述镜子对设备功能的扰乱应当尽可能地小。但是,反射在电磁波谱中的可见部分中的光的镜子通常包含由具有高反射系数的材料组成的层,例如银或铝。如果将RF场耦合到这些导电层中,那么会产生涡电流。对于较大的镜子尤其是个问题。
避免这些涡电流的一个可能性是不含金属的镜子,例如具有大量电介质涂层的镜子。另一个可能性是在设备中使用层厚度远小于RF波透入深度的非常薄的金属层。按常规,层的厚度应当比透入深度小一个数量级。通常这意味着几微米的厚度。
优选实施例使用包括由大量金属区域组成的层的镜子。所述区域可为任意形状,可为彼此之间没有电流连接的点或条。上述区域之间可设置绝缘体。没有电流连接导致电路径长度的降低,使涡电流的产生更加困难。虽然这种类型的镜子显示了比较低的反射系数,但是其结果是令人满意的,尤其是当患者空间内的光强度比较低时。
另一个优选实施例使用具有金属层的镜子,其中所述层包括凹槽,例如狭缝。这导致电路径长度增加,有效地避免了涡电流。
倒数第二段中所述金属区域的尺寸,或者最后一段中所述凹槽的尺寸依赖于发射线圈发射时镜子处的局部RF场强,并且依赖于层的厚度与透入深度的比。可能需要额外的凹槽来减少切换梯度线圈引起的涡电流。
附图说明
参考附图,下面详细描述根据本发明的医疗检查设备的实施例,其中:
图1示出了沿腔体对称轴观看时,根据本发明的封闭式圆柱形MR设备的腔体;
图2示出了在图1腔体中体验的空间视图;
图3示出了沿腔体对称轴观看时,根据本发明的敞开式MR设备的腔体;
图4示出了在图3腔体中体验的空间视图;
图5示出了在根据本发明的MR设备中使用的镜子的实施例;
图6示出了具有带金属点的层的可选镜子。
具体实施方式
图1示出了根据本发明的封闭式圆柱形MR设备的腔体1。该图沿着垂直于x轴和y轴的纵轴(z轴,对称轴)方向。x轴、y轴和z轴表示3D坐标系统。该腔体具有60cm的内径,并具有位于xy平面的两个开口。
腔体内部为躺在病床3上的患者2。尽管病床3具有局部弯曲的主表面5,但是其中心部分近似为平面,位于zy平面内。患者沿着垂直于病床3的主表面5的x轴方向观看。其头部6的上方为布置在zy平面内因而平行于病床3的主表面5的平面镜4。镜子距坐标系统中心的距离为27cm。镜子4的中心距顶盖8的距离为3cm。
镜子集成进盖子中,使得在该区域内的盖子是平的。在可选方案中,镜子可设置在QBC(正交体线圈,quadrature body coil)内部,其中QBC盖8选择成透明的。在这种情形下,可增加镜子4距病床3的距离,并可使镜子4更大。在后面的情形中,更大地增加了观察到的空间。
作为可选方案,MR设备的QBC(从而腔体)在xy平面中不具有圆形形状,但是具有椭圆形状。其由虚线表示。
当患者2身在病床3上时,患者2具有的视线由箭头A1、A2表示。当向上方看时,患者可看见自己,或者可看向左侧和右侧。如图2所示,看到的空间就象通过窗口观看。其感受为患者的脸7距镜子不是15cm,而是距其镜像2’为30cm。相应地,患者2感到自己与镜像2’之间的空间比没有镜子4的情形大。
图3示出了在QBC(未示出)顶部具有平的盖子8的敞开式MR系统。盖子8为2mm厚,由聚碳酸酯制成。盖子8用作不含金属的并且不导电的反射层10的基底9。盖子8和层10并不成比例,以便显示具有1m直径的圆形镜子4的组成。
图4示出了当患者2躺在图3的MR设备的病床3上时,患者2具有的视线。与图2的情形类似,因为患者2距其镜像2’的距离大于距镜子4的距离,所以感到的空间大于实际空间。
图5示出了敞开式MR设备中可使用的镜子的实施例。镜子4具有1m的直径,并且含有0.1m厚的铝层。镜子4具有交替的长狭缝12和短狭缝13。所有的狭缝12、13沿径向方向布置,这提高了电路径长度。小狭缝13位于RF场强特别高的区域中。
图6示出了包括由大量金属区域14组成的层10的镜子4。电流区域14为小的圆点,其中区域15不含有金属,从而防止金属区域14之间的电连接。为示意起见,圆点的尺寸并未按比例。

Claims (11)

1.一种医疗检查设备,包括腔体(1)和位于所述腔体中的病床(3),其中目标或患者(2)在所述腔体中可接受电磁波,其特征在于,所述设备还包括平行于所述病床(3)的主表面(5)布置的大致平面的镜子(4)。
2.如权利要求1所述的设备,其特征为所述镜子的表面大于成年患者的脸(7)的表面。
3.如权利要求1所述的设备,其特征为所述设备为封闭式圆柱形MR设备,其中所述镜子(4)沿着所述腔体(1)纵轴的主要部分延伸。
4.如权利要求1所述的设备,其特征为所述设备为敞开式MR设备,其中所述镜子(4)具有至少为80cm的直径。
5.如权利要求1所述的设备,其特征为所述镜子(4)不含金属。
6.如权利要求1所述的设备,其特征为所述镜子(4)包括金属层(10),该金属层厚度远小于与所述患者接受的电磁波频率对应的透入深度。
7.如权利要求1所述的设备,其特征为所述镜子(4)包括由大量金属区域(14)组成的层(10),其中所述金属区域(14)之间没有电流连接。
8.如权利要求1所述的设备,其特征为所述镜子(4)包括具有凹槽(12、13)的金属层(10)。
9.如权利要求1所述的设备,其特征为所述设备为磁共振系统,优选为磁共振成像系统。
10.如权利要求1所述的设备,其特征为所述设备为敞开式磁共振系统,优选为敞开式磁共振成像系统。
11.如权利要求1所述的设备,其特征为所述设备为计算机断层照相系统或PET扫描仪。
CNB2005800387494A 2004-11-12 2005-11-10 医疗检查设备 Expired - Fee Related CN100525704C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04105728.2 2004-11-12
EP04105728 2004-11-12

Publications (2)

Publication Number Publication Date
CN101056577A true CN101056577A (zh) 2007-10-17
CN100525704C CN100525704C (zh) 2009-08-12

Family

ID=35822628

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800387494A Expired - Fee Related CN100525704C (zh) 2004-11-12 2005-11-10 医疗检查设备

Country Status (5)

Country Link
US (1) US20090082659A1 (zh)
EP (1) EP1827225A1 (zh)
JP (1) JP2008519640A (zh)
CN (1) CN100525704C (zh)
WO (1) WO2006051497A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102370483A (zh) * 2010-08-18 2012-03-14 西门子公司 医疗成像设备
CN104840199A (zh) * 2015-06-02 2015-08-19 中国人民解放军南京军区南京总医院 核磁共振检查幽闭缓释装置
CN105793720A (zh) * 2013-09-30 2016-07-20 皇家飞利浦有限公司 用于创建环境经历的单元
CN110025313A (zh) * 2019-04-01 2019-07-19 广东职业技术学院 一种核磁共振全方位体检仪

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2436290B (en) * 2006-03-21 2008-04-23 Siemens Magnet Technology Ltd Patient calming arrangements
US8329247B2 (en) 2009-02-19 2012-12-11 Toyota Motor Engineering & Manufacturing North America, Inc. Methods for producing omni-directional multi-layer photonic structures
US10788608B2 (en) 2007-08-12 2020-09-29 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures
US9739917B2 (en) 2007-08-12 2017-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Red omnidirectional structural color made from metal and dielectric layers
US8593728B2 (en) * 2009-02-19 2013-11-26 Toyota Motor Engineering & Manufacturing North America, Inc. Multilayer photonic structures
US8861087B2 (en) 2007-08-12 2014-10-14 Toyota Motor Corporation Multi-layer photonic structures having omni-directional reflectivity and coatings incorporating the same
US9612369B2 (en) 2007-08-12 2017-04-04 Toyota Motor Engineering & Manufacturing North America, Inc. Red omnidirectional structural color made from metal and dielectric layers
US10870740B2 (en) 2007-08-12 2020-12-22 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures and protective coatings thereon
US10690823B2 (en) 2007-08-12 2020-06-23 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers
US10048415B2 (en) 2007-08-12 2018-08-14 Toyota Motor Engineering & Manufacturing North America, Inc. Non-dichroic omnidirectional structural color
US8196823B2 (en) 2010-08-10 2012-06-12 Toyota Motor Engineering & Manufacturing North America, Inc. Optical lock systems and methods
US8257784B2 (en) 2010-08-10 2012-09-04 Toyota Motor Engineering & Manufacturing North America, Inc. Methods for identifying articles of manufacture
US10067265B2 (en) 2010-10-12 2018-09-04 Toyota Motor Engineering & Manufacturing North America, Inc. Semi-transparent reflectors
JP5663097B2 (ja) * 2011-09-30 2015-02-04 株式会社日立メディコ 検査装置
US9658375B2 (en) 2012-08-10 2017-05-23 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers
US9664832B2 (en) 2012-08-10 2017-05-30 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with combination semiconductor absorber and dielectric absorber layers
US9678260B2 (en) 2012-08-10 2017-06-13 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with semiconductor absorber layer
DE112015001639B4 (de) 2014-04-01 2023-12-14 Toyota Jidosha Kabushiki Kaisha Nicht-farbverschiebende mehrschichtige strukturen
JP2015208427A (ja) * 2014-04-25 2015-11-24 株式会社日立メディコ 磁気共鳴イメージング装置
US9810824B2 (en) 2015-01-28 2017-11-07 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural colors

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125105A (ja) * 1984-07-13 1986-02-04 Nitto Electric Ind Co Ltd 反射型位相差板
US4650299A (en) * 1984-09-28 1987-03-17 General Electric Company Visual communication system
FR2623996A1 (fr) * 1987-12-08 1989-06-09 Thomson Csf Dispositif de surveillance du patient dans un appareil d'examen medical
JPH0219137A (ja) * 1988-07-06 1990-01-23 Fujitsu Ltd 核磁気共鳴撮像装置
DE3935083A1 (de) * 1989-10-20 1991-06-13 Siemens Ag Messanordnung zum erfassen einer atembewegung
JPH04246328A (ja) * 1991-01-31 1992-09-02 Shimadzu Corp 磁気共鳴イメージング装置
JPH0524005U (ja) * 1991-09-17 1993-03-30 株式会社日立製作所 Mrイメージング装置
JPH05344964A (ja) * 1992-06-15 1993-12-27 Toshiba Corp Ct装置
JP2774777B2 (ja) * 1994-11-25 1998-07-09 株式会社日立メディコ 磁気共鳴イメ−ジング装置
US5825563A (en) * 1995-09-12 1998-10-20 General Electric Company Mirror and support for use in a magnetic resonance imaging device
US5794621A (en) * 1995-11-03 1998-08-18 Massachusetts Institute Of Technology System and method for medical imaging utilizing a robotic device, and robotic device for use in medical imaging
JP2002336212A (ja) * 2001-04-27 2002-11-26 Ge Medical Systems Global Technology Co Llc 磁気共鳴撮影装置
JP2003052663A (ja) * 2001-08-08 2003-02-25 Hitachi Medical Corp 磁気共鳴イメージング装置
US6754520B2 (en) * 2001-10-19 2004-06-22 Koninklijke Philips Electronics N.V. Multimodality medical imaging system and method with patient handling assembly
DE10158313A1 (de) * 2001-11-28 2003-06-26 Siemens Ag Medizinisches Untersuchungsgerät mit optisch vergrößertem Innenraum
JP2004174930A (ja) * 2002-11-27 2004-06-24 Ricoh Co Ltd 樹脂反射鏡及びその製造方法
US20060074305A1 (en) * 2004-09-30 2006-04-06 Varian Medical Systems Technologies, Inc. Patient multimedia display

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102370483A (zh) * 2010-08-18 2012-03-14 西门子公司 医疗成像设备
US8750962B2 (en) 2010-08-18 2014-06-10 Siemens Aktiengesellschaft Medical imaging device
CN105793720A (zh) * 2013-09-30 2016-07-20 皇家飞利浦有限公司 用于创建环境经历的单元
CN105793720B (zh) * 2013-09-30 2020-03-17 皇家飞利浦有限公司 用于创建环境经历的单元
CN104840199A (zh) * 2015-06-02 2015-08-19 中国人民解放军南京军区南京总医院 核磁共振检查幽闭缓释装置
CN110025313A (zh) * 2019-04-01 2019-07-19 广东职业技术学院 一种核磁共振全方位体检仪

Also Published As

Publication number Publication date
WO2006051497A1 (en) 2006-05-18
JP2008519640A (ja) 2008-06-12
US20090082659A1 (en) 2009-03-26
CN100525704C (zh) 2009-08-12
EP1827225A1 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
CN100525704C (zh) 医疗检查设备
Juchem et al. Magnetic field modeling with a set of individual localized coils
JP7098539B2 (ja) 磁気共鳴イメージング
Lee et al. Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes
EP2409170B1 (en) A tesseral shim coil for a magnetic resonance system
Gaige et al. Three dimensional myoarchitecture of the human tongue determined in vivo by diffusion tensor imaging with tractography
US9149205B2 (en) Breast coil for use in magnetic resonance imaging
De Geeter et al. A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameters
Zijlema et al. Design and feasibility of a flexible, on-body, high impedance coil receive array for a 1.5 T MR-linac
Bencsik et al. Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis
Top et al. Trajectory analysis for field free line magnetic particle imaging
Vu et al. Machine learning-based prediction of MRI-induced power absorption in the tissue in patients with simplified deep brain stimulation lead models
Brynolfsson et al. Adapting a GE SIGNA PET/MR scanner for radiotherapy
Diao et al. Intercomparison of the averaged induced electric field in learning-based human head models exposed to low-frequency magnetic fields
McCann et al. Impact of skull sutures, spongiform bone distribution, and aging skull conductivities on the EEG forward and inverse problems
Hirata et al. High-resolution EEG source localization in personalized segmentation-free head model with multi-dipole fitting
Bencsik et al. Electric fields induced in a spherical volume conductor by temporally varying magnetic field gradients
Sadighi et al. Low-frequency conductivity tensor imaging with a single current injection using DT-MREIT
Kuratko et al. Forward model of rat electroencephalogram: comparative study of numerical simulations with measurements on rat head phantoms
EP3594707B1 (en) Method for designing gradient coils for mri systems and mri system comprising such gradient coils
Feldkamp et al. Coil geometry effects on scanning single-coil magnetic induction tomography
Talalwa et al. T 1-mapping and dielectric properties evaluation of a 3D printable rubber-elastomeric polymer as tissue mimicking materials for MRI phantoms
Li et al. Numerically‐simulated induced electric field and current density within a human model located close to az‐gradient coil
Moghadam et al. Studying the effects of metallic components of PET-insert on PET and MRI performance due to gradient switching
McGee et al. Evaluation of a new, highly flexible radiofrequency coil for MR simulation of patients undergoing external beam radiation therapy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090812

Termination date: 20091210