CN101050417A - 阀单元和具有该阀单元的装置 - Google Patents

阀单元和具有该阀单元的装置 Download PDF

Info

Publication number
CN101050417A
CN101050417A CNA2007100920511A CN200710092051A CN101050417A CN 101050417 A CN101050417 A CN 101050417A CN A2007100920511 A CNA2007100920511 A CN A2007100920511A CN 200710092051 A CN200710092051 A CN 200710092051A CN 101050417 A CN101050417 A CN 101050417A
Authority
CN
China
Prior art keywords
valve cell
stopper
phase change
change material
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100920511A
Other languages
English (en)
Other versions
CN101050417B (zh
Inventor
朴种勉
李廷健
赵允卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prischen Biosensor Co ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN101050417A publication Critical patent/CN101050417A/zh
Application granted granted Critical
Publication of CN101050417B publication Critical patent/CN101050417B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Abstract

阀单元和具有该阀单元的装置,所述阀单元包括塞子,该塞子包括在室温下处于固态的相变材料和分散在所述相变材料中的多个细微散热颗粒。分散在相变材料中的细微散热颗粒通过吸收由外部电磁波辐射产生的电磁波能而散热,并在通道形成的通路中堵塞流体流动。当外部能源将电磁波照射在塞子上时,该多个细微散热颗粒进行散热且相变材料发生融化,从而打开通路使得流体流动。

Description

阀单元和具有该阀单元的装置
本申请要求分别于2006年4月4日和2006年9月25日提交的韩国专利申请No.10-2006-0030496和10-2006-0092924的优先权,以及根据35U.S.C.§119所产生的所有权益,它们的全部内容通过引用而并入本文。
技术领域
本发明涉及在预定时间打开通道使得流体可沿着所述通道进行流动的阀单元,以及具有所述阀单元的装置。
背景技术
例如,在用于生化反应如聚合酶链式反应(“PCR”)中的晶片中形成包括形成流体通道的微通道的阀单元。所述晶片由玻璃或硅制成。所述阀单元关闭微通道使得生化流体无法流经所述微通道,并在一定时间上打开所述微通道以导致流体进行流动。
图1是常规阀单元10的平面图,其公开在Anal.Chem.Vol.76,pp.1824-1831,2004中。
参见图1,常规阀单元10包括形成流体(F)通道的微通道12、堵塞微通道12使得流体(F)无法流经微通道12的石蜡20和配置在与石蜡20相邻近并与微通道12的通道宽度相比具有扩展的通道宽度的蜡室15。在一定时间对石蜡20施加热量(H)使得流体(F)流动。当石蜡20融化和由于热量(H)微通道12开启时,处于非循环状态的流体(F)沿着在蜡室15底部示出的箭头方向流动(即,自上至下)。融化的石蜡20再次在蜡室15中凝固,且不干扰流体(F)的流动。
然而,在常规阀单元10中,需要大量时间通过加热来融化石蜡20。难以精确控制打开微通道12的时间,且用于融化石蜡20的加热单元必须直接配置在其上形成了微通道12的基底11上。例如,难以使阀单元10小型化。当在基底11上直接配置加热单元时,根据用于形成基底11的材料,在热传导率上存在差异,这导致在打开微通道12的精确度上存在差异。因此,当使用塑料来降低制备用于生化反应的晶片的制备成本时,塑料的热传导率远低于玻璃或硅晶片的热传导率。如此,打开微通道12的精确度降低。
发明内容
本发明提供了具有改进结构的阀单元和具有该阀单元的装置,在所述阀单元中可更迅速地打开通道。
根据本发明的示例性实施方式,阀单元包括:塞子,该塞子包括在室温下处于固态的相变材料和分散在所述相变材料中的多个细微散热颗粒,所述散热颗粒通过吸收外部电磁波辐射产生的电磁波能而散热并通过关闭由通道形成的通路而堵塞流体流动;和对所述塞子照射电磁波的外部能源,其中,电磁波从外面照射到所述塞子上,导致多个细微散热颗粒散热,并引起所述相变材料发生融化从而打开通路。
所述阀单元可进一步包含相变材料室,其配置在不干扰流体流动的位置,且在所述相变材料室中容纳融化的相变材料与混合于其中的所述细微散热颗粒。
所述相变材料室可形成在通道中并可比所述通道的宽度更宽(moreextended width)。
所述阀单元可进一步包含改变电磁波光路的光路改变单元,使得由外部能源发出的电磁波可直接照向塞子。
所述光路改变单元可包含至少一面镜子。
所述外部能源可包括照射激光束的激光源。
所述外部能源可包括激光二极管。
所述激光源发出的激光可为具有至少1mJ/脉冲能量的脉冲电磁波。
所述激光源发出的激光可为具有至少约10mW输出功率的连续电磁波。
所述激光源发出的激光可具有约750nm-约1300nm的波长。
所述细微散热颗粒可具有约1nm-约100μm的直径。
所述细微散热颗粒可分散在疏水载体油中。
所述细微散热颗粒可包括铁磁材料或金属氧化物。
所述金属氧化物可包括选自Al2O3、TiO2、Ta2O3、Fe2O3、Fe3O4和HfO2中的至少一种材料。
所述细微散热颗粒可具有选自聚合物、量子点和磁珠中至少一种颗粒形状。
所述磁珠包括选自Fe、Ni、Cr和其氧化物中的至少一种材料。
所述相变材料可为选自蜡、凝胶和热塑性树脂中的至少一种。
所述蜡可为选自石蜡、微晶蜡、合成蜡和天然蜡中的至少一种。
所述凝胶可为选自聚丙烯酰胺、聚丙烯酸酯、聚甲基丙烯酸酯和聚乙烯基酰胺中的至少一种。
所述热塑性树脂可为选自环烯烃共聚物(“COC”)、聚甲基丙烯酸甲酯(丙烯酸)(“PMMA”)、聚碳酸酯(“PC”)、聚苯乙烯(“PS”)、聚甲醛(乙缩醛)(“POM”)、全氟烷氧基(“PFA”)、聚氯乙烯醇(“PVC”)、聚丙烯(“PP”)、聚对苯二甲酸乙二酯(“PET”)、聚醚醚酮(“PEEK”)、聚酰胺(尼龙)(“PA”)、聚砜(“PSU”)或聚偏二氟乙烯(“PVDF”)中的至少一种。
所述基底可具有圆盘形状,所述通道可在所述基底的径向方向上进行伸展,且可通过旋转所述基底产生的离心力而在所述基底的径向朝外方向上抽吸(pump)所述生化流体。
在所述基底上可提供多个通道,每个通道具有反应室。
根据本发明的另一示例性实施方式,阀单元包括:塞子,该塞子包括在室温下处于固态的相变材料,所述塞子通过关闭由通道形成的通路而堵塞流体流动;和对所述塞子照射电磁波的外部能源,其中,电磁波从外面照射到塞子上,使得所述相变材料吸收来自所述电磁波的电磁波能并发生融化,从而打开通路。
根据本发明的另一示例性实施方式,阀单元包括:包括在室温下处于固态的相变材料并邻近流体流动通道配置的塞子;和在所述塞子上照射电磁波的外部能源,其中,当从外面将所述电磁波照射在所述塞子上时,所述相变材料吸收来自所述电磁波的电磁波能,发生融化并流入所述通道以阻塞流体流动。
根据本发明的另一示例性实施方式,阀单元包括:基底,在整个所述基底内形成的通道,配置在通道对面的塞子,所述塞子包括相变材料和分散在所述相变材料中的多个细微散热颗粒;和对所述塞子照射电磁波的外部能源,其中当所述电磁波从外面照射到所述塞子上时,所述多个细微散热颗粒散热且所述相变材料发生融化,所述塞子膨胀进入所述通道中,从而阻塞所述通道。
根据本发明的另一示例性实施方式,具有阀单元的装置包括:形成生化流体通路的通道,具有反应室的基底,在所述反应室中进行所述生化流体的生化反应,和在预定时间堵塞通路及打开通路的阀单元,其中所述阀单元包括:包括在室温下处于固态的相变材料并配置在所述通道对面的塞子,和对所述塞子照射电磁波的外部能源,其中,当从外面对所述塞子照射电磁波时,所述相变材料吸收来自所述电磁波的电磁波能并发生融化,阻塞所述通路以减小流经的流体。
附图说明
参考附图,通过更详细地描述本发明的示例性实施方式,本发明的上述及其他方面、特点和优点将更为明显,在附图中:
图1是常规阀单元的平面图;
图2是根据本发明的阀单元的示例性实施方式的剖视图;
图3是当关闭通道时图2所示的阀单元的基底的平面图;
图4是当开启所述通道时图2所示的阀单元的基底的平面图;
图5是当激光束照射到纯石蜡和包括通过激光照射散热的细微散热颗粒的石蜡时的熔点(温度)-时间关系曲线图;
图6是根据本发明的阀单元的另一示例性实施方式的剖视图;和
图7是具有根据本发明的示例性实施方式阀单元的装置的透视图。
具体实施方式
以下,参考附图,通过说明本发明的示例性实施方式将详细描述本发明。然而,本发明可以多种不同形式表现且不能认为仅限于这里所列举的示例性实施方式。相反地,提供这些实施方式以使得公开更为彻底和完全,且对本领域技术人员全面转达本发明的范围。在附图中,为了清楚起见,放大了层与区域的长度和尺寸。
可以理解,当元件或层称为在其他元件或层“之上”时,所述元件或层可直接在其他元件或层之上或中间插入元件或层。相反地,当元件称为“直接在其他元件或层“之上”时,则不存在插入的元件或层。相同的附图标记表示相同的元件。如这里所用,术语“和/或”包括一个或多个相关的所列项目的任意和所有组合。
可以理解,尽管这里可使用术语第一、第二、第三等描述不同的元件、组分、区域、层和/或部分,但这些元件、组分、区域、层和/或部分不应被这些术语所限制。这些术语仅仅用来区分一元件、组分、区域、层或部分与另一元件、组分、区域、层或部分。因此,下面讨论的第一元件、组分、区域、层或部分可被称为第二元件、组分、区域、层或部分,而并不脱离本发明的教导。
为了描述的方便,本文中可以使用空间上相关的术语如“之下(below)”、“底部的(lower)”等来描述一个元件或特征与另一元件或特征的关系,如附图所示。应当理解的是,空间上相关的术语意指包含装置在使用或操作时除图中所示方位之外的不同方位。例如,如果将图中装置翻转,描述为在其它元件或特征“之下”的元件此时应被定位为在其它元件或特征“之上(above)”。因此,例如,术语“之下”可以同时包含之上和之下的方位。该装置可以另外定位(旋转90度或者在其它方位观察或参照),并且应相应地解释本文中所使用的空间上相关的描述词。
本文所使用的术语是仅仅为了描述特定的实施方式,并不试图限制本发明。如本文中所使用的,单数形式的“一个”和“所述”意图也包括复数形式,除非文中另外清楚地指出。还应理解术语“包含”和/或“包括”当用于本文时,表示存在所述特征、整体、步骤、操作、元件、和/或组件,但是并不排除存在或添加一种或多种其它特征、整体、步骤、操作、元件、组件和/或其集合。
在此参考横截面图描述本发明,该横截面图是对本发明的理想化实施方式(和中间结构)的示意性说明。照这样,可以设想这些示意图形状由于例如制造方法和/或公差而引起的变化。因此,本发明不用理解为受限于本文中示出的特定的区域形状,而可以包括由于例如制造所引起的形状变化。
例如,图示为长方形的植入区(implanted region),通常在其边缘具有圆形或曲面特征和/或具有梯度(如植入浓度的梯度)而不是从植入区至非植入区双态变化(binary change)。同样,由植入形成的掩埋区可在介于掩埋区和穿过其可发生植入的表面之间的区域内引起某些植入。因此,图中所示的区域本身是示意性的,它们的形状不必示出装置的区域的实际形状,并且不意图限制本发明的范围。
除非另外定义,否则本文使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域的技术人员常规理解相同的含义。另外应当理解的是,诸如在常用辞典中所定义的那些术语应当被解释为具有与它们在相关领域的含义有一致的含义,并且不应当以理想化或过度正式的含义来解释,除非本文中这样清楚地定义。
图2是根据本发明的阀单元50A的示例性实施方式的剖视图。图3是当通道关闭时在图2所示的阀单元50A的基底的平面图,而图4是当通道打开时在图2所示的阀单元50A的基底的平面图。此外,图2是阀单元50A沿着图3的线i-i的剖视图。
参见图2-4,阀单元50A包括堵塞由通道55确定的通路的塞子60和激光源70,该激光源70为在塞子60上照射激光的外部能源的实例,发射照射塞子60的激光束。通道55形成在底部基底51中。例如,如图7中所示的,底部基底51可为装置100的基底110。底部基底51由透射激光的材料如透明玻璃形成,使得从配置在底部基底51外面的激光源70发出的激光可以入射到塞子60上。或者,可使用透明塑料材料,从而激光束可透过比玻璃更为廉价的透明塑料材料。
塞子60包括在室温处于固态的相变材料和均匀分散在相变材料中的多个细微分散颗粒。塞子60通过挤压紧靠通道55预定部分的内壁而堵塞通道,从而堵塞了流体(F)的流动。所述相变材料可为蜡。如果加热蜡,其融化并变成液态。如此,损坏了塞子60且通路被打开,使得流体(F)流动。塞子60的蜡可具有预定熔点。如果熔点过高,则从开始激光照射到蜡融化将花费很长时间。因此,难以精确控制打开通道55的时间。另一方面,如果熔点过低,则在激光没有照射到细微散热颗粒上时蜡就部分融化,从而流体(F)也可发生泄漏。所述蜡可为石蜡、微晶蜡、合成蜡或天然蜡。
所述相变材料可为凝胶或热塑性树脂。所述凝胶可为聚丙烯酰胺、聚丙烯酸酯、聚甲基丙烯酸酯或聚乙烯酰胺。此外,所述热塑性树脂可为环烯烃共聚物(“COC”)、聚甲基丙烯酸(丙烯酸)甲酯(“PMMA”)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚甲醛(乙缩醛)(POM)、全氟烷氧基(“PFA”)、聚乙烯醇(或聚乙酸乙烯酯)(“PVC”)、聚丙烯(“PP”)、聚对苯二甲酸乙二酯(“PET”)、聚醚醚酮(“PEEK”)、聚酰胺(尼龙)(“PA”)、聚砜(“PSU”)或聚偏二氟乙烯(“PVDF”)。
所述细微散热颗粒具有约1nm-约100nm的直径,使得它们可以自由地在宽度为数千微米(μm)的通道55的内部移动。如果电磁波如激光照射到细微散热颗粒上,由于电磁波的辐射能,所述细微散热颗粒的温度迅速升高使得均匀分散在蜡中的细微散热颗粒散热。所述细微散热颗粒具有包括金属组分的内核和疏水表面结构。例如,所述细微散热颗粒可具有包括由Fe形成的内核和多个表面活性剂的分子结构,所述表面活性剂与铁(Fe)结合并环绕Fe。通常,将所述细微散热颗粒分散在载体油中并保留在其中。所述载体油也可为疏水的以使得具有疏水表面结构的所述细微散热颗粒可均匀分散。将其中分散有所述细微散热颗粒的载体油倾倒入蜡中并与其混合,如此制备用于形成塞子60的材料。所述细微散热颗粒的形态并不限于上述实例中示出的聚合物,而可为量子点或磁珠。
图5是当激光照射到纯石蜡和包括通过激光照射散热的细微散热颗粒的石蜡上时的熔点(温度)-时间的关系曲线。
图5中实线表示的曲线是纯(100%)石蜡的温度曲线,而图5中虚线表示的曲线是含50%掺杂物(细微散热颗粒)的石蜡的温度曲线,其中分散有包括平均直径为10nm的细微散热颗粒的载体油和所述石蜡以1∶1的比例进行混合。图5中以链粗线表示的曲线是含20%掺杂物(细微散热颗粒)的石蜡的温度曲线,其中分散有包括平均直径为10nm的细微散热颗粒的载体油和所述石蜡以1∶4的比例进行混合。在本实验中使用波长为808nm的激光束。所述石蜡的熔点约为68-74℃。参见图5,在激光照射超过20秒后纯石蜡到达熔点(见(ii))。另一方面,在激光照射后,所述含50%掺杂物(细微散热颗粒)的石蜡和所述含20%掺杂物(细微散热颗粒)的石蜡被迅速加热并在激光照射约5秒后达到熔点(见(i))。
所述细微散热颗粒可包括铁磁材料如铁(Fe)、镍(Ni)、钴(Co)或其氧化物。此外,所述细微散热颗粒可包括金属氧化物如Al2O3、TiO2、Ta2O3、Fe2O3、Fe3O4或HfO2。使用磁铁可容易地调节包括所述铁磁材料的细微散热颗粒的位置。因此,如果将其中混合了蜡和细微散热颗粒的堵塞材料插入到通道55中,然后沿着通道55移动磁铁,同时封闭底部基底51外面的堵塞材料,则包括蜡的堵塞材料被吸引朝向磁铁并沿着通道55移动。使用该特性可以将塞子60定位于通道55的预定位置上。
激光源70可包括激光二极管。可使用发射至少具有能量为1mJ/脉冲的脉冲激光的激光源和用于发射至少具有输出功率为10mW的连续激光的激光源作为阀单元50A的激光源70。在图5所示的试验中,激光源70发射波长为808nm的激光束。然而,本发明并不限于该波长,且可使用发射波长为约750nm-约1300nm的激光束的激光源作为阀单元50A的激光源70。
阀单元50A还包括相变材料室65,当激光照射融化了所述蜡时在该相变材料室65中容纳融化蜡和与之相混合的细微散热颗粒,且通道55被打开。相变材料室65可沿着与塞子60相邻的通道55而形成并在通道55的内侧表面上延伸成阶梯形状(stepped shape)。因此,相变材料室65具有宽度W2,其比通道55的宽度W1延伸得更宽。
如图2所示,如果将激光源70发射的激光照射在塞子60上,分散在蜡中的细微散热颗粒因激光能量导致的温度快速升高而散发热量,而蜡由于该散发的热量被快速加热并快速融化。因此,破坏了塞子60,非循环流体(F)沿着通道55流动。所述蜡和其中分散的细微散热颗粒被容纳在相变材料室65中并再次固化。在图4中的附图标记61表示以上述方式在相变材料室65中再次固化的蜡和细微散热颗粒。
图6是根据本发明阀单元50B的另一示例性实施方式的剖视图。参见图6,和图2-4所示的阀单元50A相同,阀单元50B包括堵塞由通道55形成的流体通路的塞子60、将激光束照射到塞子60上的激光源70,和相变材料室65,在相变材料室65中,当流体通路打开时容纳蜡和分散于其中的细微散热颗粒。阀单元50B的激光源70没有直接对塞子60照射激光束。阀单元50B还包括改变所述激光束路径的光路改变单元,从而使得激光源70发出的激光可以朝向塞子。所述光路改变单元包括一对镜子72和74。由激光源70发射的激光束顺次被第一镜子72和第二镜子74反射,并透过底部基底51并入射到塞子60上。
激光源70的数量与塞子60的数量可不必彼此对应。例如,当在底部基底51中形成多个通道55时,可提供多个塞子60。即使在底部基底51中仅仅形成一个通道55,对该一个通道55也可提供多个塞子60。在这种情况下,如果配置预定的光路改变单元,则一个激光源70或少于塞子60的数量的多个激光源70可将激光照射到多个塞子60上。
图7是具有本发明的阀单元的装置100的示例性实施方式的透视图。参见图7,装置100包括盘状基底110、用于旋转基底110的主轴马达105和用于将激光束照射到基底110上的激光源125。基底110对应于图2-4所示的底部基底51。基底110包括用于形成流体通路的多个通道112(显示了两个)和沿每个通道112的区域配置的反应室115。在反应室115中进行流体的反应。每个通道112在基底110的径向方向上延伸,在靠近基底110中心的每个通道112的一端配置进口117,且在靠近基底110圆周区域的每个通道112的另一端配置流体出口119。通过基底110旋转产生的离心力,将通过进口117流入通道112的流体在基底110的圆周方向上,即在朝向出口119的方向上抽吸。在图7中显示了一对通道112。然而,这仅仅是一个实例,在其他可替代的示例性实施方式中可提供三个或多个通道或仅仅一个通道。
将用于堵塞流体流动的塞子121在基底110的位置上配置在每个通道112中,在该位置上照射激光源125发射出的激光。塞子121对应于图2-4所示的塞子60。塞子121和激光源125构成本发明的阀单元120。阀单元120对应于图2-4所示的阀单元50A,因此,省略了对阀单元50A的塞子121和激光源125的详细说明。
尽管没有显示,还可对通道112配置其中容纳了融化蜡和混合在其中的细微散热颗粒的相变材料室(65,见图2-4)。此外,例如还可配置包括镜子72和74(见图6)的光路改变单元,以使得可将一个激光源125发出的激光束照射到配置在基底110上的多个塞子121上。
本发明也包括通过融化并因此膨胀由相变材料(有或者没有细微散热颗粒)形成的塞子而关闭通路的阀单元和使用它们的装置。在该装置中,所述塞子可膨胀到通道中并因此堵塞通过该通道的流体流动。本领域的技术人员可认识到,所述塞子可具有打开、关闭或部分阻塞通道的各种其他用法,所有的这些均在本发明的范围内。
同时,本发明还包括通过将电磁波照射到仅仅由相变材料(不包括细微散热颗粒)形成的塞子上使塞子发生融化而用于打开通路的阀单元,和具有该阀单元的装置。
如上所述,在根据本发明的示例性实施方式的阀单元中,与具有仅仅包括蜡的塞子的常规阀单元相比,打开通道的响应速度更快,从而可精确控制用于打开通道的时间。另外,在具有根据本发明示例性实施方式的阀单元的装置中,用于加热蜡的单元并不包括在所述基底中,从而使得基底可制造得更小。
此外,在根据本发明示例性实施方式的阀单元中,相对于多个塞子而提供了数量少于所述塞子的多个激光源,从而可降低所述阀单元和具有所述阀单元的装置的制造成本。
虽然已参考示例性实施方式对本发明进行了具体显示和描述,但本领域的技术人员可以理解,可在形式和细节上做出多种改变,而并不脱离如下权利要求所定义的本发明的精神和范围。

Claims (47)

1.阀单元,其包括:
基底;
在所述基底中形成的通道;
塞子,当所述塞子在室温下处于固态时堵塞由所述通道确定的通路,从而关闭在所述通道中的流体通路,所述塞子包括相变材料和分散在所述相变材料中的多个细微散热颗粒;和
对所述塞子照射电磁波的外部能源,
其中,当所述电磁波从外面照射在塞子上时,所述多个细微散热颗粒散热且所述相变材料发生融化,从而打开所述通路,允许所述流体流动。
2.权利要求1的所述阀单元,其进一步包含配置在不干扰流体流动的位置上的相变材料室,且在所述相变材料室中容纳所述融化的相变材料和其中混合的所述细微散热颗粒。
3.权利要求2的所述阀单元,其中所述相变材料室形成于所述通道中并比所述通道的宽度更宽。
4.权利要求1的所述阀单元,其进一步包含光路改变单元,所述光路改变单元改变电磁波光路以指引所述外部能源发出的电磁波朝向所述塞子。
5.权利要求4的所述阀单元,其中所述光路改变单元包括至少一面镜子。
6.权利要求1的所述阀单元,其中所述外部能源包括发射激光束的激光源。
7.权利要求6的所述阀单元,其中所述激光源包括激光二极管。
8.权利要求6的所述阀单元,其中由所述激光源发射的激光束是具有至少1mJ/脉冲能量的脉冲电磁波。
9.权利要求6的所述阀单元,其中由所述激光源发射的所述激光是具有至少为10mW输出功率的连续电磁波。
10.权利要求6的所述阀单元,其中由所述激光源发射的激光束具有约750nm-约1300nm的波长。
11.权利要求1的所述阀单元,其中所述细微散热颗粒具有约1nm-100μm的直径。
12.权利要求11的所述阀单元,其中所述细微散热颗粒分散在疏水性载体油中。
13.权利要求1的所述阀单元,其中所述细微散热颗粒包括铁磁材料或金属氧化物。
14.权利要求13的所述阀单元,其中所述金属氧化物包括选自Al2O3、TiO2、Ta2O3、Fe2O3、Fe3O4和HfO2中的至少一种材料。
15.权利要求1的所述阀单元,其中所述细微散热颗粒具有选自聚合物、量子点和磁珠中的至少一种颗粒形状。
16.权利要求15的所述阀单元,其中所述磁珠包括选自Fe、Ni、Cr及其氧化物中的至少一种材料。
17.权利要求1的所述阀单元,其中所述相变材料是选自蜡、凝胶和热塑性树脂中的至少一种材料。
18.权利要求17的所述阀单元,其中所述蜡是选自石蜡、微晶蜡、合成蜡和天然蜡中的至少一种。
19.权利要求17的所述阀单元,其中所述凝胶是选自聚丙烯酰胺、聚丙烯酸酯、聚甲基丙烯酸酯和聚乙烯酰胺中的至少一种。
20.权利要求17的所述阀单元,其中所述热塑性树脂是选自环烯烃共聚物(COC)、聚甲基丙烯酸(丙烯酸)甲酯(PMMA)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚甲醛(乙缩醛)(POM)、全氟烷氧基(PFA)、聚氯乙烯(PVC)、聚丙烯(PP)、聚对苯二甲酸乙二酯(PET)、聚醚醚酮(PEEK)、聚酰胺(PA)、聚砜(PSU)和聚偏二氟乙烯(PVDF)中的至少一种。
21.具有阀单元的装置,所述装置包括:
具有反应室的基底,在该反应室中进行生化流体的生化反应;
在所述基底中形成的确定所述流体通路的通道;和
在预定时间堵塞所述通路和打开所述通路的阀单元,其中所述阀单元包括:
塞子,当所述塞子在室温下处于固态时堵塞由所述通道确定的通路,从而关闭在所述通道中的流体通路,所述塞子包括相变材料和分散在所述相变材料中的多个细微散热颗粒;和
对所述塞子照射电磁波的外部能源,
其中,当所述电磁波从外面照射到所述塞子上时,所述多个细微散热颗粒散热且所述相变材料发生融化,从而打开所述通路,允许所述流体进行流动。
22.权利要求21的所述装置,其中所述阀单元进一步包含配置在不干扰流体流动的位置上的相变材料室,和在所述相变材料室中容纳有所述融化的相变材料和其中混合的所述细微散热颗粒。
23.权利要求22的所述装置,其中所述相变材料室形成在所述通道中并比所述通道的宽度更宽。
24.权利要求21的所述装置,其中所述阀单元进一步包含光路改变单元,所述光路改变单元改变电磁波光路以指引所述外部能源发出的电磁波朝向所述塞子。
25.权利要求24的所述装置,其中所述光路改变单元包括至少一面镜子。
26.权利要求21的所述装置,其中所述外部能源包括发射激光束的激光源。
27.权利要求26的所述装置,其中所述激光源包括激光二极管。
28.权利要求26的所述装置,其中由所述激光源发射的激光束是具有至少1mJ/脉冲能量的脉冲电磁波。
29.权利要求26的所述装置,其中由所述激光源发射的所述激光束是具有至少为10mW输出功率的连续电磁波。
30.权利要求26的所述装置,其中由所述激光源发射的激光具有约750nm-约1300nm的波长。
31.权利要求21的所述装置,其中所述细微散热颗粒具有约1nm-100μm的直径。
32.权利要求21的所述装置,其中所述细微散热颗粒分散在疏水性载体油中。
33.权利要求21的所述装置,其中所述细微散热颗粒包括铁磁材料或金属氧化物。
34.权利要求33的所述装置,其中所述金属氧化物包括选自Al2O3、TiO2、Ta2O3、Fe2O3、Fe3O4和HfO2中的至少一种材料。
35.权利要求21的所述装置,其中所述细微散热颗粒具有选自聚合物、量子点和磁珠中的至少一种颗粒形状。
36.权利要求35的所述装置,其中所述磁珠包括选自Fe、Ni、Cr及其氧化物中的至少一种材料。
37.权利要求21的所述装置,其中所述相变材料是选自蜡、凝胶和热塑性树脂中的至少一种材料。
38.权利要求37的所述装置,其中所述蜡是选自石蜡、微晶蜡、合成蜡和天然蜡中的至少一种。
39.权利要求37的所述装置,其中所述凝胶是选自聚丙烯酰胺、聚丙烯酸酯、聚甲基丙烯酸酯和聚乙烯酰胺中的至少一种。
40.权利要求37的所述装置,其中所述热塑性树脂是选自环烯烃共聚物(COC)、聚甲基丙烯酸(丙烯酸)甲酯(PMMA)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚甲醛(乙缩醛)(POM)、全氟烷氧基(PFA)、聚氯乙烯(PVC)、聚丙烯(PP)、聚对苯二甲酸乙二酯(PET)、聚醚醚酮(PEEK)、聚酰胺(PA)、聚砜(PSU)和聚偏二氟乙烯(PVDF)中的至少一种。
41.权利要求21的所述装置,其中所述基底具有圆盘形状,所述通道在所述基底的径向上伸展,并通过旋转所述基底产生的离心力在所述基底的径向朝外的方向上抽吸所述生化流体。
42.权利要求21的所述装置,其中在所述基底上提供了各自具有反应室的多个通道。
43.阀单元,其包括:
塞子,其包括在室温下处于固态的相变材料,所述塞子堵塞通道形成的流体通路;和
对所述塞子照射电磁波的外部能源,
其中,当从外面将所述电磁波照射到所述塞子上时,所述相变材料从所述电磁波中吸收电磁波能并发生融化,从而打开所述通路,允许流体流动。
44.具有阀单元的装置,所述装置包括:
形成生化流体通路的通道;
具有反应室的基底,在该反应室中进行生化流体的生化反应;和
在预定时间堵塞所述通路和打开所述通路的阀单元,其中所述阀单元包括:
塞子,其包括在室温下处于固态的相变材料,所述塞子堵塞通道形成的流体通路;和
对所述塞子照射电磁波的外部能源,
其中,当从外面将所述电磁波照射到所述塞子上时,所述相变材料从所述电磁波中吸收电磁波能并发生融化,从而打开所述通路,允许流体流动。
45.阀单元,其包括:
塞子,其邻近流体流动通道放置并包括在室温下处于固态的相变材料;和
对所述塞子照射电磁波的外部能源,
其中,当从外面将所述电磁波照射到所述塞子上时,所述相变材料从所述电磁波中吸收电磁波能,发生融化,并流入通道,以阻塞流体流动。
46.阀单元,其包括:
基底;
在整个所述基底中形成的通道;
配置在所述通道对面的塞子,所述塞子包括相变材料和分散在所述相变材料中的多个细微散热颗粒;和
对所述塞子照射电磁波的外部能源,
其中,当从外面将所述电磁波照射到所述塞子上时,所述多个细微散热颗粒散热,且所述相变材料发生融化,所述塞子膨胀进入所述通道,从而阻塞该通道。
47.具有阀单元的装置,所述装置包括:
形成生化流体通路的通道;
具有反应室的基底,在该反应室中进行生化流体的生化反应;和
在预定时间堵塞和打开所述通路的阀单元,
其中所述阀单元包括:
配置在所述通道对面的包括在室温下处于固态的相变材料的塞子;和
对所述塞子照射电磁波的外部能源,
其中,当从外面将所述电磁波照射到所述塞子上时,所述相变材料从所述电磁波中吸收电磁波能并发生融化,阻塞所述通路以减小流经的流体。
CN2007100920511A 2006-04-04 2007-04-04 阀单元和具有该阀单元的装置 Active CN101050417B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20060030496 2006-04-04
KR30496/06 2006-04-04
KR92924/06 2006-09-25
KR1020060092924A KR100763922B1 (ko) 2006-04-04 2006-09-25 밸브 유닛 및 이를 구비한 장치

Publications (2)

Publication Number Publication Date
CN101050417A true CN101050417A (zh) 2007-10-10
CN101050417B CN101050417B (zh) 2013-07-10

Family

ID=38782017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100920511A Active CN101050417B (zh) 2006-04-04 2007-04-04 阀单元和具有该阀单元的装置

Country Status (2)

Country Link
KR (1) KR100763922B1 (zh)
CN (1) CN101050417B (zh)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126465B (zh) * 2006-08-16 2011-08-24 三星电子株式会社 阀单元,具有该阀单元的反应装置以及在通道中形成阀的方法
CN102782246A (zh) * 2010-03-05 2012-11-14 贝克休斯公司 流量控制装置和方法
CN102059161B (zh) * 2009-11-18 2013-04-10 中国科学院化学研究所 一种微流控芯片及其制备方法
US9022107B2 (en) 2009-12-08 2015-05-05 Baker Hughes Incorporated Dissolvable tool
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
CN104896191A (zh) * 2015-05-08 2015-09-09 沈阳航空航天大学 一种可重复使用的石蜡阀
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US9267347B2 (en) 2009-12-08 2016-02-23 Baker Huges Incorporated Dissolvable tool
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
CN105806507A (zh) * 2016-04-15 2016-07-27 深圳九星印刷包装集团有限公司 指示装置
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CN108414135A (zh) * 2018-01-30 2018-08-17 哈尔滨工业大学 一种防泄漏的高温流场压力测量装置
CN108591610A (zh) * 2018-04-27 2018-09-28 湖南乐准智芯生物科技有限公司 一种微流控系统及微阀、控制方法
US10092953B2 (en) 2011-07-29 2018-10-09 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
CN108843855A (zh) * 2018-08-31 2018-11-20 湖南乐准智芯生物科技有限公司 一种微流控系统及常闭微阀、控制方法
CN109181173A (zh) * 2018-08-20 2019-01-11 苏州阿德旺斯新材料有限公司 一种相变控温材料载体的制备方法及其负载相变控温材料的方法
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
CN109553980A (zh) * 2018-12-29 2019-04-02 西安交通大学 一种基于磁性颗粒掺杂温敏大变形材料及制备方法
US10335858B2 (en) 2011-04-28 2019-07-02 Baker Hughes, A Ge Company, Llc Method of making and using a functionally gradient composite tool
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
CN114192202A (zh) * 2021-12-09 2022-03-18 中国农业大学 一种应用于微流控芯片的便携式磁珠自动化混合模块
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101578149B1 (ko) 2009-01-29 2015-12-17 삼성전자주식회사 미세유체 제어용 밸브 유닛, 및 이의 제조방법
KR20200009859A (ko) 2018-07-20 2020-01-30 재단법인대구경북과학기술원 원심 밸브 제어 장치
KR102332987B1 (ko) 2018-07-20 2021-12-01 재단법인대구경북과학기술원 원심 밸브 제어 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063589A (en) * 1997-05-23 2000-05-16 Gamera Bioscience Corporation Devices and methods for using centripetal acceleration to drive fluid movement on a microfluidics system
US6375901B1 (en) 1998-06-29 2002-04-23 Agilent Technologies, Inc. Chemico-mechanical microvalve and devices comprising the same
JP3548858B2 (ja) 2001-01-22 2004-07-28 独立行政法人産業技術総合研究所 流量の制御方法及びそれに用いるマイクロバルブ
US6575188B2 (en) * 2001-07-26 2003-06-10 Handylab, Inc. Methods and systems for fluid control in microfluidic devices
US20030156991A1 (en) * 2001-10-23 2003-08-21 William Marsh Rice University Optomechanically-responsive materials for use as light-activated actuators and valves
KR100442836B1 (ko) * 2001-11-10 2004-08-02 삼성전자주식회사 생화학 유체를 온도가 다른 폐쇄된 챔버 구간을 따라 회전이동시키는 폐쇄 유체 회로 시스템

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
CN101126465B (zh) * 2006-08-16 2011-08-24 三星电子株式会社 阀单元,具有该阀单元的反应装置以及在通道中形成阀的方法
CN102059161B (zh) * 2009-11-18 2013-04-10 中国科学院化学研究所 一种微流控芯片及其制备方法
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US10669797B2 (en) 2009-12-08 2020-06-02 Baker Hughes, A Ge Company, Llc Tool configured to dissolve in a selected subsurface environment
US9267347B2 (en) 2009-12-08 2016-02-23 Baker Huges Incorporated Dissolvable tool
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US9022107B2 (en) 2009-12-08 2015-05-05 Baker Hughes Incorporated Dissolvable tool
CN102782246A (zh) * 2010-03-05 2012-11-14 贝克休斯公司 流量控制装置和方法
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US9631138B2 (en) 2011-04-28 2017-04-25 Baker Hughes Incorporated Functionally gradient composite article
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US10335858B2 (en) 2011-04-28 2019-07-02 Baker Hughes, A Ge Company, Llc Method of making and using a functionally gradient composite tool
US9926763B2 (en) 2011-06-17 2018-03-27 Baker Hughes, A Ge Company, Llc Corrodible downhole article and method of removing the article from downhole environment
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US10697266B2 (en) 2011-07-22 2020-06-30 Baker Hughes, A Ge Company, Llc Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US10092953B2 (en) 2011-07-29 2018-10-09 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9925589B2 (en) 2011-08-30 2018-03-27 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US11090719B2 (en) 2011-08-30 2021-08-17 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US9802250B2 (en) 2011-08-30 2017-10-31 Baker Hughes Magnesium alloy powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US10737321B2 (en) 2011-08-30 2020-08-11 Baker Hughes, A Ge Company, Llc Magnesium alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US10612659B2 (en) 2012-05-08 2020-04-07 Baker Hughes Oilfield Operations, Llc Disintegrable and conformable metallic seal, and method of making the same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US11613952B2 (en) 2014-02-21 2023-03-28 Terves, Llc Fluid activated disintegrating metal system
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
CN104896191A (zh) * 2015-05-08 2015-09-09 沈阳航空航天大学 一种可重复使用的石蜡阀
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CN105806507A (zh) * 2016-04-15 2016-07-27 深圳九星印刷包装集团有限公司 指示装置
CN105806507B (zh) * 2016-04-15 2018-11-23 深圳九星印刷包装集团有限公司 指示装置
US11898223B2 (en) 2017-07-27 2024-02-13 Terves, Llc Degradable metal matrix composite
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite
CN108414135B (zh) * 2018-01-30 2019-02-26 哈尔滨工业大学 一种防泄漏的高温流场压力测量装置
CN108414135A (zh) * 2018-01-30 2018-08-17 哈尔滨工业大学 一种防泄漏的高温流场压力测量装置
CN108591610B (zh) * 2018-04-27 2024-04-23 湖南乐准智芯生物科技有限公司 一种微流控系统及微阀、控制方法
CN108591610A (zh) * 2018-04-27 2018-09-28 湖南乐准智芯生物科技有限公司 一种微流控系统及微阀、控制方法
CN109181173B (zh) * 2018-08-20 2021-01-15 苏州阿德旺斯新材料有限公司 一种相变控温材料载体的制备方法及其负载相变控温材料的方法
CN109181173A (zh) * 2018-08-20 2019-01-11 苏州阿德旺斯新材料有限公司 一种相变控温材料载体的制备方法及其负载相变控温材料的方法
CN108843855A (zh) * 2018-08-31 2018-11-20 湖南乐准智芯生物科技有限公司 一种微流控系统及常闭微阀、控制方法
CN108843855B (zh) * 2018-08-31 2024-03-12 湖南乐准智芯生物科技有限公司 一种微流控系统及常闭微阀、控制方法
CN109553980A (zh) * 2018-12-29 2019-04-02 西安交通大学 一种基于磁性颗粒掺杂温敏大变形材料及制备方法
CN114192202B (zh) * 2021-12-09 2022-09-06 中国农业大学 一种应用于微流控芯片的便携式磁珠自动化混合模块
CN114192202A (zh) * 2021-12-09 2022-03-18 中国农业大学 一种应用于微流控芯片的便携式磁珠自动化混合模块

Also Published As

Publication number Publication date
CN101050417B (zh) 2013-07-10
KR100763922B1 (ko) 2007-10-05

Similar Documents

Publication Publication Date Title
CN101050417A (zh) 阀单元和具有该阀单元的装置
US8920753B2 (en) Valve unit and apparatus having the same
US9057456B2 (en) Microfluidic device, light irradiation apparatus, micorfluidic system comprising the same and method for driving the system
US9011795B2 (en) Valve unit, microfluidic device with the valve unit, and microfluidic substrate
KR101258434B1 (ko) 미세유동 시스템 및,이의 제조방법
US8191715B2 (en) Centrifugal force-based microfluidic device and microfluidic system including the same
JP5539615B2 (ja) 弁閉鎖ユニット及びそれを備えた反応装置
US9101935B2 (en) Microfluidic apparatus and control method thereof
EP1905515A2 (en) Centrifugal Force Based Microfluidic Device Having Thermal Activation Unit, Microfluidic System Including the Same and Method of Operating the Microfluidic System
JP5600180B2 (ja) バルブユニット、これを備えた微細流動装置及びバルブユニットの駆動方法
US20080193336A1 (en) Centrifugal force based microfluidic device for dilution and microfluidic system including the same
US20080042096A1 (en) Valve unit, reaction apparatus with the same, and method of forming valve in channel
KR100763924B1 (ko) 밸브 유닛, 이를 구비한 반응 장치 및, 채널에 밸브를형성하는 방법
KR100763923B1 (ko) 폐쇄밸브 유닛 및 이를 구비한 반응장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220913

Address after: Daejeon

Patentee after: Prischen biosensor Co.,Ltd.

Address before: Gyeonggi Do, South Korea

Patentee before: SAMSUNG ELECTRONICS Co.,Ltd.