CN101019247A - 压电执行元件 - Google Patents

压电执行元件 Download PDF

Info

Publication number
CN101019247A
CN101019247A CN 200580030714 CN200580030714A CN101019247A CN 101019247 A CN101019247 A CN 101019247A CN 200580030714 CN200580030714 CN 200580030714 CN 200580030714 A CN200580030714 A CN 200580030714A CN 101019247 A CN101019247 A CN 101019247A
Authority
CN
China
Prior art keywords
piezoelectric
actuator
temperature
displacement
cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200580030714
Other languages
English (en)
Other versions
CN100511746C (zh
Inventor
长屋年厚
野野山龙彦
中村雅也
斋藤康善
高尾尚史
本间隆彦
鹰取一雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of CN101019247A publication Critical patent/CN101019247A/zh
Application granted granted Critical
Publication of CN100511746C publication Critical patent/CN100511746C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

一种具有在压电陶瓷的表面形成一对电极而构成的压电元件(2)作为驱动源的压电执行元件(1)。压电执行元件(1)满足下述要件(a)~(c)中的至少一个要件。(a)表观动态电容C[F]的随温度变化产生的波动幅WC在-30℃~80℃的特定温度范围内为±11%以内、(b)位移L[μm]的随温度变化产生的波动幅WL在-30℃~80℃的特定温度范围内为±14%以内、(c)表观动态电容设为C[F]、位移设为L[μm]时,L/C的随温度变化产生的波动幅WL/C在-30℃~80℃的特定温度范围内为±12%以内。

Description

压电执行元件
技术领域
本发明涉及利用了大电场中的反压电效应以及电致伸缩效应的层叠执行元件、压电变压器、超声波发动机、双压电晶片压电元件、超声波声纳、压电超声波振动器、压电蜂鸣器、压电扬声器等的压电执行元件。
背景技术
利用了压电陶瓷材料的压电执行元件是利用反压电效应引起的位移将电能转化为机械能的产品,被广泛地应用在电子和机电领域。
作为上述压电执行元件使用的压电陶瓷,已经知道例如Pb(Zr·Ti)O3系(以下称其为“PZT系”)、BaTiO3等。PZT系的压电陶瓷与其它压电陶瓷相比,具有高的压电特性,占目前已经实用化的压电陶瓷的大部分。但是,由于含有蒸气压较高的氧化铅(PbO),因此存在对环境的负荷大的问题。另一方面,BaTiO3陶瓷尽管不含铅,但是与PZT相比,压电特性较低,而且居里温度低到约120℃,因此存在不能在高温下使用的问题。
上述压电执行元件一般至少由设置了1对电极的压电陶瓷的压电元件和保持该压电元件的保持部件、在该保持部件上保持上述压电元件的粘接构件或弹簧等压接构件、用于对上述压电元件外加电压的引线端子、以及被覆在上述1对电极之间的树脂或硅油等电绝缘构件构成。在上述压电执行元件中,压电陶瓷构成的压电元件通过粘接或浇铸或者弹簧等被压接,因此在不进行外加电压的状态下已经受到机械的拘束力(预设定负荷)。而且,在上述压电执行元件中,对该压电执行元件外加电压时,伴随电压上升,压电元件产生位移,因此上述的机械拘束力增向(负荷升高)。
因此,上述压电执行元件的位移由于预设定负荷和负荷上升,与压电元件本身的位移性能出现不同,而成为更小的值。
上述压电执行元件的使用条件以及驱动条件中具有温度、驱动电场强度、驱动波形、驱动频率、连续驱动或间歇驱动等参数。作为上述压电执行元件的一般的使用温度范围,在通常的生活环境使用的场合,最大为-30℃~80℃左右,作为汽车部件使用的场合,最大为-40℃~160℃左右。并且,驱动电场强度的振幅根据压电执行元件的用途的不同有所差异,在压电蜂鸣器、超声波声纳、压电扬声器等中为500V/mm以下,在超声波发动机、压电变压器、压电超声波振动器等中为1000V/mm以下,在层叠执行元件中为3000V/mm以下。另外,驱动波形在共振驱动的场合为正弦(sin)波,除此以外的场合为sin波、梯形波、三角形波、矩形波、脉冲波等各种波形。此外,关于驱动频率,超声波发动机、超声波声纳、压电超声波振动器等为20kHz以上,除此以外为不足20kHz。
上述压电执行元件的驱动方式可分类为:(1)以电压作为参数来控制位移以进行驱动的恒电压驱动法、(2)以注入能量作为参数来控制位移以进行驱动的恒能量驱动法、以及(3)以注入电荷作为参数来控制位移以进行驱动的恒电荷驱动法。
在此,就各驱动法与压电执行元件的位移的关系,进行说明。
对于采用上述恒电压驱动法的压电执行元件的驱动方式,具有下述特征:在外加电压上升时和下降时的位移具有磁滞。在该恒电压驱动法中,存在使用温度范围内的位移的波动幅较大的问题。
另外,对于采用上述恒能量驱动法的压电执行元件的驱动方式,具有下述特征:在注入能量上升时和下降时的位移具有磁滞。在该恒能量驱动法中,使用温度范围内的位移的波动幅与上述恒电压驱动法相比较小。
另一方面,对于采用恒电荷驱动法的执行元件的驱动方式,由于在注入电荷上升时和下降时的位移差几乎为0,因此在能够实现最精密的位移控制这一点上占优。但是存在的问题是:使用温度范围内的位移的波动幅比上述恒电压驱动法和上述恒能量驱动法大。
因此,作为减小压电执行元件和压电陶瓷传感器的温度特性的波动幅的方法,已经开发例如以下的技术。
即,在特开昭60-1877号公报中公开了下述压电体:将压电单元的外加电压时的输出的位移相对于温度变化呈增函数变化的压电单元、与呈减函数变化的压电单元组合并进行层叠的压电体。
另外,在特开平6-232465号公报中,公开了将位移性能不同的多个压电陶瓷层进行层叠的层叠型压电执行元件。
在特开平5-284600号公报中,公开了将温度补偿用电容器与压电陶瓷串联或并联电连接的压电元件。
在特开平7-79022号公报中公开了一种根据压力而产生电荷的压电元件,该压电元件由下述材料构成:交替地层叠压电体层和电介体层,电介体层的静电电容大于压电层的静电电容,且电介体层的温度系数具有与压电层的温度系数相反的特性。
在特开平7-79023号公报中公开了一种根据压力而产生电荷的压电元件,其中,将压电体材料和具有与压电体材料相反的温度特性而静电电容发生变化的电介体材料进行混合后成形而得到压电元件。
此外,在特开平11-180766号公报中公开了钛酸钡系压电陶瓷,该压电陶瓷是用共振法测定的压电d33常数为300pC/N以上、且于-30℃~85℃的压电d33的温度变化率小的组成物。
在特开2003-128460号公报中公开了钛酸钡系的以Ni为内部电极的层叠型压电元件,其中,从外加1kV/mm的电场强度时的元件的应变率计算的压电d31常数的温度变化率小。
然而,在这些以前的技术中也不能充分解决由于温度变化引起的压电执行元件的位移特性等的波动。
发明内容
本发明是鉴于从前的问题而提出的,旨在提供一种与压电执行元件的驱动方式无关的、位移的温度依存性能够减小的压电执行元件。
第1发明是一种压电执行元件,其具有在压电陶瓷的表面形成1对电极而构成的压电元件作为驱动源,其特征在于:对上述压电执行元件外加电压,以电场强度为100V/mm以上的具有恒定振幅的电场驱动条件使其驱动的场合,上述压电执行元件满足下述要件(a)~(c)中的至少一个要件(权利要求第1项)。
(a)下述式(1)表示的表观动态电容C[F]的随温度变化产生的波动幅WC[%]在-30℃~80℃的特定温度范围内为±11%以内(其中,C[F]为该压电执行元件的表观动态电容,当该压电执行元件与电容器串联连接,并对该压电执行元件以及该电容器外加电压时,C[F]可通过用该电容器中积蓄的电荷量Q[C]除以外加到该压电执行元件上的电压V[V]而算出)。
WC(%)=[{2×Cmax/(Cmax+Cmin)}-1]×100(1)
(其中,Cmax表示在-30℃~80℃的表观动态电容的最大值,Cmin表示在-30℃~80℃的表观动态电容的最小值)。
(b)下述式(2)表示的位移L[μm]的随温度变化产生的波动幅WL[%]在-30℃~80℃的特定温度范围内为±14%以内(其中,L[μm]为该压电执行元件的位移)。
WL[%]=[{2×Lmax/(Lmax+Lmin)}-1]×100(2)
(其中,Lmax表示在-30℃~80℃的位移的最大值,Lmin表示在-30℃~80℃的位移的最小值)。
(c)下述式(3)表示的L/C的随温度变化产生的波动幅WL/C(%)在-30℃~80℃的特定温度范围内为±12%以内(其中,C[F]为该压电执行元件的表观动态电容,L[μm]为该压电执行元件的位移,当该压电执行元件与电容器串联连接,并对该压电执行元件以及该电容器外加电压时,该C[F]可通过用该电容器中积蓄的电荷量Q[C]除以外加到该压电执行元件上的电压V[V]而算出)。
WL/C[%]=[{2×(L/C)max/((L/C)max+(L/C)min)}-1]×100(3)
(其中,(L/C)max表示在-30℃~80℃的L/C的最大值,(L/C)min表示在-30℃~80℃的L/C的最小值)。
另外,第2发明是一种电执行元件,其具有在压电陶瓷的表面形成1对电极而构成的压电元件作为驱动源,其特征在于:对上述压电执行元件外加电压,以电场强度为100V/mm以上的具有恒定振幅的电场驱动条件使其驱动的场合,上述压电执行元件满足下述要件(j)~(l)中的至少一个要件(权利要求第10项)。
(j)下述式(5)表示的表观动态电容C[F]的随温度变化产生的波动幅WC[%]在-30℃~160℃的特定温度范围内为±30%以内(其中,C[F]为该压电执行元件的表观动态电容,当该压电执行元件与电容器串联连接、并对该压电执行元件以及该电容器外加电压时,C[F]可通过用该电容器中积蓄的电荷量Q[C]除以外加到该压电执行元件上的电压V[V]而算出)。
WC(%)=[{2×Cmax/(Cmax+Cmin)}-1]×100(5)
(其中,Cmax表示在-30℃~160℃的表观动态电容的最大值,Cmin表示在-30℃~160℃的表观动态电容的最小值)。
(k)下述式(6)表示的位移L[μm]的随温度变化产生的波动幅WL[%]在-30℃~160℃的特定温度范围内为±14%以内(其中,L[μm]为该压电执行元件的位移)。
WL[%]=[{2×Lmax/(Lmax+Lmin)}-1]×100(6)
(其中,Lmax表示在-30℃~160℃的位移的最大值,Lmin表示在-30℃~160℃的位移的最小值)。
(1)下述式(7)表示的L/C的随温度变化产生的波动幅WL/C(%)在-30℃~160℃的特定温度范围内为±35%以内(其中,C[F]为该压电执行元件的表观动态电容,L[μm]为该压电执行元件的位移,当该压电执行元件与电容呈串联连接,并对该压电执行元件以及该电容器外加电压时,该C[F]可通过用该电容器中积蓄的电荷量Q[C]除以外加到该压电执行元件上的电压V[V]而算出)。
WL/C[%]=[{2×(L/C)max/((L/C)max+(L/C)min)}-1]×100(7)
(其中,(L/C)max表示在-30℃~160℃的L/C的最大值,(L/C)min表示在-30℃~160℃的L/C的最小值)。
上述第1发明的压电执行元件,满足上述要件(a)~(c)中的至少一个要件。即,在上述第1发明的压电执行元件中,上述表观动态电容C的随温度变化产生的波动幅WC、上述位移L的随温度变化产生的波动幅WL、或者上述位移/动态电容(L/C)的随温度变化产生的波动幅WL/C中的至少一个在-30℃~80℃的特定温度范围内时在上述特定的范围内。
此外,上述第2发明的压电执行元件满足上述要件(j)~(l)中的至少一个要件。即,在上述第2发明的压电执行元件中,上述表观动态电容C的随温度变化产生的波动幅WC、上述位移L的随温度变化产生的波动幅WL、或者上述位移/动态电容(L/C)的随温度变化产生的波动幅WL/C中的至少一个在-30℃~160℃的特定温度范围内时在上述特定的范围内。
因此,上述第1以及第2发明的压电执行元件随温度变化产生的位移的偏差小。即,上述压电执行元件即使在温度变化剧烈的环境下使用的场合,也能够发挥大致恒定的位移。因此,上述压电执行元件也能够很好地用于例如汽车部件等在温度变化剧烈的环境下使用的产品。
通常,压电执行元件的驱动方式如上所述有以下驱动法:(1)以电压作为参数来控制位移以进行驱动的恒电压驱动法、(2)以注入能量作为参数来控制位移以进行驱动的恒能量驱动法、以及(3)以注入电荷作为参数来控制位移以进行驱动的恒电荷驱动法。
在此,就压电执行元件的位移的温度依存性,按照压电执行元件的每种驱动方式来进行说明。
首先,定电压驱动的压电执行元件的位移(ΔL1)以下述的式A1表示。
ΔL1=D33×EF×L0 A1
式中,D33:动态应变量[m/V]、EF:最大电场强度[V/m]、以及L0:外加电压前的压电陶瓷的长度[m]。另外,动态应变量表示在以恒定的振幅外加电场强度为0~3000V/mm且不破坏绝缘的程度的范围的高压来进行驱动的场合,与外加电压方向相平行的方向上产生的压电陶瓷的位移性能,以下述式A2表示。
D33=S/EF=(ΔL1/L0)/(V/L0)A2
式中,S:最大应变量。此外,D33不仅对温度有依存性,对电场强度也有依存性。
从上述式(A1)和(A2)可以知道,压电执行元件的位移(ΔL1)与依存于外加电场强度的动态应变量D33和外加电场强度之积成比例。
另外,能量和电荷和表观动态电容和外加电压存在下述式A3和A4的关系。
W=1/2×C×V2  A3
Q=C×V  A4
式中,W:能量[J]、C:表观动态电容[F]、V:外加电压[V]、以及Q:电荷[C]。
在此,当通常压电执行元件与电容器串联连接,并以电场强度0~3000V/mm且不破坏绝缘的程度的范围的恒定振幅的电场强度进行驱动时,表观动态电容C[F]定义为用电容器中积蓄的电荷量除以外加到执行元件上的电压而得到的值。表观动态电容C至少包含压电陶瓷的电介质成分、极化反转成分、以及来自极化旋转成分的充电电荷、来自压电陶瓷的直流电阻成分的漏电流。而且,表观动态电容C不仅对温度有依存性,对电场强度也有依存性。
因此,恒能量驱动(W:恒定)的场合的压电执行元件的位移(ΔL2)由下述式A5所示,与依存于驱动电场强度的D33/C0.5和驱动电场强度(=驱动电压/L0)之积成比例。
ΔL2=D33×(2×W/C)0.5  A5
在此,具有下述特征:由于温度变化而引起表观动态电容C发生波动时,根据上述式A3,驱动电场强度自身也发生波动。
另外,在恒电荷驱动(Q:恒定)的场合的执行元件的位移(ΔL3)由下述式A6所示,与依存于驱动电场强度的D33/C和驱动电场强度(=驱动电压/L0)之积成比例。
ΔL3=D33×(Q/C)  A6
在此,具有下述特征:又有温度变化而引起C发生波动时,根据上述式A4,外加电场强度自身也发生波动。
因此,为了减小使用温度范围的执行元件的位移波动幅,优选依存于驱动电场强度的D33、D33/C0.5、D33/C等的温度依存性较小。
此外,当然,优选作为位移性能的D33、D33/C0.5、D33/C的绝对值较大。
其次,就恒能量驱动以及恒电荷驱动的场合的表观动态电容与驱动电压的关系进行说明。
在恒能量驱动(W:恒定)的场合,加载在压电执行元件以及向驱动电路上施加的电压(端子电压)由下述式A7所示,与1/C0.5成比例。
V=(2×W/C)0.5  A7
恒电荷驱动(Q:恒定)的场合的端子电压由下述式A8所示,与1/C成比例。
V=Q/C  A8
在端子电压波动时,为了确保压电执行元件以及驱动电路的耐电压的可靠性,进行端子电压上限的设计是必要的。在执行元件的设计中,为了防止电极之间放电或侧面泄漏或者绝缘破坏而受到正负电极之间距离不能减小的制约。因此,在使用温度范围内的端子电压的下限值的地方,位移特性降低。因此在电路设计中,为了提高电路元件的耐电压性而存在大型化和高成本化的问题。
因此,为了提高执行元件的位移性能以及使驱动电路小型化和低成本化,优选依存于驱动电场强度的1/C0.5、1/C的温度依存性小。
此外,表观动态电容C如果收敛为一定值,则端子电压也收敛为一定值,因此如果驱动电场强度恒定时的D33/C0.5的温度依存性小,则恒能量控制中的执行元件的位移的温度依存性能够减小。而且,如果驱动电场强度恒定时的D33/C的温度依存性小,则恒电荷控制的执行元件的位移的温度依存性能够减小。
这样,为了减小压电执行元件的温度依存性,优选在使用温度范围内,在具有恒定的振幅的电场驱动条件下产生的动态应变量D33、表观动态电容C、D33/C0.5、以及D33/C的波动幅较小。
在上述第1发明的压电执行元件中,如上述那样,上述表观动态电容C的随温度变化产生的波动幅WC、上述位移L的随温度变化产生的波动幅WL、或者上述位移/表观动态电容(L/C)的随温度变化产生的波动幅WL/C中的至少一个在-30℃~80℃的特定温度范围内分别在±11%以内、±1 4%以内、以及±12%以内的较小的范围内。
此外,在上述第2发明的压电执行元件中,如上述那样,上述表观动态电容C的随温度变化产生的波动幅WC、上述位移L的随温度变化产生的波动幅WL、或者上述位移/表观动态电容(L/C)的随温度变化产生的波动幅WL/C中的至少一个在-30℃~160℃的特定温度范围内分别在±30%以内、±14%以内、以及±35%以内的较小的范围内。
因此,上述第1发明以及第2发明的压电执行元件与恒电压驱动、恒能量驱动、以及恒电荷驱动等驱动方式无关,位移的温度依存性较小。即,即便使用温度发生变化,仍能够发挥大致相等的位移特性。
如以上所述那样,根据本发明,能够提供与压电执行元件的驱动方式无关的、位移的温度依存性可以减小的压电执行元件。
附图说明
图1是表示实施例1的压电执行元件的表观动态电容的温度依存性的曲线图。
图2是表示实施例1的压电执行元件的位移的温度依存性的曲线图。
图3是表示实施例1的压电执行元件的位移/表观动态电容的温度依存性的曲线图。
图4是表示实施例2的压电执行元件的表观动态电容的温度依存性的曲线图。
图5是表示实施例2的压电执行元件的位移的温度依存性的曲线图。
图6是表示实施例2的压电执行元件的位移/表观动态电容的温度依存性的曲线图。
图7是表示实施例3的压电执行元件的表观动态电容的温度依存性的曲线图。
图8是表示实施例3的压电执行元件的位移的温度依存性的曲线图。
图9是表示实施例3的压电执行元件的位移/表观动态电容的温度依存性的曲线图。
图10是表示实施例4的压电执行元件的表观动态电容的温度依存性的曲线图。
图11是表示实施例4的压电执行元件的位移的温度依存性的曲线图。
图12是表示实施例4的压电执行元件的位移/表观动态电容的温度依存性的曲线图。
图13是表示实施例5的压电执行元件的表观动态电容的温度依存性的曲线图。
图14是表示实施例5的压电执行元件的位移的温度依存性的曲线图。
图15是表示实施例5的压电执行元件的位移/表观动态电容的温度依存性的曲线图。
图16是表示比较例1的压电执行元件的表观动态电容的温度依存性的曲线图。
图17是表示比较例1的压电执行元件的位移的温度依存性的曲线图。
图18是表示比较例1的压电执行元件的位移/表观动态电容的温度依存性的曲线图。
图19是表示比较例2的压电执行元件的表观动态电容的温度依存性的曲线图。
图20是表示比较例2的压电执行元件的位移的温度依存性的曲线图。
图21是表示比较例2的压电执行元件的位移/表观动态电容的温度依存性的曲线图。
图22是表示比较例3的压电执行元件的表观动态电容的温度依存性的曲线图。
图23是表示比较例3的压电执行元件的位移的温度依存性的曲线图。
图24是表示比较例3的压电执行元件的位移/表观动态电容的温度依存性的曲线图。
图25是表示比较例4的压电执行元件的表观动态电容的温度依存性的曲线图。
图26是表示比较例4的压电执行元件的位移的温度依存性的曲线图。
图27是表示比较例4的压电执行元件的位移/表观动态电容的温度依存性的曲线图。
图28是表示比较例5的压电执行元件的表观动态电容的温度依存性的曲线图。
图29是表示比较例5的压电执行元件的位移的温度依存性的曲线图。
图30是表示比较例5的压电执行元件的位移/表观动态电容的温度依存性的曲线图。
图31是表示实施例6的、压电执行元件(实施例1)的表观动态电容以及动态电容的温度依存性的曲线图。
图32是表示实施例6的、压电执行元件(实施例4)的表观动态电容以及动态电容的温度依存性的曲线图。
图33是表示实施例6的、压电执行元件(比较例1)的表观动态电容以及动态电容的温度依存性的曲线图。
图34是表示实施例7中的、由实施例1~实施例5得到的各压电执行元件的电极强度振幅与温度20℃的动态应变量的关系的曲线图。
图35是表示实施例8中的、由实施例5制作的单板的d31的温度特性的测定值、实施例5所示的1000~2000V/mm的驱动电场强度时的动态应变量分别以20℃的值标准化后的结果的曲线图。
图36是表示本发明的压电执行元件的构成的一例的说明图。
图37是表示实施例1的压电执行元件的构成的概要说明图。
图38是表示实施例1的压电元件的构成的说明图。
图39是表示实施例1的由一片压电陶瓷构成的压电元件(单板)的构成的说明图。
图40是表示实施例1的将压电元件(单板)与内部电极板进行层叠的状态的说明图。
具体实施方式
以下,就本发明的实施方案进行说明。
上述第1发明的压电执行元件满足上述要件(a)~(c)。
上述要件(a)中,如果上述压电执行元件的表观动态电容设为C[F],则下述式(1)表示的表观动态电容的随温度变化而产生的波动幅WC[%]在-30℃~80℃的特定温度范围内为±11%以内。
WC(%)=[{2×Cmax/(Cmax+Cmin)}-1]×100(1)
在上述要件(a)中,当上述压电执行元件与例如温度设置在25℃的电容器进行串联连接,并对上述压电执行元件以及上述电容器外加电压时,上述表观动态电容可通过用上述电容器中积蓄的电荷量Q[C]除以外加到上述压电执行元件上的电压V[V]而算出。
上述要件(b)中,如果上述压电执行元件的位移设为L[μm],则下述式(2)表示的位移L的随温度变化产生的波动幅WL在-30℃~80℃的特定温度范围内为±14%以内。
WL[%]=[{2×Lmax/(Lmax+Lmin)}-1]×100(2)
另外,上述要件(c)中,上述压电执行元件的表观动态电容设为C[F],上述压电执行元件的位移设为L[μm]时,则下述式(3)表示的L/C的随温度变化产生的波动幅WL/C在-30℃~80℃的特定温度范围内为±12%以内。
WL/C[%]=[{2×(L/C)max/((L/C)max+(L/C)min)}-1]×100(3)
在上述要件(c)中,当上述压电执行元件与例如温度设置在25℃的电容器进行串联连接,并对上述压电执行元件以及上述电容器外加电压时,上述表观动态电容可通过用上述电容器中积蓄的电荷量Q[C]除以外加到上述压电执行元件上的电压V[V]而算出。
在上述压电执行元件不满足上述要件(a)~(c)中的任何一项的场合,即在-30℃~80℃时,上述波动幅WC偏离±11%以内的范围、上述波动幅WL偏离±14%以内的范围、以及上述波动幅WL/C偏离±12%以内的范围的场合,温度为-30℃~80℃时的上述压电执行元件的温度依存性有可能增大。
上述压电执行元件优选满足上述要件(a)和上述要件(b)这二者(权利要求第2项)。
在这种场合,能够进一步减小上述压电执行元件的温度依存性。
另外,上述压电执行元件优选满足上述要件(a)~(c)的全部要件(权利要求第3项)。
在这种场合,能够更进一步减小上述压电执行元件的温度依存性。
此外,在上述压电执行元件中,动态电容的随温度变化产生的上述波动幅WC[%]优选在-40℃~80℃的特定温度范围内为±12%以内。
另外,上述位移L的随温度变化产生的上述波动幅WL优选在-40℃~80℃的特定温度范围内为±14%以内。
此外,L/C的随温度变化产生的上述波动幅WL/C优选在-40℃~80℃的特定温度范围内为±13%以内。
这样,在-40℃~80℃的温度范围内,上述波动幅WC、波动幅WL、波动幅WL/C在上述那样特定的范围内时,即使在-40℃~80℃的特定温度范围内,上述压电执行元件的位移的温度依存性也能够减小。
上述压电执行元件优选满足下述的要件(d)(权利要求第4项)。
(d)如果上述表观动态电容设为C[F],上述压电执行元件的位移设为L[μm],则下述式(4)表示的L/C0.5的随温度变化产生的波动幅WL/C 0.5在-30℃~80℃的特定温度范围内为±12%以内(其中,L/C0.5为上述压电执行元件的位移L[μm]与上述表观动态电容C[F]的平方根之比)。
WL/C 0.5(%)=[{2×(L/C0.5)max/((L/C0.5)max+(L/C0.5)min)}-1]×100
                                                     (4)
(式中,(L/C0.5)max表示温度为-30℃~80℃时的L/C0.5的最大值,(L/C0.5)min表示温度为-30℃~80℃时的L/C0.5的最小值)。
在上述压电执行元件不满足上述要件(d)的场合,即L/C0.5的随温度变化产生的波动幅WL/C 0.5在-30℃~80℃的特定温度范围内超出±12%的场合,上述压电执行元件的位移的温度依存性有可能增大。
此外,L/C0.5的随温度变化产生的上述波动幅WL/C 0.5优选在-40℃~80℃的特定温度范围内为±12%以内。
在这种场合,即使在-40℃~80℃的温度范围内也能够减小上述压电执行元件的位移的温度依存性。
上述压电执行元件优选满足下述的要件(e)(权利要求第5项)。
(e)通过用上述压电执行元件在外加电场方向的应变除以电场强度计算的动态应变量在-30℃~80℃的特定温度范围内为250pm/V以上。
在上述压电执行元件不满足上述要件(e)的场合,即上述动态应变量在-30℃~80℃的特定温度范围内不足250pm/V的场合,上述压电执行元件的位移有可能减小。
另外,上述动态应变量优选在-40℃~80℃的特定温度范围内为250pm/V以上。
在这种场合,在-40℃~80℃的温度范围内,上述压电执行元件的位移也能够增大。
其次,上述压电执行元件优选满足下述的要件(f)(权利要求第6项)。
(f)上述表观动态电容C的随温度变化产生的上述波动幅WC[%]在-30℃~160℃的特定温度范围内为±35%以内。
另外,上述压电执行元件优选满足下述的要件(g)(权利要求第7项)。
(g)上述压电执行元件的位移L的随温度变化产生的上述波动幅WL在-30℃~160℃的特定温度范围内为±14%以内。
此外,上述压电执行元件优选满足下述的要件(h)(权利要求第8项)。
(h)如果表观动态电容设为C[F],上述压电执行元件的位移设为L[μm],则L/C的随温度变化产生的上述波动幅WL/C在-30℃~160℃的特定温度范围内为±35%以内。
另外,上述压电执行元件优选满足下述的要件(i)(权利要求第9项)。
(i)如果表观动态电容设为C[F],上述压电执行元件的位移设为L[μm],则L/C0.5的随温度变化产生的上述波动幅WL/C 0.5在-30℃~160℃的特定温度范围内为±20%以内。
在上述压电执行元件满足上述(f)~(i)要件中的任何一个以上要件的场合,能够进一步提高上述压电执行元件的温度依存性。即在这种场合,能够在温度为-30℃~160℃的更宽广的温度范围内减小上述压电执行元件的位移的温度依存性。
其次,在上述第2发明中,上述压电执行元件满足上述要件(j)~(l)。
上述要件(j)中,如果上述压电执行元件的表观动态电容设为C[F]时,则下述式(5)表示的表观动态电容的随温度变化产生的波动幅WC[%]在-30℃~160℃的特定温度范围内为±30%以内。
WC(%)=[{2×Cmax/(Cmax+Cmin)}-1]×100(5)
(其中,Cmax表示在-30℃~160℃的表观动态电容的最大值,Cmin表示在-30℃~160℃的表观动态电容的最小值)。
在上述要件(j)中,当上述压电执行元件与例如温度设置在25℃的电容器进行串联连接,并对上述压电执行元件以及上述电容器外加电压时,上述表观动态电容可通过用上述电容器中积蓄的电荷量Q[C]除以外加到上述压电执行元件上的电压V[V]而算出。
上述要件(k)中,如果上述压电执行元件的位移设为L[μm]时,则下述式(6)表示的位移L的随温度变化产生的波动幅WL在-30℃~160℃的特定温度范围内为±14%以内。
WL[%]=[{2×Lmax/(Lmax+Lmin)}-1]×100(6)
(式中,Lmax表示在-30℃~160℃的位移的最大值,Lmin表示在-30℃~160℃的位移的最小值)。
上述要件(1)中,如果上述压电执行元件的表观动态电容设为C[F],上述压电执行元件的位移设为L[μm]时,则下述式(7)表示的L/C的随温度变化产生的波动幅WL/C在-30℃~160℃的特定温度范围内为±35%以内。
WL/C[%]=[{2×(L/C)max/((L/C)max+(L/C)min)}-1]×100(7)
(式中,(L/C)max表示在-30℃~160℃的L/C的最大值,(L/C)min表示在-30℃~160℃的L/C的最小值)。
在上述要件(1)中,当上述压电执行元件与例如温度设置在25℃的电容器进行串联连接,并对上述压电执行元件以及上述电容器外加电压时,上述表观动态电容可通过用上述电容器中积蓄的电荷量Q[C]除以外加到上述压电执行元件上的电压V[V]而算出。
在上述压电执行元件不满足上述要件(j)~(l)中的任何一项的场合,即在温度为-30℃~160℃时,上述波动幅WC偏离±30%以内的范围、上述波动幅WL偏离±14%以内的范围、以及上述波动幅WL/C偏离±35%以内的范围的场合,温度为-30℃~160℃时的上述压电执行元件的温度依存性有可能增大。
上述压电执行元件优选满足上述要件(j)和上述要件(k)这二者(权利要求第11项)。
在这种场合,能够进一步减小上述压电执行元件的温度依存性。
上述压电执行元件优选满足上述要件(j)~(l)的全部要件(权利要求第12项)。
在这种场合,能够更进一步减小上述压电执行元件的温度依存性。
另外,在上述压电执行元件中,表观动态电容的随温度变化产生的上述波动幅WC[%]优选在-40℃~160℃的特定温度范围内为±35%以内。
此外,上述位移L的随温度变化产生的波动幅WL优选在-40℃~160℃的特定温度范围内为±14%以内。
此外,L/C的随温度变化产生的上述波动幅WL/C优选在-40℃~160℃的特定温度范围内为±35%以内。
这样,在-40℃~160℃的温度范围内,上述波动幅WC、波动幅WL、波动幅WL/C在上述那样特定的范围内的场合,即使在-40℃~160℃的温度范围内也能够减小上述压电执行元件的位移的温度依存性。
上述压电执行元件优选满足下述的要件(m)(权利要求第13项)。
(m)如果上述表观动态电容设为C[F],上述压电执行元件的位移设为L[μm],则下述式(8)表示的L/C0.5的随温度变化产生的波动幅WL/C 0.5在-30℃~160℃的特定温度范围内为±20%以内。
WL/C 0.5(%)=[{2×(L/C0.5)max/((L/C0.5)max+(L/C0.5)min)}-1]×100
                                                   (8)
(式中,(L/C0.5)max表示在-30℃~160℃的特定温度范围内的L/C0.5的最大值,(L/C0.5)min表示在-30℃~160℃的特定温度范围内的L/C0.5的最小值)。
在上述压电执行元件不满足上述要件(m)的场合,即L/C0.5的随温度变化产生的波动幅WL/C 0.5在-30℃~160℃的特定温度范围内超出±20%的场合,上述压电执行元件的位移的温度依存性有可能增大。
另外,L/C0.5的随温度变化产生的上述波动幅WL/C 0.5优选在-40℃~160℃的特定温度范围内为±20%以内。
在这种场合,即使在-40℃~160℃的温度范围内,也能够减小上述压电执行元件的位移的温度依存性。
上述压电执行元件优选满足下述的要件(n)(权利要求第14项)。
(n)通过用上述压电执行元件在外加电场方向的应变除以电场强度计算的动态应变量在-30℃~160℃的特定温度范围内为250pm/V以上。
在上述压电执行元件不满足上述要件(n)的场合,即上述动态应变量在-30℃~160℃的特定温度范围内不足250pm/V的场合,上述压电执行元件的位移有可能减小。
另外,上述动态应变量优选在-40℃~160℃的温度范围内为250pm/V以上。
在这种场合,即使在-40℃~160℃的温度范围内,上述压电执行元件的位移也能够增大。
另外,在上述第1以及第2发明中,上述压电执行元件具有在压电陶瓷的表面形成1对电极而构成的压电元件作为驱动源。
上述压电陶瓷优选由含有选自Li、K以及Na中的至少一种的含碱金属压电陶瓷构成。(权利要求第18项)。
在这种场合,在温度为80℃以上的高温环境下驱动时的漏电流更为增加,并且温度为80℃以上的上述“表观动态电容”的波动幅也比温度为80℃以上的“静电电容”以及“动态电容”的波动幅更大。因此,在这种场合,通过使以表观动态电容作为参数来限定的波动幅满足上述第1发明的上述要件(a)和/或(c)、上述第2发明的上述要件(j)和/或(l),能够更显著地发挥例如定能量驱动以及定电荷驱动的位移的温度依存性减小的上述作用效果。
此外,上述压电陶瓷优选为:在上述压电执行元件的整个使用温度范围内(例如温度-30℃~160℃),比电阻为1×106Ω·m以上。此时,能够防止由于电阻发热引起的上述压电陶瓷的破坏。更优选为:上述压电陶瓷在上述压电执行元件的上述使用温度范围内,比电阻为1×108Ω·m以上。在这种场合,上述压电执行元件的寿命能够更加延长。
此外,上述压电陶瓷优选不含铅(权利要求第19项)。
在这种场合,能够制作不含对环境负荷大的铅的上述压电执行元件。即,能够提高上述压电执行元件对环境的安全性。
另外,上述压电陶瓷优选为:由以通式{Lix(K1-yNay)1-x}{Nb1-z-wTazSbw}O3(式中,0≤x≤0.2、0≤y≤1、0≤z≤0.4、0≤w≤0.2、x+z+w>0)表示的各向同性钙钛矿型化合物作为主相的多晶体构成,同时由构成该多晶体的各晶粒的特定晶面处于取向状态的晶体取向压电陶瓷构成(权利要求第20项)。
在这种场合,能够容易地实现满足上述要件(a)~(i)的压电执行元件、和满足上述要件(j)~(n)要件的压电执行元件。
上述晶体取向压电陶瓷由以各向同性钙钛矿型化合物的一种即铌酸钾钠(K1-yNayNbO3)作为基本组成,并且A位元素(K、Na)的一部分被规定量的Li置换、和/或B位元素(Nb)的一部分被规定量的Ta和/或Sb置换而得到的物质构成。在上述通式中,“x+z+w>0”表示作为置换元素含有Li、Ta以及Sb中的至少一种即可。
另外,在上述通式中,“y”表示晶体取向压电陶瓷中含有的K与Na之比。在本发明的晶体取向压电陶瓷中,作为A位元素,含有K或Na的至少一个即可。即对K与Na之比y没有特别限制,可以取0以上1以下的任意值。为了得到高的位移特性,y的值优选为0.05以上0.75以下,更优选为0.20以上0.70以下,进一步优选为0.35以上0.65以下,再优选为0.40以上0.60以下,再进一步优选为0.42以上0.60以下。
“x”表示Li置换A位元素的K和/或Na的置换量。K和/或Na的一部分被Li置换时,可以得到提高压电特性等、提高居里温度以及/或促进致密化的效果。X的值具体优选为0以上0.2以下。在x值超过0.2时,位移特性降低,因此并不理想。x值优选为0以上0.15以下,更优选为0以上0.10以下。
“z”表示Ta置换B位元素的Nb的置换量。Nb的一部分被Ta置换时,可以得到提高位移特性等的效果。z的值具体优选为0以上0.4以下。z值超过0.4时,居里温度降低,作为家用电器和汽车用的压电材料使用较为困难,因此并不理想。z值优选为0以上0.35以下,更优选为0以上0.30以下。
此外,“w”表示Sb置换B位元素的Nb的置换量。Nb的一部分被Sb置换时,可以得到提高位移特性等的效果。w的值具体优选为0以上0.2以下。w值超过0.2时,位移特性以及/或居里温度降低,所以并不理想。w值优选为0以上0.15以下。
另外,上述晶体取向压电陶瓷中,随着从高温下降到低温,结晶相发生立方晶→正方晶(第1结晶相转变温度=居里温度)、正方晶→斜方晶(第2结晶相转变温度)、斜方晶→菱形晶(第3结晶相转变温度)的变化。在高于第1结晶相转变温度的温度区域,成为立方晶,因此位移特性消失,并且在低于第2结晶相转变温度的温度区域,成为斜方晶,位移以及表观动态静电电容的温度依存性增大。因此,优选通过使第1结晶相转变温度高于使用温度范围且第2结晶相转变温度低于使用温度范围,可以使压电陶瓷在整个使用温度范围为正方晶。
但是,作为上述晶体取向压电陶瓷的基本组成的铌酸钾钠(K1-yNayNbO3),根据“美国陶瓷协会杂志:Journal of American CeramicSociety”,美国,1959年,第42卷[9]p.438~443、以及美国专利2976246号说明书,随着从高温下降到低温,结晶相发生立方晶→正方晶(第1结晶相转变温度=居里温度)、正方晶→斜方晶(第2结晶相转变温度)、斜方晶→菱形晶(第3结晶相转变温度)的变化。并且,在“y=0.5”时的第1结晶相转变温度为约420℃、第2结晶相转变温度为约190℃、第3结晶相转变温度为约-150℃。因此,正方晶的温度区域为190~420℃的范围,与工业产品的使用温度范围的-40℃~160℃不一致。
另一方面,上述晶体取向压电陶瓷中,对于基本组成的铌酸钾钠(K1-yNayNbO3),通过使Li、Ta、Sb的置换元素的量改变,能够自由改变第1结晶相转变温度以及第2结晶相转变温度。
对于压电特性为最大时的y=0.4~0.6,进行了Li、Ta、Sb的置换量和结晶相转变温度实测值的多元回归(multiple regression)分析,结果示于下述式B1、式B2。
从式B1和式B2知道,Li置换量具有使第1结晶相转变温度升高、且使第2结晶相转变温度降低的作用。另外,Ta和Sb具有使第1结晶相转变温度降低、且使第2结晶相转变温度降低的作用。
第1结晶相转变温度=(388+9x-5z-17w)±50[℃](式B1)
第2结晶相转变温度=(190-18.9x-3.9z-5.8w)±50[℃](式B2)
第1结晶相转变温度是压电性完全消失的温度,且在其附近动态电容急剧增大,因此优选为(产品的使用环境上限温度+60℃)以上。第2结晶相转变温度仅仅是结晶相转变的温度,压电性不消失,因此设定在不会对位移或动态电容的温度依存性产生不良影响的范围内即可,所以优选为(产品的使用环境下限温度+40℃)以下。
另一方面,产品的使用环境上限温度根据用途有所不同,分别为60℃、80℃、100℃、120℃、140℃、160℃等。产品的使用环境下限温度分别为-30℃、-40℃等。
因此,由于上述式B1所示的第1结晶相转变温度优选为120℃以上,所以“x”、“z”、“w”优选满足(388+9x-5z-17w)+50≥120。
而且,由于式B2所示的第2结晶相转变温度优选为10℃以下,所以“x”、“z”、“w”优选满足(190-18.9x-3.9z-5.8w)-50≤10。
即,在上述晶体取向压电陶瓷中,上述通式:{Lix(K1-yNay)1-x}{Nb1-z-wTazSbw}O3中的x、y以及z优选满足下述式(9)和式(10)的关系(权利要求第21项)。
9x-5z-17w≥-318(9)
-18.9x-3.9z-5.8w≤-130(10)
另外,上述晶体取向压电陶瓷存在仅仅由上述通式表示的各向同性钙钛矿型化合物(第一KNN系化合物)构成的场合、以及主动地添加其它元素或被其它元素置换的场合。
在前者的场合,优选仅仅由第一KNN系化合物构成,但是只要能够保持各向同性钙钛矿型的晶体结构、且对烧结特性、压电特性等各种特性无不良影响,则也可以含有其它元素或其它相。特别在用于制造上述晶体取向压电陶瓷的原料中,在可从市场购入的纯度为99%至99.9%的工业原料中含有的杂质的混入是不可避免的。例如,在上述晶体取向压电陶瓷的原料之一的Nb2O5中,作为来自原料矿石或制造方法的杂质,某些场合含有最多不足0.1wt%的Ta、最多不足0.15wt%的F。另外,在后述的实施例1中将进行叙述,在制造工序使用Bi的场合,其混入是不可避免的。
在后者的场合,例如通过添加Mn可具有降低表观动态电容的温度依存性、提高位移的效果,而且还具有减低介质损耗tanδ、提高机械品质系数Qm的效果,因此,作为共振驱动型的执行元件可以得到理想的特性。
另外,在上述晶体取向压电陶瓷中,构成以上述通式表示的各向同性钙钛矿型化合物作为主相的多晶体的各晶粒的特定晶面处于取向状态。其中,上述晶粒中取向的特定晶面优选为拟立方(pseudo-cubic){100}面。
另外,所谓“拟立方{HKL}”是指,各向同性钙钛矿型化合物的结构通常为正方晶、斜方晶、三方晶等,与立方晶相比略有变形,但由于该变形只是一点点,因此被当作立方晶并用密勒指数表示。
在这种场合,能够进一步增大上述压电执行元件的位移,同时能够减小表观动态电容的温度依存性。
此外,对于拟立方{100}面进行面取向的场合,面取向的程度可以用以下的数学式1表示的基于劳特盖尔丁(Lotgering)法的平均取向度F(HKL)表示。
数学式1
F ( HKL ) = Σ ' I ( HKL ) ΣI ( hkl ) - Σ ' I 0 ( HKL ) Σ I 0 ( hkl ) 1 - Σ ' I 0 ( HKL ) Σ I 0 ( hkl ) × 100 ( % )
另外,在数学式1中,∑I(hkl)是对晶体取向压电陶瓷测定的所有晶面(hkl)的X射线衍射强度的总和,∑I0(hkl)是对具有与晶体取向压电陶瓷同样组成的无取向陶瓷测定的所有晶面(hkl)的X射线衍射强度的总和。而且,∑’I(HKL)是对晶体取向压电陶瓷测定的结晶学等价的特定晶面(HKL)的X射线衍射强度的总和。∑’I0(HKL)是对具有与晶体取向压电陶瓷同样组成的无取向陶瓷测定的结晶学等价的特定晶面(HKL)的X射线衍射强度的总和。
因此,在构成多晶体的各晶粒为无取向的场合,平均取向度F(HKL)为0%。而在构成多晶体的所有晶粒的(HKL)面相对于测定面平行取向的场合,平均取向度F(HKL)为100%。
一般地,取向的晶粒的比例越多,越能得到高的特性。例如,在使特定晶面进行面取向的场合,为了得到高的压电特性等,由上述数学式1表示的基于劳特盖尔丁(Lotgering)法的平均取向度F(HKL)优选为30%以上,更优选为50%以上,进一步优选为70%以上。另外,使其取向的特定晶面优选是与极化轴垂直的面。例如,在上述钙钛矿型化合物的结晶系为正方晶的场合,使其取向的特定晶面优选为拟立方{100}面。
即,上述晶体取向压电陶瓷优选为:由劳特盖尔丁法得到的拟立方{100}面的取向度为30%以上,且在10℃~160℃的温度范围内,结晶系为正方晶(权利要求第22项)。
另外,在使特定晶面进行轴取向的场合,其取向的程度不能用与面取向同样的取向度(数学式1)定义。但是,在对垂直于取向轴的面进行X射线衍射的场合,可以采用涉及(HKL)衍射的Lotgering法的平均取向度(轴取向度)来表示轴取向的程度。另外,特定晶面大致完全进行轴取向的成形体的轴取向度与对特定晶面大致完全进行面取向的成形体所测定的轴取向度为相同程度。
其次,就使用上述晶体取向压电陶瓷的压电执行元件的特性进行说明。
在将上述晶体取向压电陶瓷用于驱动源的压电执行元件中,能够将在-30℃~160℃的温度范围内、在电场强度为100V/mm以上且在不会破坏绝缘的电场强度以下的具有恒定振幅的电场驱动条件下产生的动态应变量D33控制为250pm/V以上。如果将组成以及工艺进一步优化,则能够控制为300pm/V以上,进而为350pm/V以上,再进一步为400pm/V以上,再进一步为450pm/V以上,更进一步为500pm/V以上。
另外,位移的波动幅(=动态应变量的波动幅)如果以(最大值-最小值)/2为基准值,则能够控制为±14%以下。如果将组成以及工艺进一步优化,则能够控制为±12%以下,进而为±10%以下,更进一步为±8%以下。
另外,在-30℃~80℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移的波动幅(=动态应变量的波动幅)如果是以(最大值-最小值)/2为基准值,则能够控制为±14%以下。如果将组成以及工艺进一步优化,则能够控制为±12%以下,进而为±9%以下,进一步为±7%以下,再进一步为±5%以下,再进一步为±4%以下。因此,可以得到定电压驱动的位移的温度依存性小的执行元件。
另外,在将上述晶体取向压电陶瓷用于驱动源的压电执行元件中,在-30℃~160℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的表观动态电容的波动幅如果是以(最大值-最小值)/2为基准值,则能够控制为±35%以下。如果将组成以及工艺进一步优化,则能够控制为±32%以下,进而为±30%以下,进一步为±28%以下。
此外,在-30℃~80℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的表观动态电容的波动幅如果是以(最大值-最小值)/2为基准值,则能够控制为±11%以下。如果将组成以及工艺进一步优化,则能够控制为±9%以下,进而为±7%以下,进一步为±5%以下,再进一步为±4%以下。因此,在定电荷驱动以及定能量驱动的场合,可以得到端子电压的温度依存性小的执行元件。
另外,在将上述晶体取向压电陶瓷用于驱动源的压电执行元件中,在-30℃~160℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移/表观动态电容的波动幅如果是以(最大值-最小值)/2为基准值,则能够控制为±35%以下。如果将组成以及工艺进一步优化,则能够控制为±30%以下,进而为±25%以下。
此外,在-30℃~80℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移/表观动态电容的波动幅如果以(最大值-最小值)/2为基准值,则能够控制为±12%以下。如果将组成以及工艺进一步优化,则能够控制为±9%以下,进而为±7%以下。因此,可以得到定电荷驱动中位移的温度依存性小的执行元件。
另外,在将上述晶体取向压电陶瓷用于驱动源的压电执行元件中,在-30℃~160℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移/(表观动态电容)0.5的波动幅如果是以(最大值-最小值)/2为基准值,则能够控制为±20%以下。如果将组成以及工艺进一步优化,则能够控制为±15%以下。
此外,在-30℃~80℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移/(表观动态电容)0.5的波动幅如果是以(最大值-最小值)/2为基准值,则能够控制为±12%以下。如果将组成以及工艺进一步优化,则能够控制为±9%以下,进而为±7%以下。因此,可以得到定能量驱动中位移的温度依存性小的执行元件。
另外,可以使上述压电执行元件的位移发生源的全部由上述晶体取向压电陶瓷构成,但在不影响压电执行元件的位移特性的范围内,也可以将上述通式(1)表示的压电陶瓷与其它压电陶瓷组合来构成压电执行元件。例如,在为层叠执行元件的场合,可以使压电陶瓷中的50%以上的体积由上述通式(1)表示的晶体取向压电陶瓷构成,而剩余的不足50%由钛酸钡系压电陶瓷等构成。
其次,就压电陶瓷与具有正的温度特性的半导体元件并联连接而成的执行元件进行叙述。
在使用上述压电陶瓷构成的压电执行元件中,在-30℃~80℃的温度范围内,在电场强度为100V/mm以上的具有恒定振幅的电场驱动条件下产生的位移、表观动态电容、位移/表观动态电容、位移/(表观动态电容)0.5的波动幅较小,能够得到温度特性良好的执行元件。但是,在-30℃~160℃的温度范围内,尽管位移的波动幅较小,但表观动态电容有可能增加一些。
为了调查其原因,去除压电执行元件的漏电流成分后测定了动态电容,结果动态电容在80℃以上的温度区域也不增加。即可以知道,上述压电陶瓷在高于80℃的温度区域,漏电流有很大增加。这是因为比电阻的值与温度为25℃时的值相比,大约降低2个数量级左右的缘故。温度为25℃的比电阻具有1010Ω·m以上的值。
从中知道,为了减小-30℃~160℃的温度区域的表观动态电容的波动幅,将在大约80℃以下的温度区域电阻较低、在超过大约80℃的高温区域电阻增大那样的具有正的电阻温度系数的半导体元件与执行元件并联电连接,并且按照PTC电阻器的温度与压电元件的温度大致相等的方式配置即可。这样,在80℃以下时,PTC电阻器中流过较多电流,在80℃以上时,PTC电阻器中几乎不流过电流,因此执行元件的表观动态电容的波动幅能够减小。其结果,能够在-30℃~160℃的宽广的温度范围内,得到定电荷驱动以及定能量驱动中的端子电压的温度依存性小、且位移的温度依存性小的压电执行元件。
即,上述压电执行元件优选为:包含具有正的电阻温度系数的PTC电阻器,且该PTC电阻器与具有负的电阻温度系数的上述压电陶瓷并联电连接,同时按照上述PTC电阻器的温度与上述压电陶瓷的温度大致相等的位置关系进行配置(权利要求第15项)。
在此,所谓大致相等的温度是指,上述压电执行元件在驱动时的上述压电陶瓷(压电元件)与PTC电阻器的温度差为40℃以内,更优选为30℃以内,进一步优选为20℃以内,更进一步优选为10℃以内。
另外,配置的位置关系有:上述PTC电阻器与压电陶瓷相接触地配置的场合、在压电执行元件的引线端子之间设置PTC电阻器的场合、以及在与压电执行元件不同的部件即连接器上配置PTC电阻器的场合等。
此外,PTC电阻器的电阻温度特性优选是,在超过大约80℃的高温时电阻值急剧上升的钛酸钡系的半导体元件。即,上述PTC电阻器优选是钛酸钡系半导体,且在温度为80℃以上的温度区域中具有正的电阻温度系数。(权利要求第16项)。
在这种场合,80℃以上的温度下的PTC半导体的绝缘性更加提高,因此执行元件与PTC元件的并联电路中流过的漏电流能够减小。另外,在80℃以上时电阻值急剧上升的钛酸钡系半导体由于不含有居里温度向高温偏移的添加物铅,因此作为执行元件也不会含有铅,所以更加优选。
进而,在执行元件是气密组件(package)型,且半导体元件设置在气密组件内部的场合,执行元件中使用的绝缘树脂等在长时间使用时会热分解,有可能消耗气密组件内部的氧,所以优选即使在低氧浓度气氛下电阻值也不降低的耐还原性的钛酸钡系的半导体元件。
另外,PTC电阻器的电阻值如果较低,则外加到执行元件上的电压也降低,因此PTC电阻器的电阻值优选比压电执行元件在驱动时的压电执行元件的阻抗充分大。
另外,伴随压电执行元件的驱动,PTC电阻器自身发热或不发热都没有关系。在伴随自身发热的场合,例如,通过在容易将热传导给压电元件的部位配置PTC电阻器,能够使其起到温度加热器的作用,使执行元件的使用下限温度升高。即,通过使工作温度范围变窄,能够实质上减小执行元件的表观动态电容等的波动幅。特别是钛酸钡系的半导体元件由于是在其居里温度下电阻值急剧上升的恒温度加热器,所以适合于PTC电阻器。
另一方面,在不伴随自身发热的场合,执行元件与半导体元件的并联电路中流过的电流减小,因此能够抑制电路成本的上升。
另外,上述压电执行元件优选为:具有由多个压电陶瓷层叠而形成的层叠型压电陶瓷作为上述压电陶瓷,并用于燃料喷射阀(权利要求第17项)。
在这种场合,能够最大限度发挥上述压电执行元件的特性。
其次,关于本发明的压电执行元件的构成的一例,使用图36进行说明。
如该图所示那样,压电执行元件1可以由例如具有压电陶瓷的压电元件2、保持压电元件的保持构件4、收容压电元件等的外罩构件3、以及传递压电元件的位移的传递构件5构成。
作为压电元件2,如后述的图38所示那样,可以使用例如将压电陶瓷21与内部电极22和23交替层叠多个而构成的层叠型的压电元件等。
另外,作为压电元件,可以使用通过将一片压电陶瓷夹于2片内部电极中而构成的单板的压电元件(图示略)。
另外,在压电元件2的侧面形成有1对外部电极25和26,在压电元件2中的相邻的2个内部电极22和23与相互不同的外部电极25和26进行电连接。
如图36所示那样,在压电执行元件1中,活塞等传递构件5被配置于压电元件2的层叠方向的一个端部。在外罩3和传递构件5之间配置有碟形弹簧55,对压电元件2施加预设定负荷。传递构件5可随着压电元件2的位移而活动,能够将其位移传递到外部。此外,在外罩3上设置有动通孔31和32。在该动通孔31和32中插入有用于从外部供给电荷的端子(引线)61和62,由垫圈31和32保持外罩3内的气密性。端子61和62与设置在压电元件2上的外部端子25和26进行电连接。
又如图36所示那样,在活塞构件5和外罩3之间配置有O形环35,在保持外罩3内的气密性的同时,形成使活塞构件5伸缩可动的结构。
上述压电执行元件能够用于例如燃料喷射阀等。另外,作为上述压电执行元件,有层叠执行元件、压电变压器、超声波发动机、双压电晶片压电元件、超声波声纳、压电超声波振动器、压电蜂鸣器、压电扬声器等。
(实施例1)
其次,就本发明的实施例进行说明。
在该例中,制作具有压电陶瓷的压电元件,使用该压电元件制作压电执行元件。
在该例中,作为压电执行元件的模型,如图37所示那样,制作使用夹具8的压电执行元件11。
即,该例的压电执行元件11具有以压电陶瓷作为驱动源的层叠型压电元件2,该压电元件2被夹具8固定。
夹具8具有用于收容压电元件2的外罩81、以及与压电元件2连接的传递压电元件2的位移的活塞(连接构件)82。活塞82通过碟形弹簧85连接在导向装置83上。在外罩81内设置有台座部815,压电元件2配置在台座部815上。台座部815上配置的压电元件2由活塞82的头部821固定。此时,可以从碟形弹簧85对压电元件2施加预设定负荷。另外,活塞82的头部821的相反侧的端部(测定部88)可以随着压电元件2的位移而活动。
在此,就预设定负荷的施加方法进行说明。预设定负荷可通过下述方法获得:在活塞82和压入螺栓84的空隙中插入圆柱状的压棒(省略图示),用阿姆斯拉(Amsler)型试验机对导向装置83施加正确的负荷。接着,为了保持预设定负荷,在施加了负荷的状态下,将压入螺栓84和外罩81加以固定。然后,去掉上述压棒。
此外,在该例中,制作压电执行元件的模型的理由是为了评价压电执行元件的位移的温度特性。通过将其形状设置为细长形状,可以将压电元件2设置在恒温槽的内部,且将测定部88设置在恒温槽的外部(=温度约25℃)。在后述的温度特性的评价中,对于图37所示的压电执行元件11,将低于虚线的部分设置在恒温槽的内部。此时,在压电执行元件中,为了防止热量向虚线以上的部分的移动,在压电执行元件中设置有绝热材料86。
这样的压电执行元件的模型与图36所示的压电执行元件在功能上是等价的。
另外,如图38所示那样,在该例中,压电元件2由压电陶瓷21与内部电极板22和23交替层叠而形成的层叠型压电元件构成。此外,在压电元件2的层叠方向的两端部上配置有氧化铝板245。
另外,在压电元件2的侧面上按照夹住压电元件的方式形成有两个外部电极25和26,外部电极25和26与引线61和62连接。
另外,内部电极板22和23与外部电极25和26之间按照压电元件2内相邻的两个内部电极22和23分别与不同电位的外部电极25和26连接的方式进行电连接。
此外,在该例的压电元件2中,由合计40片压电陶瓷21层叠而构成,为了便于作图,在图38所表示的图中,省略了层叠数。
其次,就该例的压电执行元件的制造方法,进行说明。
首先,按照以下那样制作压电元件。
(1)NaNbO3片状粉末的合成
称量Bi2O3粉末、Na2CO3粉末、以及Nb2O5粉末,使其以化学计量比计成为Bi2.5Na3.5Nb5O18的组成,将它们进行湿式混合。接着,对该原料添加50wt%的NaCl作为熔剂,进行1小时干式混合。
其次,将得到的混合物放入白金坩埚,以850℃×1hr的条件加热,使熔剂完全熔化后再于1100℃×2hr的条件下加热,进行Bi2.5Na3.5Nb5O18的合成。另外,升温速度设为200℃/hr,降温设为炉冷。冷却后,通过热水洗涤将熔剂从反应物中去除,得到Bi2.5Na3.5Nb5O18的粉末。得到的Bi2.5Na3.5Nb5O18粉末是以{100}面为发达面(developedplane)的片状粉末。
然后,对该Bi2.5Na3.5Nb5O18片状粉末加入合成NaNbO3所必要量的Na2CO3粉末并进行混合,以NaCl作为熔剂,在白金坩埚中进行950℃×8小时的热处理。
所得到的反应物中除了含有NaNbO3粉末以外还含有Bi2O3,因此从反应物中去除熔剂后,将其放入NHO3(1N)中,使作为多余成分生成的Bi2O3溶解。然后,将该溶液进行过滤以分离NaNbO3粉末,用80℃的离子交换水进行洗涤。得到的NaNbO3粉末是以拟立方{100}面为发达面、粒径为10~30μm、且纵横尺寸比为10~20左右的片状粉末。
如以下那样制作具有{Li0.07(K0.43Na0.57)0.93}{Nb0.84Ta0.09Sb0.07}O3组成的晶体取向陶瓷。
称量纯度为99.99%以上的Na2CO3粉末、K2CO3粉末、Li2CO3粉末、Nb2O5粉末、Ta2O5粉末、Sb2O5粉末,使其成为从1mol的{Li0.07(K0.43Na0.57)0.93}{Nb0.84Ta0.09Sb0.07}O3的化学计量组成中减掉0.05mol的NaNbO3而得到的组成,以有机溶剂作为介质,用Zr球进行20小时的湿式混合。然后,通过在750℃进行5小时预烧,再以有机溶剂作为介质用Zr球进行20小时的湿式粉碎,得到平均粒径约为0.5μm的预烧物粉末。
将该预烧物粉末和上述片状的NaNbO3按照预烧物粉末:NaNbO3=0.95mol∶0.05mol的比率进行称量,使其成为{Li0.07(K0.43Na0.57)0.93}{Nb0.84Ta0.09Sb0.07}O3的组成,以有机溶剂作为介质,用Zr球进行20小时的湿式混合,得到粉碎浆料。然后,对浆料添加粘合剂(聚乙烯醇缩丁醛)以及可塑剂(邻苯二甲酸丁酯)后,再进行2小时混合。
然后,用带状成形装置,将混合的浆料成形为厚度约为100μm的带状。然后通过对该带进行层叠和压接以及轧制,得到厚为1.5mm的片状成形体。接着,在大气中将得到的片状成形体以加热温度为600℃、加热时间为5小时、升温速度为50℃/hr、冷却速度为炉冷的条件进行脱脂。进而,对脱脂后的片状成形体以300MPa的压力施以CIP处理,然后在氧气中于1110℃进行5小时烧结。这样,制作成压电陶瓷(晶体取向压电陶瓷)。
对于得到的压电陶瓷,算出烧结密度、以及采用上述数学式1对与带面(tape surface)平行的面算出基于劳特盖尔丁法的拟立方{100}面的平均取向度F(100)。
进而,通过对得到的压电陶瓷进行磨削和研磨以及加工,制作如图39所示的其上下面与带面平行的厚0.485mm、直径11mm的圆盘状试样的压电陶瓷21,对其上下面印刷Au焙烧电极糊(gold baking electrodepaste)(住友金属矿山株式会社制造,ALP3057)并经干燥后,采用网状带式炉进行850℃×10分钟的焙烧,在压电陶瓷21上形成厚0.01mm的电极20。进而,为了去除因印刷而不可避免地形成的电极外周部的数微米的突起部,通过圆筒磨削将得到的圆盘状试样加工成直径8.5mm。随后,在上下方向上施以极化处理,得到在压电陶瓷21上形成了整面电极210的压电元件(单板)20。
在25℃的温度下,采用共振反共振法对得到的压电元件20测定作为压电特性的压电应变常数(d31)、机电耦合系数(kp)、机械品质系数(Qm)、以及作为介质特性的电容率(ε33t/ε0)、介质损耗(tanδ)。
另外,同样,通过测定电容率的温度特性,求得第1结晶相转变温度(居里温度)和第2结晶相转变温度。另外,在第2结晶相转变温度为0℃以下的场合,由于温度比第2结晶相转变温度高的一侧的电容率的波动幅非常小,因此在电容率的峰位置不能确认的场合,将电容率发生弯曲的温度作为第2结晶相转变温度。
其次,采用上述得到的压电元件制作层叠型的压电元件,使用该压电元件构成压电执行元件,进行评价。
如图40所示那样,首先,将上述那样得到的压电元件20与后述的具有用于连接在外部电极上的突起的厚0.02mm、直径8.4mm的SUS制的内部电极板22(23)进行交替层叠。此时,内部电极板22(23)的突起在层叠方向上以交替不同的方向配置,且每一层都按照相同方向配置内部电极板22(23)。这样,合计40片的压电陶瓷21与合计41片的内部电极板22(23)交替层叠,进而在层叠体的上下面层叠厚2mm、直径8.5mm的氧化铝板(绝缘板),如图38所示那样,制作成层叠型的压电元件2。
然后,将长方形的SUS制的外部电极25和26焊接在上述内部电极22和23的突起上,使其与压电元件并联电连接,然后准备引线端子61和62,将外部电极25和26与引线端子61和62进行电连接。
另外,为了确保内部电极板22和23的突起与相反极性的内部电极板22和23以及相反极性的压电元件的Au电极之间的绝缘状态,在层叠体侧面的极性相同的电极板的突起之间插入配置梳齿状的树脂制绝缘构件(省略图示),在其上面涂敷硅脂,再用绝缘管构成的保持构件4被覆层叠体,制成层叠型的压电元件2。
然后,为了提高层叠型的压电元件2的Au电极与电极板之间的密合性,在25℃的温度下对层叠方向施加150MPa的压缩应力30秒钟(加压老化)。再于25℃的温度下对层叠方向施加30MPa的压缩应力,在该状态下,以40Hz的频率施加电场强度为0~1500V/mm的振幅的正弦波30分钟(电压老化)。然后,如图37所示那样,将层叠型的压电元件2固定在夹具8上,在压电元件2的层叠方向上,以16.4Mpa的预设定负荷压接弹簧常数为2.9N/μm的碟形弹簧85。这样,制作图37所示那样的压电执行元件11。
接着,对所得到的压电执行元件进行外加电压为485、728、970V(电场强度为0~1000V/mm、0~1500V/mm、0~2000V/mm)的恒定振幅的梯形波驱动,在-40℃~160℃的温度范围内测定位移和表观动态电容的温度特性。
位移的测定采用静电电容式的位移传感器,在频率为0.5Hz以及10Hz、电压上升时间为150μs、电压下降时间为150μs、占空比为50∶50的梯形波驱动条件下测定所观测的位移。
表观动态电容的测定如下,将878μF的电容器在温度一直为25℃的状态下串联连接于压电执行元件,在外加电压为485V、728V、970V、频率为0.05Hz、电压上升时间为1ms、电压下降时间为1ms、电压接通(ON)时间为10s、电压切断(OFF)时间为10s的恒电压的梯形波驱动条件下,测定所观测的电容器的端子电压,通过下述式11计算求出。
表观动态电容={(V(接通)-(V(切断))×878μF)/{外加电压-(V(接通)-V(切断))}(11)
(式中,表观动态静电电容[F]、外加电压[V]、V(接通):从电压接通开始10s后的电容器端子电压[V]、V(切断):从电压切断开始10s后的电容器端子电压[V])。
即,以电容器的端子电压为基础,求得电容器的积蓄电荷(=执行元件的积蓄电荷+泄漏的电荷),将其除以执行元件的外加电压,即为执行元件的表观动态电容。在此,由于与电容器串联连接而对执行元件施加的电压有所降低,但最大降低幅度为0.3V的很小的值,因此判断为外加电压与施加到执行元件上的电压相同。
另外,从所测定的值求出-30℃~80℃的温度范围内的波动幅、以及-30℃~160℃的温度范围内的波动幅。这里,所谓波动幅,是以(最大值-最小值)/2为基准值的值。
在本实施例中得到的晶体取向陶瓷的相对密度为95%以上。此外,拟立方{100}面相对于带面平行地取向,根据劳特盖尔丁法测定的拟立方{100}面的平均取向度达到88.5%。而且,对温度为25℃的压电特性的评价结果是,压电d31常数为86.5pm/V、机电耦合系数kp为48.8%、机械品质系数Qm为18.2、电容率(ε33t/ε0)为1042、介质损耗tanδ为6.4%。另外,由电容率的温度特性求得的第1结晶相转变温度(居里温度)为282℃、第2结晶相转变温度为-30℃。
其次,就本例得到的压电执行元件的特性进行叙述。
测定的表观动态电容和频率为0.5Hz的位移、以及计算求得的位移/表观动态电容、位移/(表观动态电容)0.5、动态应变量D33示于表1、图1、图2、以及图3。
另外,表观动态电容、频率为0.5Hz的位移、位移/表观动态电容、位移/(表观动态电容)0.5在-30℃~80℃的温度范围内的波动幅、以及在-30℃~160℃的温度范围内的波动幅分别示于表12、表13、表14、表15。
正如从表1、图1、图2、图3、表11、表12、表13、表14所看到的那样,在本例的压电执行元件中,在-30℃~80℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为-30℃的场合,D33=303pm/V。
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±3.8%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±3.2%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±6.9%。
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±5.3%。
其次,在-30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为-30℃的场合,D33=303pm/V。
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±7.7%。
·动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±28.9%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±27.8%。
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±13.8%。
(实施例2)
除了脱脂后的片状成形体的烧成温度设为1105℃以外,按照与实施例1同样的步骤,制作具有{Li0.07(K0.45Na0.55)0.93}{Nb0.82Ta0.10Sb0.08}O3组成的晶体取向陶瓷。对得到的晶体取向陶瓷,在与实施例1同样的条件下评价烧结体密度、平均取向度以及压电特性。另外,按照与实施例1同样的步骤制作40片压电元件的层叠执行元件,评价执行元件的特性。
本实施例得到的晶体取向陶瓷的相对密度为95%以上。此外,拟立方{100}面相对于带面平行地取向,根据劳特盖尔丁法测定的拟立方{100}面的平均取向度达到94.6%。而且,对温度为25℃的压电特性的评价结果是,压电d31常数为88.1pm/V、机电耦合系数kp为48.9%、机械品质系数Qm为16.6、电容率(ε33t/ε0)为1071、介质损耗tanδ为4.7%。另外,由电容率的温度特性求得的第1结晶相转变温度(居里温度)为256℃、第2结晶相转变温度为-35℃。
本实施例的压电执行元件的特性示于表2、图4、图5、图6、表11、表12、表13、以及表14。
正如从这些表以及图所看到的那样,在本例的压电执行元件中,在-30℃~80℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为20℃的场合,D33=355pm/V。
·位移的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±8.0%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±6.3%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm以及1000V/mm的场合,波动幅为±7.8%。
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±6.7%。
其次,在-30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为20℃的场合,D33=355pm/V。
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±13.8%。
·动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±31.4%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±26.8%。
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±13.3%。
(实施例3)
除了脱脂后的片状成形体的烧成温度设为1105℃以外,按照与实施例1同样的步骤,制作具有{Li0.065(K0.45Na0.55)0.935}{Nb0.83Ta0.09Sb0.08}O3组成的晶体取向陶瓷。对得到的晶体取向陶瓷,在与实施例1同样的条件下评价烧结体密度、平均取向度以及压电特性。并且,按照与实施例1同样的步骤制作40片压电元件的层叠执行元件,评价执行元件的特性。
本实施例得到的晶体取向陶瓷的相对密度为95%以上。另外,拟立方{100}面相对于带面平行地取向,根据劳特盖尔丁法测定的拟立方{100}面的平均取向度达到93.9%。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为95.2pm/V、机电耦合系数kp为50.4%、机械品质系数Qm为15.9、电容率(ε33t/ε0)为1155、介质损耗tanδ为5.2%。另外,由电容率的温度特性求得的第1结晶相转变温度(居里温度)为261℃、第2结晶相转变温度为-12℃。
本实例的压电执行元件的特性示于表3、图7、图8、图9、表11、表12、表13、以及表14。
正如从这些表以及图所看到的那样,在本例的压电执行元件中,在-30℃~80℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为80℃的场合,D33=347pm/V。
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±5.6%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±5.2%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±8.6%。
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±6.9%。
其次,在-30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为80℃的场合,D33=347pm/V。
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±11.5%。
·动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±34.6%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±27.1%。
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±10.9%。
(实施例4)
在本例中,以与实施例1不同的步骤制作与实施例1同样组成的晶体取向压电陶瓷,用该晶体取向压电陶瓷制作压电执行元件。
即,首先将实施例1制作的NaNbO3片状粉末、和非片状的NaNbO3粉末、KNbO3粉末、KTaO3粉末、LiSbO3粉末、以及NaSbO3粉末进行称量,使其成为{Li0.07(K0.43Na0.57)0.93}{Nb0.84Ta0.09Sb0.07}O3的组成,以有机溶剂作为溶剂进行20小时的湿式混合。
对浆料添加粘合剂(聚乙烯醇缩丁醛)以及可塑剂(邻苯二甲酸二丁酯)后,再进行2小时混合。
而且,NaNbO3片状粉末的配合量设定为,由起始原料合成的第一KNN系固溶体(ABO3)的A位元素的5wt%是从NaNbO3片状粉末供给的量。另外,非片状的NaNbO3粉末、KNbO3粉末、KTaO3粉末、LiSbO3粉末、以及NaSbO3粉末是采用固相法、即将含有规定量的纯度为99.9%的K2CO3粉末、Na2CO3粉末、Nb2O5粉末、Ta2O5粉末以及/或Sb2O5粉末的混合物在750℃加热5小时,然后用球磨机粉碎反应物而制作的。
其次,用带状成形装置将混合的浆料成形为厚度约为1O0μm的带状。然后通过对该带进行层叠和压接以及轧制,得到厚1.5mm的片状成形体。其次,在大气中将得到的片状成形体以加热温度为600℃、加热时间为5小时、升温速度为50℃/hr、冷却速度为炉冷的条件进行脱脂。进而,对脱脂后的片状成形体以300MPa的压力施以CIP处理后,在氧气中在烧成温度为1130℃、加热时间为5小时、升温和降温速度为200℃/hr的条件下,在加热时间的过程中进行施加35kg/cm2(3.42MPa)的压力的热压烧结。这样,制作成压电陶瓷(晶体取向压电陶瓷)。
本实施例得到的晶体取向陶瓷的相对密度为95%以上。另外,拟立方{100}面相对于带面平行地取向,根据劳特盖尔丁法测定的拟立方{100}面的平均取向度达到96%。而且,对温度为25℃的压电特性的评价结果是,压电d31常数为96.5pm/V、机电耦合系数kp为51.9%、机械品质系数Qm为15.2、电容率(ε33t/ε0)为1079、介质损耗tanδ为4.7%。另外,由电容率的温度特性求得的第1结晶相转变温度(居里温度)为279℃、第2结晶相转变温度为-28℃。
本实例的压电执行元件的特性示于表4、图10、图11、图12、表11、表12、表13、以及表14。
正如从这些表以及图所看到的那样,在本例的压电执行元件中,在-30℃~80℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为50℃的场合,D33=427pm/V。
·位移的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±7.2%。
·表观动态电容的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±6.1%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±8.0%。
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±6.7%。
其次,在-30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度50℃的场合,D33=427pm/V。
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±9.4%。
·动态电容的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±28.4%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±32.4%。
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±19.5%。
(实施例5)
在本实施例中,制作具有在1mol实施例3的组合物{Li0.065(K0.45Na0.55)0.935}{Nb0.83Ta0.09Sb0.08}O3中外添了Mn 0.0005mol的组成的压电陶瓷(晶体取向压电陶瓷),用该压电陶瓷制作压电执行元件。
首先,称量纯度为99.99%以上的Na2CO3粉末、K2CO3粉末、Li2CO3粉末、Nb2O5粉末、Ta2O5粉末、Sb2O5粉末、以及MnO2粉末,使其成为从{Li0.07(K0.43Na0.57)0.93}{Nb0.84Ta0.09Sb0.07}O31mol+Mn 0.0005mol的组成中减掉0.05mol的NaNbO3而得到的组成,以有机溶剂作为介质,用Zr球进行20小时的湿式混合。然后,通过在750℃进行5小时预烧,再以有机溶剂作为介质用Zr球进行20小时的湿式粉碎,得到平均粒径约为0.5μm的预烧物粉末。
在以后的步骤中,除了脱脂后的片状成形体的烧成温度设为1105℃以外,按照与实施例1同样的步骤,制作具有{Li0.065(K0.45Na0.55)0.935}{Nb0.83Ta0.09Sb0.08}O31mol+Mn 0.0005mol的组成的晶体取向陶瓷。
对于得到的晶体取向陶瓷,以与实施例1同样的条件评价烧结体密度、平均取向度以及电压特性。并且,按照与实施例1同样的步骤制作40片压电元件的层叠执行元件,评价执行元件的特性。而且,以电场强度的振幅为2V/mm(±1V)、正弦波、频率为1kHz的条件评价执行元件的静电电容。
本实施例得到的晶体取向陶瓷的相对密度为95%以上。而且拟立方{100}面相对于带面平行地取向,根据劳特盖尔丁法测定的拟立方{100}面的平均取向度达到89.6%。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为99.1pm/V、机电耦合系数kp为52.0%、机械品质系数Qm为20.3、电容率(ε33t/ε0)为1159、介质损耗tanδ为2.7%。从中知道,添加Mn具有提高Qm、降低tanδ的效果。
另外,由电容率的温度特性求得的第1结晶相转变温度(居里温度)为263℃、第2结晶相转变温度为-15℃。
本实施例的压电执行元件的特性示于表5、图13、图14、图15、表11、表12、表13、以及表14。
正如从这些表以及图所看到的那样,在本例的压电执行元件中,在-30℃~80℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为50℃以及80℃的场合,D33=355pm/V。
·位移的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±10.4%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±4.9%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±10.7%。
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±7.2%。
并且,在-30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1000V/mm、温度为50℃以及80℃的场合,D33=355pm/V。
·位移的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±11.8%。
·动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±26.9%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±21.3%。
·位移/(表观动态电容)0.5的波动幅的最大值在驱动电场振幅为1000V/mm的场合,波动幅为±12.4%。
由该结果知道,添加Mn具有减小-30℃~160℃的温度范围内的表观动态电容的波动幅的效果。
此外,对于本例的压电执行元件的静电电容进行说明。
本实例的压电执行元件的静电电容在-30℃~160℃的范围内为小于表观动态电容的值。而且,在-30℃~80℃的范围内的波动幅为±4.8%,与电场强度为1000V/mm时的表观动态电容的波动幅大致相同。另一方面,在-30℃~160℃的范围内的波动幅为±5.2%,成为远小于表观动态电容的波动幅的值。可以认为,该动态电容和静电电容的差异是电场强度的差异所决定的。
因此可以认为,波动幅的差异的原因是:在80℃以上的高温的温度区域内,在电场强度为1000V/mm以上时,由于漏电流的增加而使表观动态电容增加,但另一方面,在电场强度为2V/mm时,几乎没有漏电流,静电电容不增加。
从以上知道,在本例的压电执行元件中,通过使驱动电场强度小于1000V/mm,能够在-30℃~160℃的宽广的温度范围内减低表观动态电容的波动幅。可以认为,其可能达成的水平可以达到与单板的动态电容的温度特性相同程度。
(比较例1)
该比较例中,是使用软质系和硬质系的中间特性(半硬质)的正方晶的PZT材料的层叠执行元件的实例,该层叠执行元件适合于汽车用燃料喷射阀用的层叠执行元件。在此,所谓软质系是指Qm为100以下的材料,所谓硬质系是指Qm为1000以上的材料。燃料喷射阀用的层叠执行元件用于定电压控制或定能量控制或定电荷控制中,并通过梯形波驱动使阀门开闭,从而控制燃料的喷雾。对执行元件的特性要求位移性能高、以及各控制方式中的位移的温度特性小。
称量PbO粉末、ZrO2粉末、TiO2粉末、SrCO3粉末、Y2O3粉末、Nb2O5粉末、Mn2O3粉末,使其成为(Pb0.92Sr0.09){(Zr0.543Ti0.457)0.9855(Y0.5Nb0.5)0.01Mn0.005}O3的组成,以水作为介质,用Zr球进行湿式混合。然后,在790℃进行7小时预烧,再以有机溶剂作为介质,用Zr球进行湿式粉碎,得到平均粒径约为0.7μm的预烧物粉末的浆料。
对该浆料添加粘合剂(聚乙烯醇缩丁醛)以及可塑剂(邻苯二甲酸丁苄酯)后,再用Zr球进行20小时混合。
其次,用带状成形装置将混合的浆料成形为厚度约为100μm的带状,然后通过对该带进行层叠和热压接,得到厚1.2mm的片状成形体,接着,在大气中对得到的片状成形体进行脱脂。进而,将脱脂后的片状成形体配置于氧化铝烧箱中的MgO板上,在大气中于1170℃进行2小时烧结。以后的步骤中,使用Ag糊作为电极材料进行焙烧,除此以外,与实施例1相同。
该比较例的压电陶瓷的相对密度为95%以上。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为158.0pm/V、机电耦合系数kp为60.2%、机械品质系数Qm为540、电容率(ε33t/ε0)为1701、介质损耗tanδ为0.2%。
该比较例的执行元件特性示于表6、图16、图17、图18、表15、表16、表17、表18。
正如从这些表以及图所看到的那样,本比较例的压电执行元件在-30℃~70℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为2000V/mm以及1500V/mm、温度为-30℃的场合,为553pm/V。
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,波动幅为±5.6%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±14.5%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±10.5%。
并且,在-30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为2000V/mm以及1500V/mm、温度为-30℃的场合,为553pm/V。
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,为±11.1%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±33.5%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±23.7%。
(比较例2)
该比较例2是使用软质系的菱形晶的PZT材料的层叠执行元件的实例,该层叠执行元件适合于环境温度变化较小的半导体制造装置等的位置确定用的层叠执行元件。位置确定用的层叠执行元件是在环境温度变化小的场所使用,因此要求高的位移性能,但不要求温度特性优良。
称量PbO粉末、ZrO2粉末、TiO2粉末、SrCO3粉末、Y2O3粉末、Nb2O5粉末,使其成为(Pb0.895Sr0.115){(Zr0.57Ti0.43)0.978(Y0.5Nb0.5)0.01Nb0.012}O3的组成,以水作为介质,用Zr球进行20小时湿式混合。然后,在875℃进行预烧5小时,再以水作为介质用Zr球进行湿式粉碎。对该浆料添加粘合剂(聚乙烯醇),使其为预烧粉末的1wt%,然后采用喷雾干燥器进行干燥和造粒。
其次,用模具通过干式压制成形得到直径φ15mm、厚2mm的成形体。然后,将得到的圆片状成形体在大气中进行脱脂。进而对脱脂后的片状成形体以200MPa的压力施以CIP处理后,配置于氧化铝烧箱中的MgO板上,在大气中于1260℃进行2小时烧结。以后的步骤与比较例1相同。
该比较例的压电陶瓷的相对密度为95%以上。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为212.7pm/V、机电耦合系数kp为67.3%、机械品质系数Qm为47.5、电容率(ε33t/ε0)为1943、介质损耗tanδ为2.1%。
该比较例的执行元件特性示于表7、图19、图20、图21、表15、表16、表17、表18。
正如从这些表以及图所看到的那样,本例的压电执行元件在-30℃~70℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为2000V/mm、温度为-30℃的场合,为482pm/V。
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,波动幅为±23.7%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±37.9%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±15.5%。
并且,在-30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为2000V/mm、温度为-30℃的场合,为482pm/V。
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±38.5%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±63.5%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为2000V/mm以及1500V/mm的场合,为±33.1%。
(比较例3)
本比较例3是使用软质系的正方晶的PZT材料的层叠执行元件的实例,该层叠执行元件适合于汽车用的爆燃传感器。爆燃传感器是利用压电陶瓷的压电效果将汽油发动机的爆燃转化为电压而进行检测,并没有作为执行元件的功能。
称量PbO粉末、ZrO2粉末、TiO2粉末、SrTiO3粉末、Sb2O3粉末,使其成为(Pb0.95Sr0.05){(Zr0.53Ti0.47)0.978Sb0.022}O3的组成,以水作为介质,用Zr球进行20小时湿式混合。然后,在825℃进行预烧5小时,再以水作为介质用Zr球进行湿式粉碎。以后的步骤中,除了烧结温度设为1230℃以外,与比较例2相同。
该比较例的压电陶瓷的相对密度为95%以上。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为203.4pm/V、机电耦合系数kp为62.0%、机械品质系数Qm为55.8、电容率(ε33t/ε0)为2308、介质损耗tanδ为1.4%。
该比较例的执行元件特性示于表8、图22、图23、图24、表15、表16、表17、表18。
正如从这些表以及图所看到的那样,本比较例的压电执行元件在-30℃~70℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为-30℃的场合,为663pm/V。
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,为±10.4%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±17.9%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±10.2%。
并且,在-30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为-30℃的场合,为663pm/V。
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±14.8%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±32.3%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±18.4%。
(比较例4)
本比较例4是使用半硬质系的正方晶的PZT材料的层叠执行元件的实例,该层叠执行元件适合于高输出的超声波发动机。超声波发动机使粘贴在定子上的压电陶瓷环以数10kHz共振驱动,并使压接在定子上的转子旋转。对于执行元件特性,要求较高的位移性能和优良的位移的温度特性。
称量PbO粉末、ZrO2粉末、TiO2粉末、SrCO3粉末、Sb2O3粉末、MnCO3粉末,使其成为(Pb0.965Sr0.05){(Zr0.5Ti0.5)0.96Sb0.03Mn0.01}O3的组成,以水作为介质,用Zr球进行湿式混合。然后,在875℃进行预烧5小时,再以水作为介质用Zr球进行湿式粉碎。以后的步骤中,除了烧结温度设为1230℃以外,与比较例2相同。
该比较例的压电陶瓷的相对密度为95%以上。对温度为25℃的压电特性的评价结果是,压电d31常数为136.9pm/V、机电耦合系数kp为57.9%、机械品质系数Qm为850、电容率(ε33t/ε0)为1545、介质损耗tanδ为0.2%。
该比较例的执行元件特性示于表9、图25、图26、图27、表15、表16、表17、表18。
正如从这些表以及图所看到的那样,本比较例的压电执行元件在-30℃~70℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为-30℃的场合,为409pm/V。
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,为±6.0%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±15.8%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±11.5%。
并且,在-30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为-30℃的场合,为409pm/V。
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±15.2%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±36.7%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±22.7%。
(比较例5)
比较例5是使用硬质系的正方晶的PZT材料的层叠执行元件的实例,该层叠执行元件适合于高灵敏度的角速度传感器。角速度传感器具有使压电陶瓷音叉以数kHz频率共振驱动的执行元件功能、以及检测角速度的传感器功能这两者。对于执行元件的特性,位移性能可以较低,但要求位移的温度特性小。
称量PbO粉末、ZrO2粉末、TiO2粉末、ZnO粉末、MnCO3粉末、Nb2O5粉末,使其成为Pb{(Zr0.5Ti0.5)0.98(Zn0.33Nb0.67)0.01Mn0.01}O3的组成,以水作为介质,用Zr球进行湿式混合。然后,在800℃进行5小时预烧,再以水作为介质用Zr球进行湿式粉碎。以后的步骤中,除了烧结温度设为1200℃以外,与比较例2相同。
该比较例的压电陶瓷的相对密度为95%以上。另外,对温度为25℃的压电特性的评价结果是,压电d31常数为103.6pm/V、机电耦合系数kp为54.1%、机械品质系数Qm为1230、电容率(ε33t/ε0)为1061、介质损耗tanδ为0.2%。
该比较例的执行元件特性示于表10、图28、图29、图30、表15、表16、表17、表18。
正如从这些表以及图所看到的那样,本比较例的压电执行元件在-30℃~70℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为20℃的场合,为295pm/V。该动态应变量D33的最小值小于实施例1的303pm/V。
·位移的波动幅的最大值在驱动电场振幅为2000V/mm的场合,为±3.2%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±14.3%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±13.9%。
并且,在-30℃~160℃的温度范围内的动态应变量D33的最小值和上述特性的波动幅如下所述。
·动态应变量D33的最小值在驱动电场振幅为1500V/mm、温度为20℃的场合,为295pm/V。
·位移的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±11.1%。
·表观动态电容的波动幅的最大值在驱动电场振幅为1500V/mm的场合,为±32.4%。
·位移/表观动态电容的波动幅的最大值在驱动电场振幅1500V/mm的场合,为±24.5%。
(实施例6)漏电流与电容的分离
在该例中,为了研究表观动态电容如实施例1~5所示那样在80℃以上上升的原因是否是如实施例5那样由于漏电流的增加引起的,使用实施例1、实施例4、以及比较例1制作的压电陶瓷(单板),评价动态电容的温度特性。
在此,动态电容的测定如下,在以频率为1Hz的三角形波外加电场强度为2000V/mm(0~970V)的高电压而进行驱动的场合,由下述的式A9从极化量-电压磁滞回线测定极化量,以此为基础,算出高电场下驱动时的注入电荷量,并作为动态电容。
动态电容C=Q/V  A9
式中,V:外加电压(=970V)、Q:最大电荷[C]。
对实施例1和实施例4制作的单板在80℃以上的温度区域中反复外加电压时,由于漏电流而引起了极化量的零点漂移的现象。因此,为了评价磁滞回线,对10次反复地外加电压所观测到的电压-极化量特性进行修正,以使电压=0的时候,极化量=0,而且用并联有线性电阻的模型通过除去漏电流而得到磁滞回线。由该磁滞回线求得的动态电容与表观动态电容不同,是用除去漏电流后的、来自于介质成分和极化反转成分以及极化旋转成分的充电电荷除以外加电压而得到的。反复画10次该磁滞回线,以最大电荷量的平均值作为极化量。
另一方面,即使对比较例1制作的单板反复外加电压,也没有极化量的零点漂移的现象。在磁滞回线的评价中,与上述同样地反复外加电压10次所观测到的最大电荷量的平均值作为极化量。
另外,对这样求得的单板的动态电容乘以执行元件的元件片数40,与实施例1、实施例4、以及比较例1制作的执行元件的表观动态电容相比较的结果分别示于图31、图32、以及图33。
正如从图31、图32、以及图33所知道的那样,比较例1的(执行元件的表观动态电容)与(单板的动态电容×40)的值大致一致,但是在实施例1和实施例4中,(执行元件的表观动态电容)与(单板的动态电容×40)的值有很大差异。(执行元件的表观动态电容)在80℃以上的高温区域中是上升的,但是(单板的动态电容×40)的值大致恒定。有关在-30℃~160℃的温度范围内的(单板的动态电容×40)的波动幅,在实施例1中为±7.6%、在实施例4中为±2.2%。
从以上知道,本发明的压电执行元件如果降低大约80℃以上的高温的漏电流、或者相反使80℃以下的漏电流增加,则在-30℃~160℃的宽广的温度范围内,即使是驱动电场强度为2000V/mm的高电场驱动,表观动态电容的波动幅也能够降低。可以认为,其可能达成的水平可以达到与单板的动态电容的温度特性相同程度。
(实施例7)动态应变量的下限值的规定
如实施例5所示那样,通过使驱动电场强度小于1000V/mm,在-30℃~160℃的宽广的温度范围内,能够减小表观动态电容的波动幅。但是,如果降低驱动电场强度,动态应变量也减小。在该实施例中,求出本发明的执行元件在降低了驱动电场强度的场合的动态应变量。
实施例1~5制作的执行元件的驱动电场强度与20℃的动态应变量的关系示于图34。可以知道,在作为执行元件所必要的驱动电场强度的下限值即100V/mm的地方,动态应变量为250pm/V以上。
(实施例8)动态应变量在低电场中的温度特性的规定
在本实施例中,求出低于1000V/mm的低驱动电场强度下,动态应变量小的场合的位移的波动幅。
为此,必须降低对压电执行元件的外加电压来进行测定,对于该实施例制作的压电执行元件,在电场强度不足500V/mm时,位移小,测定精度可能变差。此外,其温度特性的评价更加困难。
因此,如果测定单板的压电横向应变常数d31,则尽管位移的绝对值的推测困难,但位移的温度特性的推测是可能的,因此在本实施例中,采用共振-反共振法来实施单板的压电横向应变常数d31的测定。
对实施例5制作的单板的压电d31常数的温度特性的测定值、和实施例5得到的1000~2000V/mm的驱动电场强度下的动态应变量分别以20℃的值标准化后进行比较的结果示于图35。有关在-30℃~80℃的温度范围内的单板的压电d31常数的波动幅,在实施例5中为±7.8%。另外,有关在-30℃~160℃的温度范围内的单板的压电d31常数的波动幅,在实施例5中为±7.8%。该值与1000~2000V/mm的驱动电场强度下的动态应变量的波动幅相同、或者为较小的值。
从以上知道,即使使驱动电场强度低于1000V/mm,本发明的执行元件在-30℃~160℃的宽广的温度范围内,也能够降低位移的波动幅。
(表1)实施例1
驱动电场强度:EF   温度[℃]    表观动态电容[nF]   位移[μm]    位移/表观动态电容[m/F]     位移/(表观动态电容)0.5[m/F]   动态应变量[pm/V]
EF=2000V/mm   160     118.9   17.18     144.6      0.0498   443
  120     93.8   15.17     161.7      0.0495   391
  80     78.2   14.72     188.1      0.0526   379
  50     74.0   14.94     202.0      0.0549   385
  20     74.6   15.67     210.0      0.0574   404
  -10     76.5   15.22     199.0      0.0550   392
  -30     77.9   15.00     192.5      0.0537   387
  -40     78.1   14.44     184.9      0.0517   372
EF=1500V/mm   160     119.9   11.36     94.8      0.0328   390
  120     92.7   10.35     111.7      0.0340   356
  80     76.4   9.96     130.5      0.0361   342
  50     72.2   10.19     141.2      0.0379   350
  20     71.7   10.75     149.8      0.0401   369
  -10     74.1   10.41     140.6      0.0383   358
  -30     75.7   10.02     132.3      0.0364   344
  -40     75.7   9.40     124.2      0.0342   323
EF=1000V/mm   160     120.9   6.44     53.2      0.0185   332
  120     88.8   6.16     69.3      0.0207   317
  80     71.2   6.04     85.0      0.0227   312
  50     66.7   6.16     92.2      0.0238   317
  20     67.1   6.32     94.3      0.0244   326
  -10     69.6   6.16     88.5      0.0233   317
  -30     70.8   5.88     83.0      0.0221   303
  -40     70.8   5.43     76.6      0.0204   280
(表2)实施例2
驱动电场强度:EF 温度[℃]     表观动态电容[nF]   位移[μm]     位移/表观动态电容[m/F]     位移/(表观动态电容)0.5[m/F]     动态应变量[pm/V]
EF=2000V/mm 160     160.4   21.98     137.1     0.0549     566
120     119.0   18.48     155.4     0.0536     476
80     95.7   17.38     181.6     0.0562     448
50     87.9   16.64     189.3     0.0561     429
20     85.3   17.10     200.4     0.0585     441
-10     85.3   17.29     202.6     0.0592     446
-30     85.3   17.93     210.1     0.0614     462
-40     85.3   17.66     206.9     0.0604     455
EF=1500V/mm 160     158.1   14.53     91.9     0.0365     499
120     113.4   12.60     111.1     0.0374     433
80     92.8   11.68     125.9     0.0383     401
50     82.5   11.31     137.1     0.0394     388
20     82.5   11.59     140.5     0.0403     398
-10     82.5   12.14     147.2     0.0423     417
-30     85.9   12.14     141.3     0.0414     417
-40     85.9   12.14     141.3     0.0414     417
EF=1000V/mm 160     144.8   8.18     56.5     0.0215     422
120     98.3   7.36     74.9     0.0235     379
80     87.9   7.36     83.7     0.0248     379
50     82.8   7.08     85.6     0.0246     365
20     77.6   6.90     88.9     0.0248     355
-10     82.8   7.45     90.0     0.0259     384
-30     82.8   8.09     97.8     0.0281     417
-40     82.8   8.00     96.7     0.0278     412
(表3)实施例3
驱动电场强度:EF   温度[℃]     表观动态电容[nF]   位移[μm]     位移/表观动态电容[m/F]     位移/(表观动态电容)0.5[m/F]   动态应变量[pm/V]
EF=2000V/mm   160     138.7   20.15     145.3     0.0541   519
  120     106.4   17.23     161.9     0.0528   444
  80     81.6   16.44     201.4     0.0575   424
  50     80.8   16.49     204.1     0.0580   425
  20     80.2   17.38     216.7     0.0614   448
  -10     82.2   17.92     218.1     0.0625   462
  -30     82.4   17.92     217.4     0.0624   462
  -40     80.2   17.48     217.9     0.0617   450
EF=1500V/mm   160     147.5   14.11     95.7     0.0367   485
  120     107.5   12.08     112.4     0.0368   415
  80     86.8   11.19     128.9     0.0380   384
  50     79.9   11.44     143.1     0.0405   393
  20     78.8   12.08     153.3     0.0430   415
  -10     81.2   12.38     152.4     0.0434   425
  -30     82.3   12.53     152.1     0.0437   430
  -40     80.9   11.98     148.2     0.0421   411
EF=1000V/mm   160     152.4   8.42     55.2     0.0216   434
  120     105.3   7.28     69.1     0.0224   375
  80     82.2   6.73     82.0     0.0235   347
  50     74.4   6.78     91.2     0.0249   350
  20     74.1   6.93     93.6     0.0255   357
  -10     76.6   7.38     96.3     0.0267   380
  -30     77.7   7.48     96.2     0.0268   385
  -40     75.8   7.18     94.8     0.0261   370
(表4)实施例4
驱动电场强度:EF   温度[℃]     表观动态电容[nF]  位移[μm]     位移/表观动态电容[m/F]     位移/(表观动态电容)0.5[m/F]   动态应变量[pm/V]
EF=2000V/mm   160     168.1  26.21     155.9     0.0639   675
  120     131.9  23.26     176.4     0.0641   600
  80     106.0  21.89     206.4     0.0672   564
  50     100.9  21.70     215.2     0.0683   559
  20     98.3  22.16     225.5     0.0707   571
  -10     95.4  22.80     239.0     0.0738   588
  -30     93.8  21.70     231.2     0.0708   559
  -40     77.7  19.40     249.8     0.0696   500
LEF=1500V/mm   160     165.0  16.64     100.9     0.0410   572
  120     134.0  15.91     118.7     0.0435   546
  80     106.5  14.90     139.8     0.0456   512
  50     99.7  14.62     146.7     0.0463   502
  20     97.3  15.45     158.8     0.0495   531
  -10     100.3  15.63     155.8     0.0493   537
  -30     97.7  15.36     157.2     0.0491   527
  -40     73.5  13.61     185.1     0.0502   467
EF=1000V/mm   160     160.4  8.37     52.2     0.0209   431
  120     124.1  8.92     71.8     0.0253   460
  80     98.3  8.55     87.0     0.0273   441
  50     93.1  8.28     88.9     0.0271   427
  20     90.0  9.01     100.1     0.0300   465
  -10     95.2  9.56     100.5     0.0310   493
  -30     91.8  9.38     102.2     0.0310   483
  -40     68.3  8.46     123.9     0.0324   436
(表5)实施例5
驱动电场强度:EF   温度[℃]     表观动态电容[nF]   位移[μm]      位移/表观动态电容[m/F]      位移/(表观动态电容)0.5[m/F]     动态应变量[pm/V]
EF=2000V/mm   160     129.8   19.77      152.3      0.0549     510
  120     97.7   17.47      178.9      0.0559     450
  80     85.6   17.24      201.3      0.0589     444
  50     81.9   17.01      207.8      0.0594     438
  20     83.2   17.93      215.5      0.0622     462
  -10     87.6   18.62      212.5      0.0629     480
  -30     88.6   19.31      218.1      0.0649     498
  -40     85.3   19.08      223.8      0.0653     492
EF=1500V/mm   160     129.6   13.79      106.5      0.0383     474
  120     98.1   12.18      124.2      0.0389     418
  80     85.4   11.72      137.3      0.0401     403
  50     80.0   11.49      143.7      0.0406     395
  20     81.1   12.18      150.2      0.0428     418
  -10     85.9   12.41      144.5      0.0423     426
  -30     87.0   13.33      153.3      0.0452     458
  -40     83.6   13.10      156.8      0.0453     450
EF=1000V/mm   160     131.6   8.74      66.4      0.0241     450
  120     96.2   7.13      74.1      0.0230     367
  80     83.5   6.90      82.6      0.0239     355
  50     75.8   6.90      91.0      0.0251     355
  20     76.9   7.59      98.6      0.0274     391
  -10     82.6   7.82      94.6      0.0272     403
  -30     83.2   8.51      102.3      0.0295     438
  -40     79.4   8.28      104.2      0.0294     427
EF=2V/mm(静电电容)   160     56.8
  120     53.8
  80     54.2
  50     56.0
  20     57.8
  -10     59.6
  -30     56.3
  -40     50.4
(表6)比较例1
驱动电场强度:EF   温度[℃]      表观动态电容[nF]     位移[μm]      位移/表观动态电容[m/F]      位移/(表观动态电容)0.5[m/F]    动态应变量[pm/V]
EF=2000V/mm   160      180.8     26.80      148.2      0.0630     691
  120      150.9     25.60      169.6      0.0659     660
  70      125.7     24.00      190.9      0.0677     619
  20      108.9     22.70      208.4      0.0688     585
  -30      94.8     21.45      226.3      0.0697     553
  -40      92.0     21.20      230.5      0.0699     546
EF=1500V/mm   160      189.5     20.00      105.6      0.0459     687
  120      154.9     18.80      121.3      0.0478     646
  70      126.3     17.50      138.6      0.0492     601
  20      108.1     16.60      153.5      0.0505     570
  -30      94.4     16.10      170.5      0.0524     553
  -40      91.7     16.00      174.6      0.0528     549
(表7)比较例2
驱动电场强度:EF   温度[℃]      表观动态电容[nF]     位移[μm]      位移/表观动态电容[m/F]      位移/(表观动态电容)0.5[m/F]    动态应变量[pm/V]
EF=2000V/mm   160      290.0     37.50      129.3      0.0696     966
  120      228.1     34.00      149.1      0.0712     876
  70      148.4     29.30      1975      0.0761     755
  20      97.7     22.30      228.3      0.0714     575
  -30      72.8     18.72      257.2      0.0694     482
  -40      67.8     18.00      265.5      0.0691     464
EF=1500V/mm   160      351.3     33.0.0      93.9      0.0557     1133
  120      273.3     29.20      106.8      0.0559     1003
  70      174.0     23.80      136.8      0.0571     817
  20      109.7     18.00      164.1      0.0543     618
  -30      78.4     14.67      187.0      0.0524     504
  -40      72.2     14.00      194.0      0.0521     481
(表8)比较例3
驱动电场强度:EF   温度[℃]      表观动态电容[nF]     位移[μm]      位移/表观动态电容[m/F]      位移/(表观动态电容)0.5[m/F]    动态应变量[pm/V]
EF=2000V/mm   160      218.4     35.50      162.6      0.0760     915
  120      191.3     34.00      177.7      0.0777     876
  70      163.4     32.50      198.9      0.0804     838
  20      139.2     30.40      218.3      0.0815     784
  -30      114.6     26.40      230.4      0.0780     680
  -40      109.6     25.60      233.5      0.0773     660
EF=1500V/mm   160      225.8     26.00      115.1      0.0547     893
  120      194.5     24.20      124.4      0.0549     831
  70      165.9     22.60      136.2      0.0555     776
  20      140.1     21.30      152.0      0.0569     731
  -30      115.5     19.30      167.1      0.0568     663
  -40      110.5     18.90      171.0      0.0568     649
(表9)比较例4
驱动电场强度:EF   温度[℃]      表观动态电容[nF]     位移[μm]      位移/表观动态电容[m/F]      位移/(表观动态电容)0.5[m/F]    动态应变量[pm/V]
EF=2000V/mm   160      157.4     21.80      138.5      0.0549     562
  120      127.5     19.80      155.3      0.0555     510
  70      102.7     18.30      178.3      0.0571     472
  20      85.7     17.30      201.8      0.0591     446
  -30      76.1     16.22      213.0      0.0588     418
  -40      74.2     16.00      215.5      0.0587     412
EF=1500V/mm   160      161.2     16.20      100.5      0.0403     556
  120      128.0     14.40      112.5      0.0403     495
  70      102.6     13.00      126.7      0.0406     446
  20      84.1     12.50      148.7      0.0431     429
  -30      74.7     11.92      159.6      0.0436     409
  -40      72.8     11.80      162.2      0.0437     405
(表10)比较例5
驱动电场强度:EF   温度[℃]      表观动态电容[nF]     位移[μm]      位移/表观动态电容[m/F]      位移/(表观动态电容)0.5[m/F]    动态应变量[pm/V]
EF=2000V/mm   160      99.6     15.00      150.6      0.0475     387
  120      83.0     13.90      167.4      0.0482     358
  70      66.4     12.80      192.9      0.0497     330
  20      58.4     12.00      205.5      0.0497     309
  -30      52.5     12.17      231.7      0.0531     314
  -40      51.3     12.20      237.7      0.0539     314
EF=1500V/mm   160      98.6     10.60      107.5      0.0338     364
  120      81.7     10.00      122.4      0.0350     343
  70      67.1     9.00      134.1      0.0347     309
  20      56.8     8.60      151.5      0.0361     295
  -30      50.4     8.93      177.4      0.0398     307
  -40      49.1     9.00      183.4      0.0406     309
表11
    驱动电场强度(V/mm)     温度范围(℃)                   表观动态电容
   最大值(nF)    最小值(nF)    平均值(nF)   波动幅(%)
实施例1 2000   -30~80    78.2    74.0    76.1   2.8
  -30~160    118.9    74.0    96.4   23.3
1500   -30~80    76.4    71.7    74.1   3.1
  -30~160    119.9    71.7    95.8   25.1
1000   -30~80    71.2    66.7    69.0   3.2
  -30~160    120.9    66.7    93.8   28.9
实施例2 2000   -30~80    95.7    85.3    90.5   5.7
  -30~160    160.4    85.3    122.8   30.5
1500   -30~80    92.8    82.5    87.6   5.9
  -30~160    158.1    82.5    120.3   31.4
1000   -30~80    87.9    77.6    82.8   6.3
  -30~160    144.8    77.6    111.2   30.2
实施例3 2000   -30~80    82.4    80.2    81.3   1.4
  -30~160    138.7    80.2    109.5   26.7
1500   -30~80    86.8    78.8    82.8   4.8
  -30~160    147.5    78.8    113.2   30.3
1000   -30~80    82.2    74.1    78.1   5.2
  -30~160    152.4    74.1    113.2   34.6
实施例4 2000   -30~80    106.0    93.8    99.9   9.1
  -30~160    168.1    93.8    131.0   28.4
1500   -30~80    106.5    97.3    101.9   4.6
  -30~160    165.0    97.3    131.1   25.8
1000   -30~80    98.3    90.0    94.1   4.4
  -30~160    160.4    90.0    125.2   28.1
实施例5 2000   -30~80    88.6    81.9    85.2   3.9
  -30~160    129.8    81.9    105.8   22.6
1500   -30~80    87.0    80.0    83.5   4.2
  -30~160    129.6    80.0    104.8   23.7
1000   -30~80    83.5    75.8    79.7   4.9
  -30~160    131.6    75.8    103.7   26.9
2   -30~80    59.6    54.2    56.9   4.8
  -30~160    59.6    53.8    56.7   5.2
表12
    驱动电场强度(V/mm)     温度范围(℃)                            位移
  最大值(μm)   最小值(μm)   平均值(μm)     波动幅(%)
实施例1 2000   -30~80   15.67   14.72   15.20     3.1
  -30~160   17.18   14.72   15.95     7.7
1500   -30~80   10.75   9.96   10.35     3.8
  -30~160   11.36   9.96   10.66     6.6
1000   -30~80   6.32   5.88   6.10     3.7
  -30~160   6.44   5.88   6.16     4.5
实施例2 2000   -30~80   17.93   16.64   17.29     3.7
  -30~160   21.98   16.64   19.31     13.8
1500   -30~80   12.14   11.31   11.72     3.5
  -30~160   14.53   11.31   12.92     12.5
1000   -30~80   8.09   6.90   7.49     8.0
  -30~160   8.18   6.90   7.54     8.5
实施例3 2000   -30~80   17.92   16.44   17.18     4.3
  -30~160   20.15   16.44   18.30     10.1
1500   -30~80   12.53   11.19   11.86     5.6
  -30~160   14.11   11.19   12.65     11.5
1000   -30~80   7.48   6.73   7.11     5.2
  -30~160   8.42   6.73   7.58     11.1
实施例4 2000   -30~80   22.80   21.70   22.25     2.5
  -30~160   26.21   21.70   23.95     9.4
1500   -30~80   15.63   14.62   15.13     3.3
  -30~160   16.64   14.62   15.63     6.5
1000   -30~80   9.56   8.28   8.92     7.2
  -30~160   9.56   8.28   8.92     7.2
实施例5 2000   -30~80   19.31   17.01   18.16     6.3
  -30~160   19.77   17.01   18.39     7.5
1500   -30~80   13.33   11.49   12.41     7.4
  -30~160   13.79   11.49   12.64     9.1
1000   -30~80   8.51   6.90   7.70     10.4
  -30~160   8.74   6.90   7.82     11.8
表13
    驱动电场强度(V/mm)     温度范围(℃)                    位移/表观动态电容
  最大值(m/F)   最小值(m/F)   平均值(m/F)   波动幅(%)
实施例1 2000   -30~80   210.0   188.1   199.1   5.5
  -30~160   210.0   144.6   177.3   18.5
1500   -30~80   149.8   130.5   140.1   6.9
  -30~160   149.8   94.8   122.3   22.5
1000   -30~80   94.3   83.0   88.6   6.4
  -30~160   94.3   53.2   73.8   27.8
实施例2 2000   -30~80   210.1   181.6   195.9   7.3
  -30~160   210.1   137.1   173.6   21.0
1500   -30~80   147.2   125.9   136.5   7.8
  -30~160   147.2   91.9   119.5   23.1
1000   -30~80   97.8   83.7   90.7   7.8
  -30~160   97.8   56.5   77.1   26.8
实施例3 2000   -30~80   218.1   201.4   209.8   4.0
  -30~160   218.1   145.3   181.7   20.0
1500   -30~80   153.3   128.9   141.1   8.6
  -30~160   153.3   95.7   124.5   23.1
1000   -30~80   96.3   82.0   89.1   8.1
  -30~160   96.3   65.2   75.8   27.1
实施例4 2000   -30~80   239.0   206.4   222.7   7.3
  -30~160   239.0   155.9   197.4   21.0
1500   -30~80   158.8   139.8   149.3   6.4
  -30~160   158.8   100.9   129.9   22.3
1000   -30~80   102.2   87.0   94.6   8.0
  -30~160   102.2   52.2   77.2   32.4
实施例5 2000   -30~80   218.1   201.3   209.7   4.0
  -30~160   218.1   152.3   185.2   17.7
1500   -30~80   153.3   137.3   145.3   5.5
  -30~160   153.3   106.5   129.9   18.0
1000   -30~80   102.3   82.6   92.4   10.7
  -30~160   102.3   66.4   84.3   21.3
表14
    驱动电场强度(V/mm) 温度范围(℃)  位移/(表观动态电容)0.5
 最大值(m/F)  最小值(m/F) 平均值(m/F)     波动幅(%)
实施例1 2000 -30~80  0.0574  0.0526  0.0550     4.3
-30~160  0.0574  0.0495  0.0534     7.3
1500 -30~80  0.0401  0.0361  0.0381     5.3
-30~160  0.0401  0.0328  0.0365     10.0
1000 -30~80  0.0244  0.0221  0.0233     5.0
-30~160  0.0244  0.0185  0.0215     13.8
实施例2 2000 -30~80  0.0614  0.0561  0.0588     4.5
-30~160  0.0614  0.0536  0.0575     6.8
1500 -30~80  0.0423  0.0383  0.0403     4.9
-30~160  0.0423  0.0365  0.0394     7.3
1000 -30~80  0.0281  0.0246  0.0264     6.7
-30~160  0.0281  0.0215  0.0248     13.3
实施例3 2000 -30~80  0.0625  0.0575  0.0600     4.2
-30~160  0.0625  0.0528  0.0577     8.4
1500 -30~80  0.0437  0.0380  0.0408     6.9
-30~160  0.0437  0.0367  0.0402     8.6
1000 -30~80  0.0268  0.0235  0.0252     6.6
-30~160  0.0268  0.0216  0.0242     10.9
实施例4 2000 -30~80  0.0738  0.0672  0.0705     4.7
-30~160  0.0738  0.0639  0.0689     7.2
1500 -30~80  0.0495  0.0456  0.0476     4.1
-30~160  0.0495  0.0410  0.0453     9.5
1000 -30~80  0.0310  0.0271  0.0291     6.7
-30~160  0.0310  0.0209  0.0259     19.5
实施例5 2000 -30~80  0.0649  0.0589  0.0619     4.8
-30~160  0.0649  0.0549  0.0599     8.4
1500 -30~80  0.0452  0.0401  0.0427     6.0
-30~160  0.0452  0.0383  0.0418     8.3
1000 -30~80  0.0295  0.0239  0.0267     10.6
-30~160  0.0295  0.0230  0.0262     12.4
表15
    驱动电场强度(V/mm)     温度范围(℃)                     表观动态电容
  最大值(nF)   最小值(nF)   平均值(nF)   波动幅(%)
比较例1 2000   -30~70   125.7   94.8   110.3   14.0
  -30~160   180.8   94.8   137.8   31.2
1500   -30~70   126.3   94.4   110.4   14.5
  -30~160   189.5   94.4   141.9   33.5
比较例2 2000   -30~70   148.4   72.8   110.6   34.2
  -30~160   290.0   72.8   181.4   59.9
1500   -30~70   174.0   78.4   126.2   37.9
  -30~160   351.3   78.4   214.9   63.5
比较例3 2000   -30~70   163.4   114.6   139.0   17.6
  -30~160   218.4   114.6   166.5   31.2
1500   -30~70   165.9   115.5   140.7   17.9
  -30~160   225.8   115.5   170.6   32.3
比较例4 2000   -30~70   102.7   76.1   89.4   14.8
  -30~160   157.4   76.1   116.8   34.8
1500   -30~70   102.6   74.7   88.6   15.8
  -30~160   161.2   74.7   117.9   36.7
比较例5 2000   -30~70   66.4   52.5   59.4   11.7
  -30~160   99.6   52.5   76.0   31.0
1500   -30~70   67.1   50.4   58.7   14.3
  -30~160   98.6   50.4   74.5   32.4
表16
    驱动电场强度(V/mm)     温度范围(℃)                          位移
  最大值(μm)   最小值(μm)   平均值(μm)  波动幅(%)
比较例1 2000   -30~70   24.00   21.45   22.73   5.6
  -30~160   26.80   21.45   24.13   11.1
1500   -30~70   17.50   16.10   16.80   4.2
  -30~160   20.00   16.10   18.05   10.8
比较例2 2000   -30~70   29.30   18.72   24.01   22.0
  -30~160   37.50   18.72   28.11   33.4
1500   -30~70   23.80   14.67   19.23   23.7
  -30~160   33.00   14.67   23.83   38.5
比较例3 2000   -30~70   32.50   26.40   29.45   10.4
  -30~160   35.50   26.40   30.95   14.7
1500   -30~70   22.60   19.30   20.95   7.9
  -30~160   26.00   19.30   22.65   14.8
比较例4 2000   -30~70   18.30   16.22   17.26   6.0
  -30~160   21.80   16.22   19.01   14.7
1500   -30~70   13.00   11.92   12.46   4.3
  -30~160   16.20   11.92   14.06   15.2
比较例5 2000   -30~70   12.80   12.00   12.40   3.2
  -30~160   15.00   12.00   13.50   11.1
1500   -30~70   9.00   8.60   8.80   2.3
  -30~160   10.60   8.60   9.60   10.4
表17
    驱动电场强度(V/mm )   温度范围(℃)     位移/表观动态电容
  最大值(m/F)   最小值(m/F)   平均值(m/F)   波动幅(%)
比较例1 2000 -30~70   226.3   190.9   208.6   8.5
-30~160   226.3   148.2   187.3   20.8
1500 -30~70   171.1   138.6   154.8   10.5
-30~160   171.1   105.6   138.3   23.7
比较例2 2000 -30~70   257.2   197.5   227.3   13.1
-30~160   257.2   129.3   193.2   33.1
1500 -30~70   187.0   136.8   161.9   15.5
-30~160   187.0   93.9   140.5   33.1
比较例3 2000 -30~70   230.4   198.9   214.7   7.4
-30~160   230.4   162.6   196.5   17.3
1500 -30~70   167.1   136.2   151.7   10.2
-30~160   167.1   115.1   141.1   18.4
比较例4 2000 -30~70   213.0   178.3   195.6   8.9
-30~160   213.0   138.5   175.7   21.2
1500 -30~70   159.6   126.7   143.2   11.5
-30~160   159.6   100.5   130.1   22.7
比较例5 2000 -30~70   231.7   192.9   212.3   9.1
-30~160   231.7   150.6   191.2   21.2
1500 -30~70   177.4   134.1   155.7   13.9
-30~160   177.4   107.5   142.4   24.5
表18
    驱动电场强度(V/mm)     温度范围(℃)     位移/(表观动态电容)2
  最大值(m/F)   最小值(m/F)   平均值(m/F) 波动幅(%)
比较例1 2000   -30~70   0.0697   0.0677   0.0687   1.4
-30~160   0.0697   0.0630   0.0663   5.0
1500 -30~70   0.0524   0.0492   0.0508   3.1
-30~160   0.0524   0.0459   0.0492   6.6
比较例2 2000 -30~70   0.0761   0.0694   0.0727   4.6
-30~160   0.0761   0.0694   0.0727   4.6
1500 -30~70   0.0571   0.0524   0.0547   4.3
-30~160   0.0571   0.0524   0.0547   4.3
比较例3 2000 -30~70   0.0815   0.0780   0.0797   2.2
-30~160   0.0815   0.0760   0.0787   3.5
1500 -30~70   0.0569   0.0555   0.0562   1.3
-30~160   0.0569   0.0547   0.0558   2.0
比较例4 2000 -30~70   0.0591   0.0571   0.0581   1.7
-30~160   0.0591   0.0549   0.0570   3.6
1500 -30~70   0.0436   0.0406   0.0421   3.6
-30~160   0.0436   0.0403   0.0419   4.0
比较例5 2000 -30~70   0.0531   0.0497   0.0514   3.3
-30~160   0.0531   0.0475   0.0503   5.5
1500 -30~70   0.0398   0.0347   0.0373   6.8
-30~160   0.0398   0.0338   0.0368   8.2

Claims (22)

1.一种压电执行元件,其具有在压电陶瓷的表面形成1对电极而构成的压电元件作为驱动源,其特征在于:对所述压电执行元件外加电压,以电场强度为100V/mm以上的具有恒定振幅的电场驱动条件使其驱动的场合,所述压电执行元件满足下述要件(a)~(c)中的至少一个要件,
(a)下述式(1)表示的表观动态电容C[F]的随温度变化产生的波动幅WC[%]在-30℃~80℃的特定温度范围内为±11%以内,其中,C[F]为所述压电执行元件的表观动态电容,当所述压电执行元件与电容器串联连接,并对所述压电执行元件以及所述电容器外加电压时,C[F]可通过用所述电容器中积蓄的电荷量Q[C]除以外加到所述压电执行元件上的电压V[V]而算出,
WC(%)=[{2×Cmax/(Cmax+Cmin)}-1]×100  (1)
其中,Cmax表示在-30℃~80℃的表观动态电容的最大值,Cmin表示在-30℃~80℃的表观动态电容的最小值;
(b)下述式(2)表示的位移L[μm]的随温度变化产生的波动幅WL[%]在-30℃~80℃的特定温度范围内为±14%以内,其中,L[μm]为所述压电执行元件的位移,
WL[%]=[{2×Lmax/(Lmax+Lmin)}-1]×100    (2)
其中,Lmax表示在-30℃~80℃的位移的最大值,Lmin表示在-30℃~80℃的位移的最小值;
(c)下述式(3)表示的L/C的随温度变化产生的波动幅WL/C(%)在-30℃~80℃的特定温度范围内为±12%%以内,其中,C[F]为所述压电执行元件的表观动态电容,L[μm]为所述压电执行元件的位移,当所述压电执行元件与电容器串联连接,并对所述压电执行元件以及所述电容器外加电压时,所述C[F]可通过用所述电容器中积蓄的电荷量Q[C]除以外加到所述压电执行元件上的电压V[V]而算出,
WL/C[%]=[{2×(L/C)max/((L/C)max+(L/C)min)}-1]×100    (3)
其中,(L/C)max表示在-30℃~80℃的L/C的最大值,(L/C)min表示在-30℃~80℃的L/C的最小值。
2.根据权利要求1所述的压电执行元件,其特征在于:满足所述要件(a)和所述要件(b)这两者。
3.根据权利要求1所述的压电执行元件,其特征在于:满足所述要件(a)~(c)的全部要件。
4.根据权利要求1~3的任何一项所述的压电执行元件,其特征在于:还满足下述要件(d),
(d)下述式(4)表示的L/C0.5的随温度变化产生的波动幅WL/C 0.5,在-30℃~80℃的特定温度范围内为±12%以内,其中,L/C0.5为所述压电执行元件的位移L[μm]与所述表观动态电容C[F]的平方根之比,WL/C 0.5(%)=[{2×(L/C0.5)max/((L/C0.5)max+(L/C0.5)min)}-1]×100
                                                         (4)
式中,(L/C0.5)max表示在-30℃~80℃的L/C0.5的最大值,(L/C0.5)min表示在-30℃~80℃的L/C0.5的最小值。
5.根据权利要求1~4的任何一项所述的压电执行元件,其特征在于:还满足下述要件(e),
(e)通过用所述压电执行元件在外加电场方向的应变除以电场强度计算的动态应变量在-30℃~80℃的特定温度范围内为250pm/V以上。
6.根据权利要求1~5的任何一项所述的压电执行元件,其特征在于:还满足下述要件(f),
(f)所述波动幅WC[%]在-30℃~160℃的特定温度范围内为±35%以内。
7.根据权利要求1~6的任何一项所述的压电执行元件,其特征在于:还满足下述要件(g),
(g)所述波动幅WL[%]在-30℃~160℃的特定温度范围内为±14%以内。
8.根据权利要求1~7的任何一项所述的压电执行元件,其特征在于:还满足下述要件(h),
(h)所述波动幅WL/C[%]在-30℃~160℃的特定温度范围内为±35%以内。
9.根据权利要求1~8的任何一项所述的压电执行元件,其特征在于:还满足下述要件(i),
(i)所述波动幅WL/C 0.5[%]在-30℃~160℃的特定温度范围内为±20%以内。
10.一种压电执行元件,其具有在压电陶瓷的表面形成1对电极而构成的压电元件作为驱动源,其特征在于:对所述压电执行元件外加电压,以电场强度为100V/mm以上的具有恒定振幅的电场驱动条件使其驱动的场合,所述压电执行元件满足下述要件(j)~(l)中的至少一个要件,
(j)下述式(5)表示的表观动态电容C[F]的随温度变化产生的波动幅WC[%]在-30℃~160℃的特定温度范围内为±30%以内,其中,C[F]为所述压电执行元件的表观动态电容,当所述压电执行元件与电容器串联连接,并对所述压电执行元件以及所述电容器外加电压时,C[F]可通过用所述电容器中积蓄的电荷量Q[C]除以外加到所述压电执行元件上的电压V[V]而算出,
WC(%)=[{2×Cmax/(Cmax+Cmin)}-1]×100    (5)
其中,Cmax表示在-30℃~160℃的表观动态电容的最大值,Cmin表示在-30℃~160℃的表观动态电容的最小值;
(k)下述式(6)表示的位移L[μm]的随温度变化产生的波动幅WL[%]在-30℃~160℃的特定温度范围内为±14%以内,其中,L[μm]为所述压电执行元件的位移,
WL[%]=[{2×Lmax/(Lmax+Lmin)}-1]×100    (6)
其中,Lmax表示在-30℃~160℃的位移的最大值,Lmin表示在-30℃~160℃的位移的最小值;
(1)下述式(7)表示的L/C的随温度变化产生的波动幅WL/C(%),在-30℃~160℃的特定温度范围内为±35%以内,其中,C[F]为所述压电执行元件的表观动态电容,L[μm]为所述压电执行元件的位移,当所述压电执行元件与电容器串联连接,并对所述压电执行元件以及所述电容器外加电压时,所述C[F]可通过用所述电容器中积蓄的电荷量Q[C]除以外加到所述压电执行元件上的电压V[V]而算出,
WL/C[%]=[{2×(L/C)max/((L/C)max+(L/C)min)}-1]×100  (7)
其中,(L/C)max表示在-30℃~160℃的L/C的最大值,(L/C)min表示在-30℃~160℃的L/C的最小值。
11.根据权利要求10所述的压电执行元件,其特征在于:满足所述要件(j)和所述要件(k)这二者。
12.根据权利要求10所述的压电执行元件,其特征在于:满足所述要件(j)~(l)的全部要件。
13.根据权利要求10~12项中任何一项所述的压电执行元件,其特征在于:还满足下述要件(m),
(m)下述式(8)表示的L/C0.5的随温度变化产生的波动幅WL/C 0.5[%]在-30℃~160℃的特定温度范围内为±20%以内,其中,L/C0.5为所述压电执行元件的位移L[μm]与所述表观动态电容C[F]的平方根之比,
WL/C 0.5(%)=[{2×(L/C0.5)max/((L/C0.5)max+(L/C0.5)min)}-1]×100
                                                           (8)
其中,(L/C0.5)max表示在-30℃~160℃的特定温度范围内的L/C0.5的最大值,(L/C0.5)min表示在-30℃~160℃的特定范围内的L/C0.5的最小值。
14.根据权利要求10~13项中任何一项所述的压电执行元件,其特征在于:还满足下述要件(n),
(n)通过用所述压电执行元件在外加电场方向的应变除以电场强度而计算的动态应变量在-30℃~160℃的特定温度范围内为250pm/V以上。
15.根据权利要求10~14中任何一项所述的压电执行元件,其特征在于:包含具有正的电阻温度系数的PTC电阻器,所述PTC电阻器与具有负的电阻温度系数的所述压电陶瓷并联电连接,同时按照所述PTC电阻器的温度与所述压电陶瓷的温度大致相等的位置关系进行配置。
16.根据权利要求15所述的压电执行元件,其特征在于:所述PTC电阻器是钛酸钡系半导体,在温度为80℃以上的温度区域中具有正的电阻温度系数。
17.根据权利要求1~16中任何一项所述的压电执行元件,其特征在于:所述压电执行元件具有由多个所述压电陶瓷层叠而形成的层叠型压电元件作为所述压电元件,并用于燃料喷射阀。
18.根据权利要求1~17中任何一项所述的压电执行元件,其特征在于:所述压电陶瓷由含有选自Li、K以及Na中的至少1种的含碱金属的压电陶瓷构成。
19.根据权利要求1~18中任何一项所述的压电执行元件,其特征在于:所述压电陶瓷不含铅。
20.根据权利要求1~19中任何一项所述的压电执行元件,其特征在于:所述压电陶瓷由以通式:{Lix(K1-yNay)1-x}{Nb1-z-wTazSbw}O3表示的各向同性钙钛矿型化合物作为主相的多晶体构成,同时由构成所述多晶体的各晶粒的特定晶面处于取向状态的晶体取向压电陶瓷构成,上式中,0≤x≤0.2、0≤y≤1、0≤z≤0.4、0≤w≤0.2、x+z+w>0。
21.根据权利要求20所述的压电执行元件,其特征在于:在所述晶体取向压电陶瓷中,所述通式:{Lix(K1-yNay)1-x}{Nb1-z-wTazSbw}O3中的x、y以及z满足下述式(9)和式(10)的关系。
9x-5z-17w≥-318    (9)
-18.9x-3.9z-5.8w≤-130    (10)
22.根据权利要求20或21所述的压电执行元件,其特征在于:所述晶体取向压电陶瓷的采用劳特盖尔丁法测定的拟立方{100}面的取向度为30%以上,且在10℃~160℃的温度范围内,结晶系为正方晶。
CNB2005800307146A 2004-09-13 2005-09-13 压电执行元件 Expired - Fee Related CN100511746C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP266110/2004 2004-09-13
JP2004266110 2004-09-13
JP228396/2005 2005-08-05

Publications (2)

Publication Number Publication Date
CN101019247A true CN101019247A (zh) 2007-08-15
CN100511746C CN100511746C (zh) 2009-07-08

Family

ID=38727278

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800307146A Expired - Fee Related CN100511746C (zh) 2004-09-13 2005-09-13 压电执行元件

Country Status (1)

Country Link
CN (1) CN100511746C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105764696A (zh) * 2013-11-28 2016-07-13 京瓷株式会社 压电元件以及使用其的压电构件、液体喷出头和记录装置
CN105789430A (zh) * 2016-02-02 2016-07-20 欧明 一种温度稳定压电陶瓷振子
CN105826461A (zh) * 2016-03-08 2016-08-03 欧明 一种温度稳定压电复合陶瓷振子
WO2016124941A1 (en) * 2015-02-05 2016-08-11 Ionix Advanced Technologies Ltd Piezoelectric transducers
CN107925368A (zh) * 2015-08-21 2018-04-17 株式会社富士金 压电式线性致动器、压电驱动阀以及流量控制装置
CN110380646A (zh) * 2019-07-25 2019-10-25 刘金刚 获取瞬态能装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105764696B (zh) * 2013-11-28 2017-08-29 京瓷株式会社 压电元件以及使用其的压电构件、液体喷出头和记录装置
US9873248B2 (en) 2013-11-28 2018-01-23 Kyocera Corporation Piezoelectric element, piezoelectric member, liquid discharge head, and recording device each using piezoelectric element
CN107464875A (zh) * 2013-11-28 2017-12-12 京瓷株式会社 压电元件以及使用其的压电构件、液体喷出头和记录装置
CN105764696A (zh) * 2013-11-28 2016-07-13 京瓷株式会社 压电元件以及使用其的压电构件、液体喷出头和记录装置
WO2016124941A1 (en) * 2015-02-05 2016-08-11 Ionix Advanced Technologies Ltd Piezoelectric transducers
CN107427862A (zh) * 2015-02-05 2017-12-01 爱奥尼克斯新技术有限公司 压电换能器
US10730074B2 (en) 2015-02-05 2020-08-04 Ionix Advanced Technologies Ltd Piezoelectric transducers
CN107925368A (zh) * 2015-08-21 2018-04-17 株式会社富士金 压电式线性致动器、压电驱动阀以及流量控制装置
CN107925368B (zh) * 2015-08-21 2019-06-18 株式会社富士金 压电式线性致动器、压电驱动阀以及流量控制装置
CN105789430A (zh) * 2016-02-02 2016-07-20 欧明 一种温度稳定压电陶瓷振子
CN105789430B (zh) * 2016-02-02 2018-04-24 欧明 一种温度稳定压电陶瓷振子
CN105826461A (zh) * 2016-03-08 2016-08-03 欧明 一种温度稳定压电复合陶瓷振子
CN105826461B (zh) * 2016-03-08 2018-08-07 欧明 一种温度稳定压电复合陶瓷振子
CN110380646A (zh) * 2019-07-25 2019-10-25 刘金刚 获取瞬态能装置

Also Published As

Publication number Publication date
CN100511746C (zh) 2009-07-08

Similar Documents

Publication Publication Date Title
EP1791193B1 (en) Piezoelectric actuator
JP4795748B2 (ja) 圧電アクチュエータ
US20070176516A1 (en) Piezoelectric sensor
JP4510966B2 (ja) 圧電体セラミックス
US9938197B2 (en) Unleaded piezoelectric ceramic composition, piezoelectric element using same, device, and method for manufacturing unleaded piezoelectric ceramic composition
CN100511746C (zh) 压电执行元件
EP1855329A1 (en) Multilayer piezoelectric element
JPWO2006018930A1 (ja) 圧電磁器組成物、及び圧電素子
JP4903683B2 (ja) 圧電磁器および圧電素子
JP2000128632A (ja) 圧電セラミックス
US8564180B2 (en) Piezoelectric composition, piezoelectric ceramic, transducer, and ultrasonic motor
JP4992796B2 (ja) 発振子
JP4449331B2 (ja) 圧電磁器およびそれを用いた圧電磁器素子
JP4877672B2 (ja) 圧電組成物
JP3080277B2 (ja) ビスマス層状化合物の製造方法
JP4983537B2 (ja) 圧電磁器組成物、及び発振子
JP3699599B2 (ja) 圧電磁器
KR910007120B1 (ko) 산화물 압전재료
JP3061224B2 (ja) ビスマス層状化合物の分極方法
JP4671522B2 (ja) 圧電磁器及び積層型圧電素子並びに噴射装置
JP4983538B2 (ja) 圧電磁器組成物、及び発振子
JP5258620B2 (ja) 圧電磁器および圧電素子
US20080309203A1 (en) Piezoelectric Element
JPH11100264A (ja) 圧電磁器組成物およびその製造方法
JPH0680423A (ja) ビスマス層状化合物の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090708

Termination date: 20200913

CF01 Termination of patent right due to non-payment of annual fee