CN101002080A - 借助ftir光谱法在冶金成套设备上无接触废气测量 - Google Patents

借助ftir光谱法在冶金成套设备上无接触废气测量 Download PDF

Info

Publication number
CN101002080A
CN101002080A CNA2005800273031A CN200580027303A CN101002080A CN 101002080 A CN101002080 A CN 101002080A CN A2005800273031 A CNA2005800273031 A CN A2005800273031A CN 200580027303 A CN200580027303 A CN 200580027303A CN 101002080 A CN101002080 A CN 101002080A
Authority
CN
China
Prior art keywords
waste gas
ftir spectrometer
measurement
steam passage
exhaust steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800273031A
Other languages
English (en)
Other versions
CN100549673C (zh
Inventor
O·扬纳施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of CN101002080A publication Critical patent/CN101002080A/zh
Application granted granted Critical
Publication of CN100549673C publication Critical patent/CN100549673C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/06Modeling of the process, e.g. for control purposes; CII
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0012Monitoring the composition of the atmosphere or of one of their components
    • F27D2019/0015Monitoring the composition of the exhaust gases or of one of its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

在设备部件中、例如在转炉中实施冶金工艺时,了解随着时间变化的废气组成成分是重要的辅助手段,以便提供关于工艺进程的情况并可以相应地对工艺进程进行控制。公开的可行分析方法例如是从废气流(7)获取有限的体积,然后对该废气试样例如进行光谱分析。在这种基于采样的分析方法中不利的是时间延迟,分析结果在采样后经过该时间延迟后才能得到。因此根据本发明提出,借助FTIR光谱仪无时间延迟地实施无接触的废气分析,其中得到的FTIR光谱仪(2)的光谱借助事先获得的数学模型用于计算废气组成成分。

Description

借助FTIR光谱法在冶金成套设备上无接触废气测量
本发明涉及在处于热和脏的环境空气中的冶金成套设备或者说设备上、特别在转炉上无接触地测量废气的方法和装置,使用与冶金设备间隔安装的FTIR光谱仪(FTIR=傅立叶变换红外),其测量光线在废气通道作为测量点的合适开口处指向废气中,其中相应于在废气中的测量光线长度在测量技术上检测该长度的呈圆柱形的废气体积段,并将在此得到的测量值由FTIR光谱仪显示在与废气组成成分相关的光谱中,然后考虑废气温度和之前以依赖于温度的能量平衡形式计算得到的数学模型实现无时间延迟地计算废气组成成分。
在设备部件中、例如在转炉中实施冶金工艺时,了解随着时间变化的废气组成成分是重要的辅助手段,以便可以提供关于工艺进程的启示并相应地对工艺进程进行控制。公开的可行分析方法例如是从废气流中获取有限的体积,然后对该废气试样例如进行光谱分析,如在用于确定氧气转炉中精炼过程结束点的DE 42 17 933 C2中示例性描述的。
在这种基于采样的分析方法中不利的是时间延迟,采样后在该时间延迟后获得分析结果,因为之前必须将热的废气冷却,并且必要时为了分析要进行预处理。另外的缺点是必须对采样系统(喷管、管道)进行清洁(因为废气是脏的),由此会出现中断,这同样在得到分析结果之前导致时间延迟。最后只有在精确地通过流动方程采集废气的情况下才能得到精确的分析结果,因此由于较少的试样体积,这种结果不是绝对具有代表性的。
为了克服所描述的缺点,在O.Jannasch,H.-W.Gudenau,K.Mavrommatis,D.Senk的公开文献:“Bestimmung derNachverbrennung im Elektrolichtbogenofen durch FTIR-Abgasanalyse”;Vortrag 18.Aachener Stahlkolloquium 25.und26.September 2003,Tagungsband Verlag Mainz,Aachen中提出了一种方法,利用该方法可以实现无接触的废气分析,而不存在显著的时间延迟。
为了实施无接触的废气分析,FTIR光谱仪与电弧炉侧向间隔地安装在平台上,光谱仪的测量光线(激光束)对准排气歧管的一个缝隙中。根据依赖于温度的光谱形式的测量结果和用于与传统的基于采样的气体分析器相比较得到的废气成分,开发一种与电炉钢厂条件相匹配的能量平衡形式的数学模型。然后将所开发的模型与FTIR光谱测量法的当前值的组合得到快速和无接触的废气分析方法,这种方法可以用于在电弧炉中控制后燃,并且有助于更有效地利用在废气中包含的能量。
由描述的现有技术出发,本发明的任务是将为电弧炉开发的无接触的废气分析方法与其它处于热和脏的环境空气中的冶金设备、如特别是转炉这类设备相匹配,并为此提供合适的装置。
所提出的任务在方法方面通过权利要求1的特征性特征如下解决,即首先将以废气组成成分的计算为基础的数学模型与由测量光线同时检测的热和脏的环境空气相匹配,并与相应的冶金设备、特别是转炉的特殊温度和废气组成成分相匹配,并相应将数学模型重新处理,其中通过校正产生参考光谱,并且作为光谱测量废气组成成分的补充还一起测量废气的流动特性(层流或者涡流部分),并且在建立模型时一同用于支持计算。
用于实施这种无接触的废气分析方法的装置的特征在于权利要求6的特征。本发明优选的设计方案在从属权利要求中描述。
FTIR光谱仪的测量光线的测量点在废气通道的合适位置处选择,即测量光线从废气通道的一个前开口自由穿过废气,并且然后通过废气通道背面的一个第二开口照射到位于废气通道外部的背面冷基底。这个冷基底要求作为参考点用于光谱废气测量,在此应该尽可能靠近地设置在废气通道后面。FTIR光谱仪的测量光线精确地通过测量点废气通道的开口进行定向对于尽可能精确的测量是必需的,这种定向在此可以选择性地通过反射光学系统实施。根据本发明,附加地用于支持模型建立而进行的废气流动特性的测量使用CCD照相机进行,这种照相机安装在FTIR光谱仪的测量点上或者紧邻该测量点安装。
由于FTIR光谱仪和CCD照相机都位于热的要测量的冶金设备附近,因此必然要求对两个敏感并且贵重的仪器进行相应地保护和特别地冷却,例如使用液态氮。
通过FTIR光谱仪和冷基底到废气通道的空间距离,在进行光谱测量时不仅测量废气的成分,也以同样的方式测量在废气通道和FTIR光谱仪或者说冷基底之间的脏的环境空气。在建立数学模型时,必须考虑不属于废气的物质并相应地消除,以便避免引起以后对测量结果的错误解释。
冷基底是用于校准光谱仪必需的。冷基底不发出红外辐射,由此光谱仪持续得到参考,以便可以记录要测量的热废气的光谱。
测量点和光谱仪之间的距离在理想的情况下在15m和30m之间;在更长距离的情况下则需要放大器。在测量地点处,在测量点和光谱仪位置之间不可能存在直接的目光接触,在这个测量地点处必须安装必要时与放大器相连的反射光学系统。这种措施导致信号质量变差。这个距离的上限很难确定,其必须通过试验获得,并很大程度上取决于废气质量和穿过测量点和光谱仪位置之间的脏空气的信号的吸收。
所述数学模型是必须的,因为每种气体分子都依赖于温度在光谱(波数和形状)中显示出很大的差异。光谱强度(最大发射率)反应了这些分子在全部废气中的份额。数学模型建立准确的相互关系。
红外光谱法具有两种工作模式:主动模式和被动模式。只有在主动模式中存在真正的测量光线。在此要测量的气体被激励;由此在这种模式中冷基底吸收所有的能量,没有反射。在被动模式中的运行方式利用储存在热废气中的能量。能量激励废气分子进行平移和旋转运动,这种运动被光谱仪记录。冷基底不表现出这种放射性,可以说是“零放射性”,其可以被光谱仪用作参考。
用于在热和脏的环境空气中实施这种无接触的废气测量的装置的特征在于,在平台上靠近冶金设备定位无振动支承的FTIR光谱仪,即测量光线通过合适的在废气通道内带有开口的测量点可以穿过废气对准背面的冷基底和这样定向安装的CCD照相机,其为了光谱测量废气组成成分同时或者仅以非常小的时间延迟记录废气的流动特性。
因为为了测量,FTIR光谱仪安装在废气通道的附近,并且由此处于热和脏的环境空气中,并且还对例如由变压器产生的电磁场敏感,因此FTIR光谱仪为了防止环境空气的污物置于金属箱中,该金属箱为了屏蔽可能出现的电磁场使用软磁合金(mu-Metall)涂层。在该金属箱中可以在必要时同时安装CCD照相机。
为了防止环境空气的高温,FTIR光谱仪或者说探测器和/或金属箱与冷却装置相连,该冷却装置例如供给液态氮。
FTIR光谱仪以及CCD照相机与测量计算机通过相应导线或者通过例如在冶金设备的测量控制板中建立的无线电相连,并由此实现在适温和干净的地点分析测量结果。
下面借助一种在示意的附图中示出的实施例详细地说明本发明的其它细节、特征和优点。
在附图中示出的是一个传统结构形式的转炉1,因此在这里不详细说明其结构细节。废气通道6形成转炉1的上终端,热废气7通过该废气通道6被排出转炉1。在相对于转炉尺寸放大的视图中,相对转炉1空间间隔地示出用于废气光谱分析的测量布置,其包括FTIR光谱仪2、冷基底10和通过连接导线11与FTIR光谱仪2相连的测量计算机9。被绘制为象征性地表示包封着的金属箱的黑箱的FTIR光谱仪2在一个(未示出的)平台上安装在这样的高度上,即FTIR光谱仪2的测量光线3沿水平方向照射在转炉1的一个废气导引部分上。
FTIR光谱仪2的安装位置的标准是在废气通道6中存在或者提供合适的测量开口4、5,这些测量开口允许尽可能少的渗入空气在测量开口4、5处进入废气7,并且此外防止达到在废气通道6后面位于测量光线3高度的冷基底10。
在示出的实施例中,由FTIR光谱仪2出发的测量光线3首先通过前测量开口4进入转炉1的上部或者说进入废气通道6的下部,然后沿水平方向穿过废气7,并最终在离开废气通道6后通过下测量开口6照射到与转炉1间隔布置的冷基底10上。在其从FTIR光谱仪2到冷基底10的路径中,测量光线3不仅在一段相当于两个测量开口4和5之间距离的长度内经过废气,而且同时也经过转炉1的热和脏的环境空气8。在此困难的是这种环境空气8的组成成分和温度会不确定地波动,并由此在转炉1前面和后面可能不同。因此在要建立的数学模型中,在建立要在数学模型中处理的参考光谱时通过相应的初步试验和校正考虑这些在很大程度上不依赖于废气组成成分的数值。
附图标记列表
1     转炉
2     FTIR光谱仪
3     测量光线
4     前测量开口
5     后测量开口
6     废气通道
7     废气
8     环境空气
9     测量计算机
10    冷基底
11    连接导线

Claims (9)

1.用于在处于热和脏的环境空气(8)中的冶金设备上、特别在转炉(1)上使用与冶金设备间隔安装的FTIR光谱仪(2)无接触地测量废气的方法,所述光谱仪的测量光线(3)在废气通道(6)的作为测量点的合适的开口(4)处指向废气(7)中,其中相应于在废气(7)中的测量光线长度在测量技术上采集该测量光线长度的呈圆柱形的废气体积段,并将在此得到的测量值由FTIR光谱仪(2)显示在依赖于废气组成成分的光谱内,然后考虑废气温度和之前以依赖于温度的能量平衡的形式计算得到的数学模型无时间延迟地计算废气组成成分,
其特征在于,
a)首先将以废气组成成分的计算为基础的数学模型与由测量光线(3)同时测量的热和脏的环境空气(8)相匹配,并与相应冶金成套设备、特别是转炉(1)的特有温度和废气组成成分相匹配,并相应将数学模型重新处理,其中通过校正产生参考光谱,并且
b)作为光谱测量废气组成成分的补充,还一起测量废气(7)的流动特性(层流或者涡流部分),并且在建立模型时一同用于支持计算。
2.根据权利要求1所述的方法,其特征在于,为了测量废气(7)的流动特性,在FTIR光谱仪(2)的测量点(4)上或者紧邻该测量点(4)使用安装的CCD照相机。
3.根据权利要求1或2所述的方法,其特征在于,选择所述FTIR光谱仪(2)的测量点(4),即由FTIR光谱仪(2)出发的直线的测量光线(3)穿过废气通道(6)的前面第一测量开口(4),然后自由穿过废气(7)并最终通过废气通道(6)背面的第二测量开口(5)引导至背面的位于废气通道(6)外部的冷基底(10)上。
4.根据权利要求1、2或3所述的方法,其特征在于,通过反射光学系统实施所述FTIR光谱仪(2)的测量光线(3)通过测量点的废气通道(6)测量开口(4、5)的精确定向。
5.根据权利要求1、2、3或4所述的方法,其特征在于,将所述FTIR光谱仪(2)以及必要时CCD照相机冷却。
6.用于在处于热和脏的环境空气(8)中的冶金设备上、特别在转炉(1)上实施根据权利要求1至5中一项或多项所述的无接触废气测量方法的装置,
其特征在于,
a)在平台上靠近冶金设备无振动支承的FTIR光谱仪(2),其在平台上这样定位,即测量光线(3)可以通过合适的在废气通道(6)中带有开口(4、5)的测量点穿过废气(7)对准背面的冷基底(10),
b)这样定向安装的CCD照相机,即为了光谱测量废气组成成分同时或者仅以非常小的时间延迟记录废气(7)的流动特性。
7.根据权利要求6所述的装置,其特征在于,所述FTIR光谱仪(2)为了防止污物和出现的电磁场封装在使用软磁合金涂层的金属箱中。
8.根据权利要求6或7所述的装置,其特征在于,所述FTIR光谱仪(2)(探测器)和/或金属箱以及必要时的CCD照相机与冷却装置相连,该冷却装置例如供给液态氮。
9.根据权利要求6、7或8所述的装置,其特征在于,所述FTIR光谱仪(2)和CCD照相机与测量计算机(9)相连。
CNB2005800273031A 2004-08-12 2005-06-24 借助ftir光谱法在冶金成套设备上无接触废气测量的方法和装置 Expired - Fee Related CN100549673C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004039076.2 2004-08-12
DE102004039076A DE102004039076A1 (de) 2004-08-12 2004-08-12 Berührungslose Abgasmessung mittels FTIR-Spektroskopie an metallurgischen Aggregaten

Publications (2)

Publication Number Publication Date
CN101002080A true CN101002080A (zh) 2007-07-18
CN100549673C CN100549673C (zh) 2009-10-14

Family

ID=35229722

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800273031A Expired - Fee Related CN100549673C (zh) 2004-08-12 2005-06-24 借助ftir光谱法在冶金成套设备上无接触废气测量的方法和装置

Country Status (10)

Country Link
US (1) US7388203B2 (zh)
EP (1) EP1776576B1 (zh)
JP (1) JP2008509408A (zh)
KR (1) KR20070043690A (zh)
CN (1) CN100549673C (zh)
AT (1) ATE404858T1 (zh)
CA (1) CA2575191A1 (zh)
DE (2) DE102004039076A1 (zh)
ES (1) ES2310838T3 (zh)
WO (1) WO2006015660A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956208A (zh) * 2012-11-20 2015-09-30 芬兰国家技术研究中心股份公司 光学采样设备以及使用该采样设备的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8921231B2 (en) 2006-04-07 2014-12-30 Sixpoint Materials, Inc. Group III nitride wafer and its production method
US8408896B2 (en) * 2007-07-25 2013-04-02 Lummus Technology Inc. Method, system and apparatus for firing control
DE102007044568A1 (de) 2007-09-07 2009-03-12 Sms Demag Ag Indirekte Bestimmung der Abgasrate bei metallurgischen Prozessen
WO2010096135A1 (en) * 2009-02-18 2010-08-26 W R Systems, Ltd. Emissions monitoring apparatus, system, and method
US8551209B2 (en) * 2010-10-13 2013-10-08 Unisearch Associates Inc. Method and apparatus for improved process control and real-time determination of carbon content during vacuum degassing of molten metals
US20120255301A1 (en) 2011-04-06 2012-10-11 Bell Peter S System for generating power from a syngas fermentation process
FR3015685B1 (fr) 2013-12-20 2016-02-05 Commissariat Energie Atomique Dispositif et procede de mesure en continu de la concentration totale en goudrons d'un gaz chaud
EP3364169B1 (de) * 2017-02-17 2019-05-15 Siemens Aktiengesellschaft Prozess-gasanalysator
US10598108B2 (en) 2018-03-14 2020-03-24 Ford Global Technologies, Llc Methods and systems for oil leak determination and/or mitigation
US10927782B2 (en) 2018-03-14 2021-02-23 Ford Global Technologies, Llc Methods and systems for oil leak determination and/or mitigation
DE102018209840A1 (de) * 2018-06-19 2019-12-19 Sms Group Gmbh Verfahren und Vorrichtung zum Analysieren des Abgases eines Schmelzofens
DE102021004593A1 (de) 2021-09-10 2023-03-16 Promecon Process Measurement Control Gmbh Metallurgischer Schmelzofen sowie Verfahren zur Bestimmung der Menge an heteromolekularem Gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720404A (en) * 1967-06-27 1973-03-13 Westinghouse Electric Corp System for controlling carbon removal in a basic oxygen furnace
US3871871A (en) * 1967-12-11 1975-03-18 Centre Nat Rech Metall Monitoring and control of pig iron refining
JPH07104310B2 (ja) * 1986-09-29 1995-11-13 フイガロ技研株式会社 排気ガスセンサおよびその製造方法
US4928015A (en) * 1987-08-19 1990-05-22 Ford Motor Company Measuring multicomponent constituency of gas emission flow
US5984998A (en) * 1997-11-14 1999-11-16 American Iron And Steel Institute Method and apparatus for off-gas composition sensing
US7022992B2 (en) * 2002-01-17 2006-04-04 American Air Liquide, Inc. Method and apparatus for real-time monitoring of furnace flue gases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956208A (zh) * 2012-11-20 2015-09-30 芬兰国家技术研究中心股份公司 光学采样设备以及使用该采样设备的方法

Also Published As

Publication number Publication date
KR20070043690A (ko) 2007-04-25
ES2310838T3 (es) 2009-01-16
JP2008509408A (ja) 2008-03-27
EP1776576B1 (de) 2008-08-13
US7388203B2 (en) 2008-06-17
CA2575191A1 (en) 2006-02-16
DE102004039076A1 (de) 2006-02-23
WO2006015660A1 (de) 2006-02-16
CN100549673C (zh) 2009-10-14
DE502005005045D1 (de) 2008-09-25
US20070296976A1 (en) 2007-12-27
EP1776576A1 (de) 2007-04-25
ATE404858T1 (de) 2008-08-15

Similar Documents

Publication Publication Date Title
CN100549673C (zh) 借助ftir光谱法在冶金成套设备上无接触废气测量的方法和装置
Khater Laser-induced breakdown spectroscopy for light elements detection in steel: State of the art
Lorenzen et al. Applications of laser-induced emission spectral analysis for industrial process and quality control
Zhang et al. Determination of minor metal elements in steel using laser-induced breakdown spectroscopy combined with machine learning algorithms
Panne et al. Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy
CN201266169Y (zh) 基于激光火花光谱法的钢水质量在线检测仪
US6780378B2 (en) Method for measuring concentrations of gases and vapors using controlled flames
CN102507511A (zh) 一种红外紫外双脉冲激光诱导击穿光谱在线原位检测装置
Sturm et al. Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy
CN104697966A (zh) 一种基于最小二乘支持向量机算法结合激光诱导击穿光谱的钢铁中铬和锰定量分析方法
CN102749309A (zh) 冶金成分快速分析的激光诱导击穿光谱仪和分析方法
CN102410993A (zh) 基于激光诱导等离子体发射光谱标准化的元素测量方法
US6859766B2 (en) Indirect gas species monitoring using tunable diode lasers
Ahamer et al. Laser-induced breakdown spectroscopy of major and minor oxides in steel slags: Influence of detection geometry and signal normalization
CN102305785A (zh) 熔融炉渣成分实时在线监测装置
US11921036B2 (en) In situ apparatus for furnace off-gas constituent and flow velocity measurement
CN106442472A (zh) 一种基于等离子体温度精确测量的自由定标方法
CN109738421A (zh) 熔体成分检测系统
Sandström et al. On-line and in situ monitoring of oxygen concentration and gas temperature in a reheating furnace utilizing tunable diode-laser spectroscopy
JP2010019626A (ja) 元素分析装置および元素分析方法
FI110342B (fi) Menetelmä ja laitteisto aineiden analysoimiseksi atomiabsorptiospektroskopialla
CN1888870A (zh) 一种金属材料中惰性气体分析方法及其装置
JP7509760B2 (ja) 炉の排ガス成分および流速測定のための原位置装置
Borshanpour Development and validation of an experimental apparatus for the characterization of soot in a laminar co-flow diffusion flame using laser-induced incandescence
JP2011252920A (ja) Hplcを用いて材料特性を決定する装置および方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091014

Termination date: 20140624

EXPY Termination of patent right or utility model