CN100553382C - 纳米钛电加热体 - Google Patents

纳米钛电加热体 Download PDF

Info

Publication number
CN100553382C
CN100553382C CNB2005101017034A CN200510101703A CN100553382C CN 100553382 C CN100553382 C CN 100553382C CN B2005101017034 A CNB2005101017034 A CN B2005101017034A CN 200510101703 A CN200510101703 A CN 200510101703A CN 100553382 C CN100553382 C CN 100553382C
Authority
CN
China
Prior art keywords
electric heating
heating element
nano titanium
nanometer
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101017034A
Other languages
English (en)
Other versions
CN1972534A (zh
Inventor
王佰忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNB2005101017034A priority Critical patent/CN100553382C/zh
Publication of CN1972534A publication Critical patent/CN1972534A/zh
Application granted granted Critical
Publication of CN100553382C publication Critical patent/CN100553382C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Heating (AREA)
  • Physical Vapour Deposition (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种主要由金属钛制成的纳米钛电加热体。纳米钛电加热体由金属钛、镍和钨按照质量百分比68-80%∶10-20%∶8-13%经溅射镀在玻璃载体外壁而制成,所述纳米钛电加热体的电阻值为2欧姆至25欧姆,所述纳米钛电加热体使用时由10V至50V直流供电。本发明的纳米钛电加热体电热转换效率高,不会产生电人或漏电的安全问题,使用简单,用途广泛。

Description

纳米钛电加热体
技术领域
本发明涉及电加热体,尤其是纳米钛电加热体。
背景技术
随着技术的进步和生活水平的提高,电加热及燃气加热产品已被广泛使用。燃气加热产品存在的弊端是容易因燃气燃烧不充分而产生一氧化碳,如果一氧化碳不能被及时排走,就可能造成安全事故,因此电加热产品已逐渐成为首选。现有电加热材料主要是金属电阻丝、碳纤维、碳棒等,这些电加热材料需要加工成型,而且存在电热转换率低等缺点。纳米颗粒,一般指粒径小于100纳米的颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。已经有用于高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感体、高韧性陶瓷材料、人体修复材料、抗癌制剂等。但是对纳米材料作为电加热材料的研究很少。
发明内容
本发明的目的是提供一种以10V至50V直流供电,电阻值为2欧姆至25欧姆的纳米钛电加热体。
本发明的纳米钛电加热体,包括一个玻璃载体、附着在载体上的由纳米钛、纳米镍、纳米钨按质量百分比68-80%,10-20%,8--13%组成的电加热材料和位于载体两端并与电加热材料电接触的电极。本发明三种金属的最佳质量百分组成为:75%的钛、15%的镍和10%的钨。
本发明经溅射产生的纳米钛、纳米镍和纳米钨的粒径不大于100nm。
本发明的纳米钛电加热体的制造过程是将金属钛、镍、钨和载体放在真空电镀溅射机内,经溅射产生粒径不大于100nm的纳米钛、纳米钨和纳米镍颗粒,三者混合镀到载体外壁,真空电镀溅射机使用的电流为10A至35A,电压为220V,真空镀的真空值为93.0×10-2帕至99.0×10-2帕,然后在载体两端涂上导电层引出电源线,将喷涂好的电加热体在高温电烤箱内烤2-4小时即可得到可以使用的纳米钛电加热体。
本发明的纳米钛电加热体的电热转换效率达到95%以上,可用于各种电加热场合,不会产生电人或漏电的安全问题,用途广泛,使用方便、安全。
具体实施方式
以下将结合具体的实施例对本发明进行具体描述,但本发明并不限于具体实施例。
实施例1
将75克钛、15克镍、10克钨和载体玻璃管同时放在真空电镀溅射机内,真空电镀溅射机的供电电压为220V,电流为25A,在真空度98×10-2帕条件下,经溅射产生粒径不大于80nm纳米钛、纳米镍和纳米钨,三者混合镀到玻璃管外壁,玻璃管的长为20cm,直径为2cm,溅射时间25分钟,然后在玻璃管两端涂上导电层引出电源线,将喷涂好的电加热体在高温电烤箱内烤2小时即可得到可以使用的纳米钛电加热体。该纳米钛电加热体的电阻值为10欧姆。
用2℃-45℃的水进行加热实验,由直流供电,电压为25V,检测纳米钛电加热体的电热转换效率,实验数据如下表:
表1
  入水温度(℃)   出水温度(℃)   水流量(毫升/分钟)   电功率(瓦)   电热转换效率(%)
  2   45   240   750   96.0
  5   45   240   696   96.1
  10   45   240   610   96.0
  15   45   240   523   95.9
  20   45   240   435   96.0
实施例2
将70克钛、18克镍、12克钨和载体陶瓷管同时放在真空电镀溅射机内,真空电镀溅射机的供电电压为220V,电流为30A,在真空度98×10-2帕条件下,经溅射产生粒径不大于80nm纳米钛、纳米镍和纳米钨,三者混合镀到玻璃管外壁,陶瓷管的长为20cm,直径为2cm,溅射时间25分钟,然后在陶瓷管两端安上电源线相连的电极,将喷涂好的电加热体在高温电烤箱内烤2小时即可得到可以使用的纳米钛电加热体。该纳米钛电加热体的电阻值为11欧姆。
用2℃-45℃的水进行加热实验,由直流供电,电压为25V,检测纳米钛电加热体的电热转换效率,实验数据如下表:
表2
  入水温度(℃)   出水温度(℃)   水流量(毫升/分钟)   电功率(瓦)   电热转换效率(%)
  2   45   240   752   95.6
  5   45   240   700   95.5
  10   45   240   612   95.7
  15   45   240   525   95.6
  20   45   240   437   95.7

Claims (3)

1.一种纳米钛电加热体,包括一个由非导电材料制成的载体、附着在载体上的由纳米钛、纳米镍、纳米钨按质量百分比70-75%、15-18%、10-12%组成的电加热材料和位于载体两端并与电加热材料电接触的电极,其中,纳米钛、纳米镍和纳米钨的粒径不大于80nm。
2.根据权利要求1所述的纳米钛电加热体,其特征在于所述纳米钛、纳米镍、纳米钨的质量百分比分别为75%、15%、10%。
3.根据权利要求2所述的纳米钛电加热体,其特征在于所述载体为玻璃载体。
CNB2005101017034A 2005-11-22 2005-11-22 纳米钛电加热体 Expired - Fee Related CN100553382C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101017034A CN100553382C (zh) 2005-11-22 2005-11-22 纳米钛电加热体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101017034A CN100553382C (zh) 2005-11-22 2005-11-22 纳米钛电加热体

Publications (2)

Publication Number Publication Date
CN1972534A CN1972534A (zh) 2007-05-30
CN100553382C true CN100553382C (zh) 2009-10-21

Family

ID=38113054

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101017034A Expired - Fee Related CN100553382C (zh) 2005-11-22 2005-11-22 纳米钛电加热体

Country Status (1)

Country Link
CN (1) CN100553382C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103300482A (zh) * 2013-06-27 2013-09-18 刘翔 面加热式雾化器及带有该雾化器的电子烟

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103300482A (zh) * 2013-06-27 2013-09-18 刘翔 面加热式雾化器及带有该雾化器的电子烟
CN103300482B (zh) * 2013-06-27 2015-12-30 刘翔 面加热式雾化器及带有该雾化器的电子烟

Also Published As

Publication number Publication date
CN1972534A (zh) 2007-05-30

Similar Documents

Publication Publication Date Title
Dong et al. Metal-free Z-scheme 2D/2D VdW heterojunction for high-efficiency and durable photocatalytic H2 production
Zhang et al. Core-shell Ag@ nitrogen-doped carbon quantum dots modified BiVO4 nanosheets with enhanced photocatalytic performance under Vis-NIR light: Synergism of molecular oxygen activation and surface plasmon resonance
Chu et al. Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures
Bie et al. In situ grown monolayer N‐doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction
Zhang et al. Highly efficient photocatalysis toward tetracycline of nitrogen doped carbon quantum dots sensitized bismuth tungstate based on interfacial charge transfer
Mishra et al. Tin oxide based nanostructured materials: synthesis and potential applications
Ren et al. Towards high-performance all-solid-state asymmetric supercapacitors: a hierarchical doughnut-like Ni3S2@ PPy core− shell heterostructure on nickel foam electrode and density functional theory calculations
Hou et al. A Three‐Dimensional Branched Cobalt‐Doped α‐Fe 2 O 3 Nanorod/MgFe 2 O 4 Heterojunction Array as a Flexible Photoanode for Efficient Photoelectrochemical Water Oxidation
Xu et al. Preparation and cold welding of silver nanowire based transparent electrodes with optical transmittances> 90% and sheet resistances< 10 ohm/sq
Xiang et al. A solar tube: Efficiently converting sunlight into electricity and heat
Kim et al. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells
CN104766963B (zh) 一种制备金属氧化物‑碳纤维纳米复合材料的方法
CN103274456B (zh) 掺杂Ti4O7粉体及其制备方法
CN103787328A (zh) 一种改性石墨烯的制备方法
JPWO2013022051A1 (ja) 多孔質構造体及びその製造方法
CN106848494A (zh) 一种碳自掺杂氮化碳纳米薄膜电极的简单制备方法
CN106233483B (zh) 太阳能电池及其制造方法
Jiang et al. Plasmon Ag decorated 3D urchinlike N-TiO2− x for enhanced visible-light-driven photocatalytic performance
Lu et al. Exploring the main function of reduced graphene oxide nano-flakes in a nickel cobalt sulfide counter electrode for dye-sensitized solar cell
Said et al. A study of the influence of plasmonic resonance of gold nanoparticle doped PEDOT: PSS on the performance of organic solar cells based on CuPc/C60
CN108074656A (zh) 一种丝网印刷perc晶体硅太阳能主栅正银浆料及其制备方法
CN105671515A (zh) 一价金纳米粒子/三维石墨烯/泡沫镍复合结构的简易制备方法
CN103880091A (zh) 一种纳米六边形氧化铁的制备方法
Zhu et al. Synergistic interaction of ternary Ni− Co− Cu chalcogenides confined in nanosheets array to advance supercapacitors and solar steam generation
CN113511646A (zh) 自加热气体传感器、气敏材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091021

Termination date: 20171122