CN100524633C - 半导体装置的制造方法 - Google Patents

半导体装置的制造方法 Download PDF

Info

Publication number
CN100524633C
CN100524633C CNB2006101108998A CN200610110899A CN100524633C CN 100524633 C CN100524633 C CN 100524633C CN B2006101108998 A CNB2006101108998 A CN B2006101108998A CN 200610110899 A CN200610110899 A CN 200610110899A CN 100524633 C CN100524633 C CN 100524633C
Authority
CN
China
Prior art keywords
film
memory
memory block
impurity range
conducting region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006101108998A
Other languages
English (en)
Other versions
CN1979769A (zh
Inventor
达拉姆·派尔·古赛恩
野本和正
乔纳森·维斯特沃特
中越美弥子
堆井节夫
野口隆
森芳文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1979769A publication Critical patent/CN1979769A/zh
Application granted granted Critical
Publication of CN100524633C publication Critical patent/CN100524633C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

用分散的多个微粒子(点)(15a)构成存储区15的同时,使微粒子(15a)的面密度比在隧道绝缘膜(14a)上产生的构造性的孔(针孔)的面密度大。或者使存储区中的微粒子(15a)的个数为5个以上。或者用表面粗糙度大于等于0.1nm小于等于100nm的多晶硅层(13)形成传导区(13c)的同时,使存储区(15)的微粒子(15a)的个数变得比传导区中的晶粒个数多。即便是在隧道绝缘膜(14a)中发生了针孔等的缺陷,存储在一部分的微粒子上的电荷漏泄,存储在不存在缺陷的区域内形成的微粒子上的电荷也不会漏泄。因此,可以长时间地保持信息。

Description

半导体装置的制造方法
本申请是索尼株式会社于1999年1月26日递交的、申请号为99800177.5(分案申请号为200410032829.6)、发明名称为“存储器及其制造方法以及集成电路和半导体装置的制造方法”的发明专利申请的分案申请。
技术领域
本发明涉及采用把从传导区迁移过来的电荷存储在存储区内的办法保持信息的存储器及其制造方法,以及使存储器集成化后的集成电路和半导体装置的制造方法,特别是涉及存储区由多个微粒子(量子点)构成的存储器及其制造方法,以及集成电路和半导体装置的制造方法。
背景技术
在以EEPROM(Electric Ersable-Programable Read OnlyMemory,电可擦除可编程只读存储器)为代表的非易失性存储器中,通过绝缘膜在单晶硅基板上形成有存储区,结果变成为通过存储以绝缘膜为隧道从传导区迁移到该存储区内的电荷来保持信息。以往,由具有二维性扩展的连续半导体膜形成该存储区。此外,在以往的非易失性存储器中,为了长时间保持在该存储区中存储的电荷,作为传导区和存储区之间的绝缘膜,使用绝缘性优良的硅的热氧化膜。该热氧化膜采用在氧气氛中使单晶硅基板的温度上升到800~1000℃的高温的办法形成。另外,硅基板在这种程度的温度下,不会变形或溶解。此外,在单晶硅基板上边形成的热氧化膜的绝缘性非常出色,所以可以保持稳定而不会从二维性的连续的存储区漏泄电荷。
如上所述,在以往的存储器中,在传导区和存储区之间使用热氧化膜的情况下,就不得不使基板温度上升到800~1000℃的高温。但是,在基板不是单晶硅而是玻璃或塑料(可塑性物质)制造的情况下,则不能进行这样的高温热处理。例如,玻璃基板的变形温度为500℃,此外,塑料基板的变形温度,即便是由有耐热性的材料形成的情况下,顶多也只有200℃。因此,在基板由玻璃或塑料形成的情况下,传导区和存储区之间的绝缘膜就不得不在500℃以下的温度下形成。
但是,在500℃以下的温度下形成氧化膜的情况下,在该氧化膜中将发生缺陷即多个构造性的孔(针孔)。为此,存在着下述问题:在具有二维性扩展的存储区内存储的电荷,在短时间内将会向传导区漏泄,不能长时间保持信息。
此外,例如,即便是象硅基板上边的硅氧化膜(SiO2)那样有高温下的耐热性,氧化膜上边的传导区也是多晶,在其表面上会存在凹凸。存在着下述问题:由于该多晶硅的凹凸,在其上边的绝缘膜中将发生电场集中,二维性的连续的存储区中的电荷,也将从该场所漏掉。
发明内容
本发明就是有鉴于上述问题而发明的,目的是提供一种可以在玻璃或塑料制造的基板上边在低温下进行制作,同时可以长时间保持信息的存储器及其制造方法,以及集成电路和半导体装置的制造方法。
本发明的存储器的构成为具备下述部分:由半导体构成的传导区;设置为与该传导区相邻的第1杂质区;设置为与该第1杂质区分开,且与传导区相邻的第2杂质区;由分散开来的微粒子构成,存储由传导区迁移来的电荷的存储区;设于该存储区和传导区之间的电荷可以迁移的隧道绝缘膜;用来分别控制存储区的电荷量和传导区的传导率的控制用电极;设于该控制用电极和存储区之间的控制用绝缘膜,且存储区中的微粒子的面密度比在隧道绝缘膜中产生的构造性的孔(针孔)的面密度高。
本发明的另一种存储器的构成为具备下述部分:由半导体构成的传导区;设置为与该传导区相邻的第1杂质区;设置为与该第1杂质区分开,且与传导区相邻的第2杂质区;由分散开来的微粒子构成,存储由传导区迁移来的电荷的存储区;设于该存储区和传导区之间的电荷可以迁移的隧道绝缘膜;用来分别控制存储区的电荷量和传导区的传导率的控制用电极;设于该控制用电极和存储区之间的控制用绝缘膜,且在存储区内的微粒子的个数在5个以上。
本发明的再一种存储器的构成为具备下述部分:由半导体构成的传导区;设置为与该传导区相邻的第1杂质区;设置为与该第1杂质区分开,且与传导区相邻的第2杂质区;由分散开来的微粒子构成,存储由传导区迁移来的电荷的存储区;设于该存储区和传导区之间的电荷可以迁移的隧道绝缘膜;用来分别控制存储区的电荷量和传导区的传导率的控制用电极;设于该控制用电极和存储区之间的控制用绝缘膜,且传导区由表面粗糙度大于等于0.1nm小于等于100nm的多晶硅膜形成,同时存储区的微粒子的个数比传导区中的晶粒个数多。
本发明的集成电路具备多个存储器,各个存储器的构成为具备下述部分:由半导体构成的传导区;设置为与该传导区相邻的源区;设置为与该源区分开,且与传导区相邻的漏区;由分散开来的多个微粒子构成,存储由传导区迁移来的电荷的存储区;设于该存储区和传导区之间的电荷可以迁移的隧道绝缘膜;用来分别控制存储区的电荷量和传导区的传导率的控制用电极;设于该控制用电极和存储区之间的控制用绝缘膜,且存储区中的微粒子的面密度比在隧道绝缘膜中产生的构造性的孔(针孔)的面密度高,而且,各个存储器的控制用电极都连接到字线上的同时,各个存储器的源漏路径分别连接到位线和源极线之间。
本发明的存储器的制造方法,具备下述工序:在由绝缘体构成的基底部分的上边形成由半导体膜构成的传导区的工序;在传导区的上边形成隧道绝缘膜的工序;形成由分散到隧道绝缘膜的上边的多个微粒子构成且该微粒子的面密度比隧道绝缘膜的构造性的孔(针孔)的面密度大的存储区的工序;在存储区的上边形成控制用绝缘膜的工序;在控制用绝缘膜的上边形成控制用电极的工序;分别形成与传导区相邻的第1杂质区和与第1杂质区分开,且与传导区相邻的第2杂质区的工序。
本发明的另一种存储器的制造方法,具备下述工序:在由绝缘体构成的基底部分的上边形成由半导体膜构成的传导区的工序;在传导区的上边形成隧道绝缘膜的工序;由分散到隧道绝缘膜的上边的5个以上的微粒子构成的存储区的工序;在存储区的上边形成控制用绝缘膜的工序;在控制用绝缘膜的上边形成控制用电极的工序;分别形成与传导区相邻的第1杂质区和与第1杂质区分开,且与传导区相邻的第2杂质区的工序。
本发明的再一种存储器的制造方法,具备下述工序:在由绝缘体构成的基底部分的上边形成由表面粗糙度大于等于0.1nm小于等于100nm的多晶硅膜构成的传导区的工序;在传导区的上边形成隧道绝缘膜的工序;在隧道绝缘膜的上边形成由比传导区的晶粒个数还多的分散开来的微粒子构成的存储区的工序;在存储区的上边形成控制用绝缘膜的工序;在控制用绝缘膜的上边形成控制用电极的工序;分别形成与传导区相邻的第1杂质区和与第1杂质区分开,且与传导区相邻的第2杂质区的工序。
本发明的存储器的再一种制造方法,具备下述工序:在由绝缘体构成的基底部分的上边形成控制用电极的工序;在控制用电极的上边形成控制用绝缘膜的工序;在控制用绝缘膜的上边,形成由分散开来的多个微粒子构成,且该微粒子的面密度比隧道绝缘膜的构造性的孔(针孔)的面密度还大的存储区的工序;在存储区的上边形成隧道绝缘膜的工序;在隧道绝缘膜的上边形成由半导体构成的传导区的工序;分别形成与传导区相邻的第1杂质区和与第1杂质区分开,且与传导区相邻的第2杂质区的工序。
本发明的存储器的再一种制造方法,具备下述工序:在由绝缘体构成的基底部分的上边形成控制用电极的工序;在控制用电极的上边形成控制用绝缘膜的工序;在控制用绝缘膜的上边,形成由分散开来的5个以上的微粒子构成的存储区的工序;在存储区的上边形成隧道绝缘膜的工序;在隧道绝缘膜的上边形成由半导体构成的传导区的工序;分别形成与传导区相邻的第1杂质区和与第1杂质区分开,且与传导区相邻的第2杂质区的工序。
本发明的存储器的再一种制造方法,具备下述工序:在由绝缘体构成的基底部分的上边形成控制用电极的工序;在控制用电极的上边形成控制用绝缘膜的工序;在控制用绝缘膜的上边,形成由分散开来的多个微粒子构成的存储区的工序;在存储区的上边形成隧道绝缘膜的工序;在隧道绝缘膜的上边形成由半导体构成的传导区的工序;分别形成与传导区相邻的第1杂质区和与第1杂质区分开,且与传导区相邻的第2杂质区的工序,用表面粗糙度大于等于0.1nm小于等于100nm的多晶硅形成传导区的同时,使存储区的晶粒个数比传导区中的微粒子的个数还多。
本发明的半导体装置的制造方法,具备:在基板上边形成了半导体膜之后,在该半导体膜上边,形成过剩地含有半导体元素的非化学计量的组成的存储区形成用薄膜的工序;采用施行加热处理的办法,使半导体的微粒子分散到存储区形成用薄膜中去形成存储区的工序。另外,所谓‘非化学计量组成’,指的是偏离了化学计量组成的成分比的组成,在本发明中,比起化学计量的组成的情况来,指的是过剩地含有半导体那样地偏离了成分比的情况。构成存储区的微粒子是大小处于1nm~10nm的范围内的微粒子,作为一个例子,可以举出硅(Si)或锗(Ge)等。
在本发明的存储器及其制造方法中,由于具有存储区内的微粒子的面密度比在隧道绝缘膜中产生的构造性的孔(针孔)的面密度还大的构成,或者存储区内的微粒子的个数在5个以上的构成,或者传导区由表面粗糙度大于等于0.1nm小于等于100nm的多晶硅形成的同时,存储区的微粒子的个数比传导区内的晶粒个数还多的构成,故即便是由于在隧道绝缘膜中存在的针孔等的缺陷而使存储在一部分的微粒子中的电荷漏掉,存储在不存在缺陷的区域上形成的微粒子上的电荷也不会漏泄。为此,可以长时间地存储信息。
此外,在本发明的半导体装置的制造方法中,采用对过剩地含有半导体的非化学计量组成的存储区形成用薄膜施行能束照射等的加热处理的办法,使半导体的微粒子分散到存储区形成用薄膜中去,形成存储区。
附图说明
图1的剖面图示出了本发明的实施例1的存储器的构成。
图2的剖面图示出了本发明的实施例2的存储器的构成。
图3的电路图用来说明本发明的存储器的集成化方法1的一个例子。
图4的说明图用来说明本发明的存储器的集成化方法1的另一个例子。
图5的电路图用来说明本发明的存储器的集成化方法2。
图6A和图6B是用来说明实施例1的存储器的制造方法1的剖面图和平面图。
图7A和图7B是用来说明图6A和图6B的后续工序的剖面图和平面图。
图8A和图8B是用来说明图7A和图7B的后续工序的剖面图和平面图。
图9A和图9B是用来说明图8A和图8B的后续工序的剖面图和平面图。
图10A和图10B是用来说明图9A和图9B的后续工序的剖面图和平面图。
图11A和图11B是用来说明本发明的实施例1的存储器的制造方法2的剖面图和平面图。
图12A和图12B是用来说明图11A和图11B的后续工序的剖面图和平面图。
图13A和图13B是用来说明图12A和图12B的后续工序的剖面图和平面图。
图14A和图14B是用来说明图13A和图13B的后续工序的剖面图和平面图。
图15的特性图示出了实施例1的存储器的栅极电压和漏极电流之间的关系。
图16A和图16B是用来说明本发明的实施例1的存储器的第3制造方法的剖面图和平面图。
图17A和图17B是用来说明图16A和图16B的后续工序的剖面图和平面图。
图18A和图18B是用来说明图17A和图17B的后续工序的剖面图和平面图。
图19A和图19B是用来说明图18A和图18B的后续工序的剖面图和平面图。
图20A和图20B是用来说明图19A和图19B的后续工序的剖面图和平面图。
图21A和图21B是用来说明本发明的实施例2的存储器的制造工序的剖面图和平面图。
图22A和图22B是用来说明图21A和图21B的后续工序的剖面图和平面图。
图23A和图23B是用来说明图22A和图22B的后续工序的剖面图和平面图。
图24A和图24B是用来说明图23A和图23B的后续工序的剖面图和平面图。
图25A和图25B是用来说明图24A和图24B的后续工序的剖面图和平面图。
图26的平面图示出了本发明的实施例3的存储器的构成。
图27是沿图26的η-η线的剖面图。
图28是本发明的实施例4的存储装置的剖面图。
图29的平面图示出了本发明的实施例5的存储装置的构成。
图30是沿图29的κ-κ线的剖面图。
图31是由底栅构造的器件构成的存储装置的剖面图。
图32的平面图示出了本发明的实施例6的存储装置的构成。
图33是沿图32的1-1线的剖面图。
图34是由底栅构造的器件构成的存储装置的剖面图。
图35是用来说明本发明的实施例7的存储装置的制造工序的剖面图。
图36是用来说明图35的后续工序的剖面图。
图37是用来说明图36的后续工序的剖面图。
图38是用来说明图37的后续工序的剖面图。
图39是用来说明图38的后续工序的剖面图。
图40是用来说明本发明的实施例8的存储装置的制造工序的剖面图。
图41是用来说明图40的后续工序的剖面图。
图42是用来说明图41的后续工序的剖面图。
图43是用来说明图42的后续工序的剖面图。
图44是用来说明图43的后续工序的剖面图。
图45是用来说明图44的后续工序的剖面图。
图46是用来说明本发明的实施例8的存储装置的制造工序的剖面图。
图47是用来说明图46的后续工序的剖面图。
图48是用来说明图47的后续工序的剖面图。
图49是用来说明图48的后续工序的剖面图。
图50是用来说明图49的后续工序的剖面图。
图51是用来说明图50的后续工序的剖面图。
图52是用来说明图51的后续工序的剖面图。
图53A到图53C是用来说明本发明的实验例的每一工序的剖面图。
图54是用来说明硅微粒(微粒子)的形成状态的SEM照片。
图55A到图55D是用来说明硅微粒存储器的制造工艺的每一工序的剖面图。
图56A和图56B是图55D的每一后续工序的剖面图。
具体实施方式
以下,参照附图详细说明本发明的实施例。
实施例1
图1示出了本发明的实施例1的存储器的基本构成。在以下的说明中,作为例子对把电子用作电荷的情况进行说明。在把空穴用作电荷的情况下,把电位的符号反过来考虑即可。
本实施例的存储器的构成,例如,在石英、玻璃、塑料等非硅材料构成的基板11的上边形成的缓冲层12的上边,具备传导区13c,和与该传导区13c的两侧分别相邻地形成的第1杂质区13a和第2杂质区13b。缓冲层12由SiO2或Si3N4等的绝缘膜构成。
第1杂质区13a、第2杂质区13b和传导区13c分别由例如膜厚数十nm左右的多晶硅层13构成。第1杂质区13a和第2杂质区13b,分别由向多晶硅层13中,作为n型杂质掺入例如磷(P)等的V族元素,或者作为p型杂质掺入硼(B)等的III族元素构成。另外,这些第1杂质区13a、第2杂质区13b和缓冲区13c只要是单晶半导体以外的半导体(非单晶半导体)即可,例如可以用非晶SixGe1-x(0≤x≤1)或多晶SixGe1-x(0≤x≤1)构成。
在与传导区13c的正上方对应的位置上,设有绝缘膜14。绝缘膜14由隧道绝缘膜14a和在该隧道绝缘膜14a上边叠层的控制用绝缘膜14b构成。这些隧道绝缘膜14a和控制用绝缘膜14b分别由SiO2,Si3N4或SiNkOl(k,l≠0)等形成。在隧道绝缘膜14a和控制用绝缘膜14b之间,设有用来保持电荷(在这里为电子)的存储区15。隧道绝缘膜14a的膜厚,借助于量子力学性的隧道效应已变成为可以使电子通过隧道绝缘膜14a向存储区15迁移的大小(例如,不足5nm)。
存储区15由离散性地配置的多个微粒子(量子点)15a构成。该微粒子15a由SiyGe1-y(0≤y≤1)、SiFe2,II-VI,III-V族化合物等的半导体粒子,Au、Sb、Sn等的金属微粒子或SiNz(z≠0)等的绝缘体粒子形成。
在本实施例的存储区15中,微粒子15a的个数(面密度),比在制造过程中在隧道绝缘膜14a中产生的构造性的孔(针孔)的面密度大,具体地说,是5个以上。通常,多晶硅层13的表面上有凹凸,但在本实施例中,其粗糙度是0.1nm以上100nm以下的范围,而且,存储区15中的微粒子15a的个数理想的是要变成为比传导区13c中的晶粒个数多。
在绝缘膜14的上边,就是说,在以存储区15为中心的传导区13c的相反一侧的位置上,形成有控制用电极(控制用电极)16。控制用电极16由例如铝(Al)等的金属或掺有杂质的低电阻值的多晶硅层构成。用该控制用电极16给传导区13c和存储区15之间加上电场,以控制传导区13c的传导率和存储区15内的电子个数。控制用电极16和存储区15之间的控制用绝缘膜14b的膜厚,借助于量子力学性的隧道效应,已变成为可以使电子通过隧道绝缘膜14a向存储区15迁移的大小(例如,不足5nm)。
其次,分别对具有这样构成的存储器的作用,就是说,信息(数据)的写入法和擦除法以及信息的保持法和读出法进行说明。在以下的说明中,假定第1杂质区13a已经接地(电位=0V)。
在该存储器中,在第1杂质区13a和第2杂质区13b是n型的情况下,采用使第2杂质区13b变成为与第1杂质区13a同电位(0V),或加上比第1杂质区13a的电位还高的电位(例如10V)的同时,对控制用电极16加上比第1杂质区13a的电位还高的电位(例如20V)的办法,使传导区13c的电荷(电子)借助于量子力学性的隧道效应,通过传导区-存储区间的隧道绝缘膜14a进行迁移,存储到存储区15的分散开来的多个微粒子15a上。借此写入信息。
另外,在第1杂质区13a和第2杂质区13b是p型的情况下,采用使第2杂质区13b变成为与第1杂质区13a同电位(0V),或加上比第1杂质区13a的电位还低的电位(例如-10V)的同时,对控制用电极16加上比第1杂质区13a的电位还低的电位(例如-20V)的办法,使传导区13c的电荷(空穴)借助于量子力学性的隧道效应,通过传导区-存储区间的隧道绝缘膜14a进行迁移,存储到存储区15的分散开来的多个微粒子15a上。借此写入信息。这样写入的信息可以采用使所有的电极的电位变成为同电位或悬浮状态的办法进行保持。
如上所述,在本实施例的存储器中,由于存储区15由分散的5个以上的微粒子构成,故即便是存储在一部分的微粒子15a上的电荷因存在于隧道绝缘膜14a中的构造性的缺陷而漏泄,在隧道绝缘膜14a之内不存在缺陷的区域上形成的微粒子15a上所存储的电荷也不会漏泄。这一点,在多晶硅层13的表面粗糙度大于等于0.1nm小于等于100nm的范围内,而且存储区15内的微粒子15a的个数变得比传导区3c中的晶粒个数还多的情况下也是一样的。就是说,即便是电场集中于多晶硅层13的凹凸部分中,由于在除此之外的区域中也存在微粒子15a,故可以长时间保持电荷,而电荷不会漏泄。因此,在本实施例中,借助于低温工艺可以形成隧道绝缘膜,作为基板,可以使用玻璃或塑料等的材质便宜的基板。
此外,所写入的信息,在第1杂质区13a和第2杂质区13b是n型的情况下,采用使第2杂质区13b变成为与第1杂质区13a同电位的同时,对控制用电极16加上比第1杂质区13a的电位还低的电位(例如-20V)的办法,使保持在存储区15上的电荷(电子)通过传导区-存储区间的隧道绝缘膜14a进行迁移,被抽往传导区13c,从而被擦除。
另外,在第1杂质区13a和第2杂质区13b是p型半导体的情况下,采用使第2杂质区13b变成为与第1杂质区13a同电位的同时,对控制用电极16加上比第1杂质区13a的电位还高的电位(例如20V)。借此,使保持在存储区15上的电荷(空穴)通过传导区-存储区间的隧道绝缘膜14a进行迁移,被抽往传导区13c,信息被擦除。
此外,所写入的信息,采用测定传导区13c对控制用电极16的电位或电流值的办法,检测存储区15内的电荷量的变化,进行读出。
实施例2
图2示出了本发明的实施例2的存储器的构成。该存储器20,在例如由石英构成的基板21的上边,通过由SiO2,Si3N4等的绝缘膜构成的缓冲层22具备控制用电极(控制用电极)26。
在缓冲层22和控制用电极26的上边形成有绝缘膜24。绝缘膜24由控制用绝缘膜24b和在该控制用绝缘膜24b的上边叠层的隧道绝缘膜24a构成。在隧道绝缘膜24a和控制用绝缘膜24b之间,设有由多个离散性地配置的微粒子25a构成的存储区25。在绝缘膜24的上边,分别设有传导区23c和与该传导区23a的两侧相邻地设置的第1杂质区23a和第2杂质区23b。这些第1杂质区23a、第2杂质区23b和传导区23c,在多晶硅层23内形成。
本实施例的存储器除与实施例1的所谓顶栅型存储器相对是底栅型之外,其它的构成和作用(信息的写入法和擦除法以及信息的保持法和读出法)和效果,实质上与实施例1是相同的,故免予进行说明。
图3和图4是用来说明上述存储器的集成化方法1的电路构成图。该方法1,在使各个存储器的栅极电极与字线相连的同时,使源-漏路径分别连接到位线和源极线之间,并使这些存储器多个并联地排列。此外,同样,图5示出了用方法2使上述存储器集成化的情况下的电路构成。在方法2中,在使各个存储器的栅极电极与字线相连的同时,使源-漏路径分别连接到位线和源极线之间,并使这些存储器多个串联地排列。另外,对用这些方法集成化的存储器的作用的说明,将在后边讲述。
实施例1的制造方法
其次,参照图6A、图6B到图10A、图10B,对上述实施例1的存储器的制造方法1进行说明。在这里,在各图中,图B表示平面图,图A表示沿图B的α-α线的剖面图。
方法1
首先,如图6A和图6B所示,在绝缘基板,例如石英、玻璃、塑料等的基板11上边,用例如CVD(Chemical Vapor Deposition,化学汽相淀积)法或溅射法,形成例如100nm左右厚度的由Si3N4层或SiO2层构成的缓冲层12。然后使基板温度变成600~700℃,用例如CVD法或溅射法,形成了数10nm左右膜厚的多晶硅层13后,用刻蚀法进行器件隔离。另外,这时在多晶硅层13上,通常会发生由孔10构成的缺陷。
接着,如图7A和图7B所示,用使基板表面暴露于用热氧化法或采用向交流电场中导入氧的办法生成的氧电离气体内进行氧化的方法,使多晶硅层13(传导区Ch1)的表面仅仅氧化10nm左右的厚度,形成隧道绝缘膜14a。这时虽然没有画出来,但是在隧道绝缘膜14a上,起因于多晶硅层13中的孔10,如前所述,将发生多个孔(针孔)。
其次,如图8A和图8B所示,用以硅烷、乙硅烷等含有硅原子的气体和氧化锗等含有锗原子的气体为原料的化学汽相淀积法,或者以硅或锗或金属为原料的溅射法,在隧道绝缘膜14a上边成膜SixGe1-x(0≤x≤1),形成由多个微粒子15a构成的存储区15。这时,微粒子15a的个数要使得隧道绝缘膜14a的表面的被覆率比1小。此外,该微粒子的个数,还要使面密度比在隧道绝缘膜14a上产生的缺陷大,其个数定为5以上。
其次,如图9A和图9B所示,用SiH4(硅烷)、Si2H6(乙硅烷)等含有硅原子的气体和N2O(氧化亚氮)、O2(氧)等含有氧原子的气体进行的化学汽相淀积法,或在N2O、O2等含有氧原子的气体的电离气体气氛中进行的硅的溅射法,形成膜厚约100nm的控制用绝缘膜14b。接着,用多晶硅或Al(铝)、Cu(铜)、W(钨)等的金属,在控制用绝缘膜14b上边的与传导区13c(多晶硅层13)相反的位置上,形成控制用电极(栅极电极)16。然后,以控制用电极16为掩模,直到传导区(多晶硅层13)的表面为止,用使用CF4(四氟化碳)和H2(氢)的混合气体的RIE(Reactive Ion Etching,反应性离子刻蚀)进行控制用绝缘膜14b的选择刻蚀。
其次,如图10A和图10B所示,以控制用绝缘膜16为掩模进行离子注入,在多晶硅层13中形成第1杂质区13a和第2杂质区13b。离子注入,如果传导电荷为电子,则离子注入V族原子,例如磷(P)原子,如果传导电荷为空穴则离子注入III族,例如硼(B)原子。或者,如果传导电荷为电子,则采用以控制用电极16为掩模,向多晶硅层13照射含有V族原子的电离气体(例如PH3的电离气体)的办法,如果传导电荷为空穴,则采用照射含有III族原子的电离气体(例如B2H6的电离气体)的办法,也可以形成第1杂质区13a和第2杂质区13b。然后,用电炉或准分子激光加热器件,使已注入的杂质激活化。
然后,虽然没有画出来,但要用例如CVD法或溅射法在这样形成的器件表面上,形成由Si3N4层或SiO2层构成的保护膜。
方法2
其次,参照图11A、图11B到图14A、图14B,对上述实施例1的存储器的制造方法2进行说明。在这里,在各图中,图B和图A分别表示平面图和沿图B的β-β线的剖面图。
首先,如图11A和图11B所示,在石英等的基板11的上边,用CVD法或溅射法,形成例如膜厚为100nm左右的由Si3N4层或SiO2层构成的缓冲层12。接着,用等离子体CVD(Plasma EnhancedChemical Vapor Deposition,PECVD)法或溅射法,在不使基板11产生变形的那种温度下形成了膜厚数10nm左右的非晶硅层13’之后,用刻蚀法进行器件分离。
其次,如图12A和图12B所示,用等离子体氧化法使非晶硅层13’的表面氧化,在其上部用PECVD法形成由膜厚数10nm的SiOx层(x<2)构成的隧道绝缘膜14a,然后,采用照射150~300mJ/cm2这种程度的XeCl准分子激光的办法,使非晶硅层13’结晶化,变成为多晶硅层13。这时,SiOx中的过剩的硅析出,形成由多个微粒子15a构成的存储区15。另外,也可以不用由SiOx层(x<2)构成的隧道绝缘膜14a,而用(与方法1一样)以硅烷、乙硅烷等含有硅原子的气体或以氧化锗等含有锗原子的气体为原料的化学汽相淀积法,或者以硅或锗或金属为原料的溅射法,形成存储区15,使得被覆率变得比1小。
其次,如图13A和图13B所示,用硅烷、乙硅烷等含有硅原子的气体和N2O、O2等含有氧原子的气体进行的化学汽相淀积法,或在N2O、O2等含有氧原子的气体的电离气体气氛中进行的硅的溅射法,形成膜厚约100nm的控制用绝缘膜14b。接着,用多晶硅或Al、Cu、W等的金属,在控制用绝缘膜14b上边的与多晶硅层13相反的位置上,形成控制用电极16。然后,以控制用电极16为掩模,直到传导区(多晶硅层13)的表面为止,用使用CF4和H2的混合气体的RIE进行控制用绝缘膜14b的选择刻蚀。
其次,如图14A和图14B所示,以控制用绝缘膜16为掩模进行离子注入,在多晶硅层13中形成第1杂质区13a和第2杂质区13b。离子注入,与方法1一样,如果传导电荷为电子,则离子注入V族原子,例如磷(P)原子,如果传导电荷为空穴则离子注入III族,例如硼(B)原子。或者,如果传导电荷为电子,则采用以控制用电极16为掩模,向多晶硅层13照射含有V族原子的电离气体(例如PH3的电离气体)的办法,如果传导电荷为空穴,则采用照射含有III族原子的电离气体(例如B2H6的电离气体)的办法,也可以形成第1杂质区13a和第2杂质区13b。然后,用电炉或准分子激光加热器件,使已注入的杂质激活化。然后,虽然没有画出来,但要用例如CVD法或溅射法在这样形成的器件表面上,形成由Si3N4层或SiO2层构成的保护膜。
图15示出了用上述实施例制作的存储器的栅极电压-漏极电流特性(存储效应)。另外,漏极电压为5V。该存储器用PECVD法形成SiO0.5层,然后,采用照射能密度为260mJ/cm2的XeCl准分子激光的办法,在SiO0.5层中形成由硅微粒构成的存储区,接着,借助于PH3的等离子体照射,进行磷(P)的注入,再进行由XeCI准分子激光(260mJ/cm2)施行的退火,使已注入的杂质激活化。
方法3
其次,参照图16A和图16B到图20A和图20B,对上述实施例1的存储器的制造方法3进行说明。在这里,在各个图中,图B和图A也分别表示平面图和沿图B的γ-γ线的剖面图。
首先,如图16A和图16B所示,在石英等的基板11上边,用CVD法或溅射法,形成例如膜厚100nm左右的Si3N4层或SiO2层构成的缓冲层12。接着,用PECVD法或溅射法,在不使基板11变形的那种程度的温度下,形成了已经掺入了n型或p型杂质的膜厚数10nm左右的非晶硅层之后,用刻蚀法选择除去该非晶硅层,形成第1杂质区13a和第2杂质区13b。
其次,如图17A和图17B所示,用PECVD法或溅射法,在基板11的表面上形成了不含杂质的非晶硅层13’之后,用刻蚀法,选择除去与将成为传导区13c的部分、第1杂质区13a和第2杂质区13b对应的区域以外的区域。
其次,如图18A和图18B所示,在150~300mJ/cm2的范围内向非晶硅层13’照射XeCl准分子激光,使之结晶化,形成多晶硅层13。
其次,如图19A和图19B所示,用等离子体氧化法使多晶硅层13的表面氧化,在其上部,用PECVD法形成由膜厚数10nm的SiOx层(x<2)构成的隧道绝缘膜14a,然后,采用照射150~300mJ/cm2这种程度的XeCl准分子激光的办法,使SiOx中的过剩的硅析出,形成由多个微粒子15a构成的存储区15。另外,也可以不用由SiOx层(x<2)构成的隧道绝缘膜14a,而用(与方法1一样)以硅烷、乙硅烷等含有硅原子的气体或以氧化锗等含有锗原子的气体为原料的化学汽相淀积法,或者以硅或锗或金属为原料的溅射法,形成存储区15,使得被覆率变得比1小。
其次,如图20A和图20B所示,用硅烷、乙硅烷等含有硅原子的气体和N2O、O2等含有氧原子的气体进行的化学汽相淀积法,或在N2O、O2等含有氧原子的气体的电离气体气氛中进行的硅的溅射法,形成膜厚约100nm的控制用绝缘膜14b。接着,用多晶硅或Al、Cu、W等的金属,在控制用绝缘膜14b上边的与多晶硅层13相反的位置上,形成控制用电极16。然后,以控制用电极16为掩模,直到传导区(多晶硅层13)的表面为止,用使用CF4和H2的混合气体的RIE进行控制用绝缘膜14b的选择刻蚀。
然后,用电炉或准分子激光加热器件,使已注入的杂质激活化。然后,虽然没有画出来,但要用例如CVD法或溅射法在这样形成的器件表面上,形成由Si3N4层或SiO2层构成的保护膜。
实施例2的制造方法
其次,参照图21A和图21B到图25A和图25B,对本发明的实施例2的存储器的制造方法进行说明。在这里,在各个图中,图B和图A也分别表示平面图和沿图B的ξ-ξ线的剖面图。
方法1
首先,如图21A和图21B所示,在绝缘基板,例如石英、玻璃、塑料等的基板11上边,用例如CVD法或溅射法,形成厚度约100nm左右的由Si3N4层或SiNkOl(k、l≠0)构成的缓冲层22。接着,采用用例如电子束蒸镀法形成由W(钨)、Ta(钽)、Mo(钼)等构成的金属膜,并使之图形化的办法,形成控制用电极26。
其次,如图22A和图22B所示,用CVD法或溅射法,按下述顺序形成由膜厚约100nm的SiO2层构成的控制用绝缘膜24b,膜厚数10nm的SiOx层(x<2)构成的隧道绝缘膜24a,膜厚约数10nm的未添加杂质的非晶硅层23’。
其次,如图23A和图23B所示,采用照射150~300mJ/cm2这种程度的XeCl准分子激光的办法,使非晶硅层23,结晶化,形成多晶硅层23。这时,SiOx中的过剩的硅析出,在隧道用绝缘膜24a中形成由多个微粒子25a构成的存储区25。
其次,如图24A和图24B所示,用例如RIE选择除去多晶硅层23和隧道用绝缘膜24a进行器件隔离。
其次,如图25A和图25B所示,在多晶硅层23上边的与控制用电极26相反的区域上,形成由光刻胶或SiO2构成的掩模27。接着,用掩模27进行离子注入,在多晶硅层23上形成第1杂质区23a和第2杂质区23b。离子注入如果传导电荷为电子,则离子注入V族原子,例如磷(P)原子,如果传导电荷为空穴则离子注入III族,例如硼(B)原子。或者,如果传导电荷为电子,则采用用掩模27,向多晶硅层13照射含有V族原子的电离气体(例如PH3的电离气体)的办法,如果传导电荷为空穴,则采用照射含有III族原子的电离气体(例如B2H6的电离气体)的办法,也可以形成第1杂质区23a和第2杂质区23b。然后,用电炉或准分子激光加热器件,使已注入的杂质激活化。然后,虽然没有画出来,但要用例如CVD法或溅射法在这样形成的器件表面上,形成由Si3N4层或SiO2层构成的保护膜。
实施例3
其次,参照图26和图27,对本发明的实施例3的存储器的制造方法进行说明。在本实施例中,示出了使在实施例1或实施例2中所示的顶栅型的存储器集成化后的存储装置的构成例。图26是把图3的电路图应用到实际的器件中去的例子的平面图,图27是沿图26的η-η线的剖面图。
在该存储装置中,源极线S1、S2,位线B1、B2,字线W1、W2,分别用已经注入了Al、Cu等的金属或杂质的多晶硅层形成。在这里,虽然示出的是2×2的存储器阵列,但不言而喻,一般说是n×m(n,m>1)的阵列。这一点在以下的实施例中也是一样的。
集成化方法
其次对上述存储器的集成化方法进行说明。
存储器的集成化方法的方法1,如图3或图4所示,是使存储器的控制用电极(G)与字线W1、W2...连接,使源-漏路径分别连接到位线与源极线之间的存储器多个并联地排列的方法。向各个存储器的信息写入、擦除和读出,只要如前所述在各个存储器的第1杂质区、栅极区和第2杂质区中给源极线、位线和字线加上电位即可。
实施例4
图28示出了本发明的实施例4的使底栅型存储器集成化后的存储装置的构成例,另外,平面构成与图26相同,图28也与沿该图26的η-η线的剖面图构成相对应。每一个器件的制造方法与前述那样,在集成化的情况下也容易搬用,故在此免予对其进行具体的说明。
实施例5
图29和图30示出了本发明的实施例5的使用顶栅型的存储器的存储装置的构成例。图29是把图3的电路图应用到实际的器件中去的例子的平面图,图30是沿图29的K-K线的剖面图。源极线S1、S2,位线B1、B2,字线W1、W2,分别用已经注入了Al、Cu等的金属或杂质的多晶硅层形成。
另外,图31示出了实施例2的使底栅型的存储器集成化后的例子。
其次,对于在本实施例的存储装置的多个存储器之内,对于特定的器件,例如对于图3的存储器Cnm,进行信息的写入、擦除及信息的保持和读出的情况分别进行具体的说明。另外,在以下的说明中,作为存储器,假定是具有n型导电类型的存储器。在作为存储器使用具有p型导电类型的存储器的情况下,在以下的说明中,把电位的符号反过来即可。
首先,在对于存储器Cnm写入信息的情况下,对除源极线Sm和字线Wn之外的字线W1~Wn-1加上0V,对字线Wn加上Vp(例如10V),对位线Bm加上电位Vd(例如5V)。这时,理想的是给源极线Si和位线Bi(i≠m)仅仅加上Vp/2的电压,以便不致因出错而擦除存储器Cnm周围的其它的存储器中的信息。
其次,在擦除这样写入到存储器Cnm中的信息的情况下,对除源极线Sm和字线Wn之外的字线加上0V,对字线Wn加上-Vp(例如-10V),对位线Bm加上电位-Vd(例如-5V)。这时,理想的是给除源极线Si和位线Bi仅仅加上-Vp/2的电压,以便不致因出错而擦除存储器Cnm周围的其它的存储器中的信息。
此外,在保持写入到存储器Cnm中的信息的情况下,对全部电极的电位都置于同一电位或使其处于浮置态。
在从存储器Cnm中读出信息的情况下,对所有源极线和除位线Bm之外的所有的位线都加上0V,对除字线Wn之外的字线都加上0V,对字线Wn加上电位Vr(例如5V),对位线Bm加上电位Vd(例如5V),测定在位线Bm中流动的电流的大小。借助于此,可以进行存储器Cnm的写入状态的测定,可以进行信息的读出。
图32和图33示出了本发明的实施例6的使用顶栅型的存储器的存储装置的构成例。图32和图33分别示出了把图5的电路图应用到实际的器件中去的例子的平面图和沿图32的I-I线的剖面图。在本实施例中,源极线S1、位线B1和字线W1、W2、W3、W4,...Wn,用已经注入了Al、Cu等的金属或杂质的多晶硅层形成。
图34示出了本发明的实施例2的使底栅型的存储器集成化后的例子,与图33一样,与沿图32的I-I线剖面图对应。
其次,对于本实施例中的存储装置的特定的存储器Mnm(参看图5),对信息的写入、擦除及信息的保持和读出的情况下的作用进行说明。另外,在以下的说明中,作为存储器假定是具有n型的导电性的存储器,对于具有p型的导电性的情况下,则省略其说明。
首先,对在写入信息的情况下,使所有的源极线都变成0V的同时,给字线Wm加上Vp(例如10V),给字线Wm以外的字线加上Vp/2(例如5V),给位线Bn加上0V,给位线Bn以外的含有已把字线Wm连接到栅极上的存储器列的位线,加上Vp/2(例如5V)。
在擦除已经写入到存储器Mnm中的信息的情况下,使所有的源极线都变成0V,给字线Wm加上-Vp(例如-10V),给字线Wm以外的字线加上Vp/2(例如5V),给位线Bn加上0V,给位线Bn以外的含有已把字线Wm连接到栅极上的存储器列的位线,加上-Vp/2(例如-5V)。
此外,在保持已经写入到存储器Mnm中的信息的情况下,使所有的电极的电位变成为同电位或变成为悬浮状态。
在读出信息的情况下,给所有的源极线和除位线Bn以外的位线加上0V,给除字线Wm以外的字线加上0V,给字线Wm加上0V,给位线Bm加上Vd(例如5V),测定在位线Bn中流动的电流的大小。借此可以读出写入到存储器Mnm中的信息。
实施例7
其次,参照图35到图38,对在同一基板上边,同时制作实施例1(图1)的存储器和例如控制电路等的外围电路情况下的方法进行说明。
首先,如图35所示,在石英、玻璃、塑料等的基板11上边,作为缓冲层12用CVD法或溅射法形成约100nm的厚度的Si3N4层或SiO2层之后,在缓冲层12的表面上,用PECVD法或溅射法,在不产生基板变形的温度下,形成约数10nm的非晶硅层13’之后,用刻蚀法进行器件隔离。
其次,如图36所示,在等离子体氧化法使多晶硅层13’的表面氧化,形成了隧道绝缘膜14a之后,在隧道绝缘膜14a的上部,用PECVD法形成膜厚数10nm的SiOx层(x<2)。然后,照射150~300mJ/cm2这种程度的XeCl准分子激光。借助于此,使SiOx中的过剩的硅析出,形成由多个微粒子15a构成的存储区15。
其次,如图37所示,用光刻胶膜17覆盖存储器一侧(图的左边一半),用使用SF6、CF4和H2的混合气体的RIE选择除去在外围电路一侧(图的右半边)形成的存储区。然后去掉光刻胶膜17。
其次,如图38所示,用硅烷、乙硅烷等含有硅原子的气体和N2O、O2等含有氧原子的气体进行的化学汽相淀积法,或在N2O、O2等含有氧原子的气体的电离气体气氛中进行的硅的溅射法,形成膜厚约100nm的控制用绝缘膜14b。接着,用多晶硅或Al、Cu、W等的金属,在控制用绝缘膜14b上边,形成控制用电极16(Gm、G)。然后,以控制用电极16(Gm、G)为掩模,直到传导区(多晶硅层13)的表面为止,用使用CF4和H2的混合气体的RIE进行控制用绝缘膜14b的选择刻蚀。
其次,如图39所示,以控制用电极16(Gm、G)为掩模,如果传导电荷为电子,则离子注入磷等的V族原子,如果传导电荷为空穴则离子注入硼等的III族原子,形成第1杂质区13a(Sm、S)和第2杂质区13b(Dm、D)。如果传导电荷为电子,则照射PH3等的含有V族原子的电离气体,如果传导电荷为空穴则照射B2H6等的含有III族原子的电离气体,形成第1杂质区13a(Sm、S)和第2杂质区13b(Dm、D)。然后,用电炉或准分子激光加热器件,使已注入的杂质激活化。然后,进行必要的布线,用CVD法或溅射法覆盖基板的表面,形成由Si3N4层或SiO2层构成的保护膜。
实施例8
其次参照图40到图45,对在同一基板上边,在制作实施例2(图2)的存储器的同时制作外围电路的情况下的方法进行说明。
首先,如图40所示,在石英等的基板11上边,用CVD法或溅射法形成约100nm的厚度的Si3N4层或SiO2层构成的缓冲层12之后,用电子束蒸镀法或溅射法,形成钨、钽、钼等的膜并使之图形化,形成控制用电极26(Gm、G)。
其次,如图41所示,在CVD法或溅射法形成了膜厚约100nm的由SiO2构成的控制用绝缘膜24b之后,形成膜厚数10nm的SiOx(x<2)层27。
其次,如图42所示,用光刻胶膜28覆盖存储器一侧(在图中,为左侧),用使用SF6、CF4和H2的混合气体的RIE选择除去在外围电路一侧(在图中,为右侧)形成的SiOx层27。然后去掉光刻胶膜28。
其次,如图43所示,用等离子体氧化法在SiOx层27的表面上形成隧道绝缘膜24a,然后,用CVD法或溅射法或PECVD法,在隧道绝缘膜24a和控制用绝缘膜24b上边,形成膜厚数10nm的非晶硅层23’,其次,如图44所示,照射150~300mJ/cm2这种程度的XeCl准分子激光。借助于此,使非晶硅层23’结晶化变化成多晶硅层23的同时,形成由多个微粒子15a构成的存储区15。接着,进行用于器件隔离的刻蚀。
接着,如图45所示,在与多晶硅层23上边的控制用电极26(Gm、G)对应的区域上用光刻胶膜或SiO2膜形成掩模29。接着,用掩模29,如果传导电荷为电子,则离子注入磷等的V族原子,如果传导电荷为空穴则离子注入硼等的III族原子,分别形成第1杂质区23a(Sm、S)和第2杂质区23b(Dm、D)。或者取代离子注入,也可以使用下述方法:如果传导电荷为电子,则照射PH3等的含有V族原子的电离气体,如果传导电荷为空穴则照射B2H6等的含有III族原子的电离气体,形成第1杂质区23a(Sm、S)和第2杂质区23b(Dm、D)。然后,用电炉或准分子激光加热器件,使已注入的杂质激活化。然后,在形成了必要的布线之后,在存储装置的表面上,用CVD法或溅射法形成由Si3N4层或SiO2层构成的保护膜(图中未画出来)。
实施例9
其次,参照图46到图51,对具有在半导体基板上边制作的外围电路的上边叠层有实施例1的器件这种构造的存储装置的制造方法进行说明。
首先,如图46所示,用LOCOS(LocalOxidation of Silicon,硅的局部氧化)法选择氧化洗净后的硅单晶基板31的表面,形成用于进行器件隔离的场氧化膜32,接着,用热氧化法形成栅极氧化膜33。
其次,如图47所示,用CVD法或溅射法,形成由Al、W、Cu等的金属构成的控制用电极34,并以该控制用电极34为掩模进行离子注入,形成n型的LDD(Lightly Doped Drain,轻掺杂漏)区域35a、35b。接着,在控制用电极34的侧壁上,形成例如由SiO2构成的栅极侧壁(Side Wall)34a,然后以该栅极侧壁34a和控制用电极34为掩模进行离子注入,形成n++型的源区36a和漏区36b。
其次,如图48所示,用CVD法或溅射法,用SiO2或Si(OC2H5)4(TEOS)等或者SOG(Spin On Glass,旋涂玻璃),形成层间绝缘膜37。然后,用CMP(Chemical and Mechanical Polishing,化学机械抛光)法,进行层间绝缘膜37的表面平坦化。
然后,与前述的方法一样,形成存储器。就是说,如图49所示,在层间绝缘膜37上边形成隧道绝缘膜14a,在其上边,形成有多个微粒子15a构成的存储区15。接着,如图50所示,形成控制用绝缘膜14b,在该控制用绝缘膜14b上边形成控制用电极16(Gm)。然后,以控制用电极16(Gm)为掩模,直到多晶硅层13的表面为止对控制用绝缘膜14b和隧道绝缘膜14a进行刻蚀后,进行离子注入,形成第1杂质区13a(Sm)和第2杂质区13b(Dm)。然后,在形成了必要的布线之后,用CVD法或溅射法,在存储装置的表面上,形成由Si3N4、SiO2构成的保护膜(图中未画出来)。
接着,在需要在存储器和外围电路之间进行布线的情况下,如图51所示,用使用CH4和H2的混合气体或C2H6的RIE,在层间绝缘膜37上形成接触孔38,并用Al、W、Cu等的金属形成布线39。之后,用CVD法或溅射法在表面上形成由Si3N4、SiO2构成的保护膜(图中未画出来)。
图52示出了把上述实施例的存储器形成为叠层构造(在这里为2层构造)时的例子。就是说,在半导体基板41上边,在形成了由Si3N4、SiO2构成的缓冲层42之后,制作上述实施例的存储器,然后,用CVD法或溅射法,用SiO2或Si(OC2H5)4(TEOS)等或者SOG(Spin On Glass,旋涂玻璃),形成层间绝缘膜43。然后,在用CMP法使层间绝缘膜43的表面平坦化后,在制作第2层的存储器的同时,在层间绝缘膜43上形成接触孔44,并用Al、W、Cu等的金属膜形成布线45。用这样的多层构造,就可以制造容量大的存储装置。
实验例1
其次,对本发明的具体的实验例进行说明。
首先,如图53A所示,在玻璃基板51上边,用PECVD法形成膜厚200nm的SiO2膜52。此外,也可以不形成SiO2膜而代之以形成Si1-xNx(x=0~4/3)膜。此外,作为基板,除玻璃之外,例如也可以使用聚醚砜(PES,Polyether Sulfone)或聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二酯(PET)等的塑料基板,或者也可以是硅晶片。接着,在该SiO2膜上边,用PECVD法,形成膜厚30nm的Si膜53。另外,该Si膜53既可以是非晶状态,也可以是微结晶状态。
其次,在该Si膜53上边,用使用流量20SCCM的SiH4气体和流量20SCCM的N2O气体的PECVD法形成Si过剩的非化学计量的组成的SiOx(x<2)(硅氮化)膜54。
其次,向形成了该SiOx膜54的玻璃基板51的表面,如图53B所示,照射脉冲宽度10~50nsec,280mJ/cm2的激光束15。作为激光,可以使用例如KrF(共振波长248nm)、ArF(共振波长193nm)、XeCl(共振波长308nm)等的准分子激光,在这里使用的是XeCl准分子激光。
采用照射该激光的办法,如图53C所示,SiOx膜54分解成化学计量组成的SiO2和Si。就是说,变成为在SiO2膜54a中形成了Si的微粒子54b的状态。该微粒子54b的大小处于1nm~1微米的范围。
图54示出了照射能束后的SEM(Scanning Electron Microscope,扫描电镜)照片的结果,可知在黑色区域内存在有明亮得发白的点(微粒)。此外,借助于显微AES(Auger Elctron Spectroscopy,俄歇电子分光)法,研究被认为是SiO2的暗的区域和被认为是扩散后的Si的明亮的区域之间的差别的结果,得知Si集中于比暗的区域还亮的区域中。
如上所述,在玻璃基板51的上边形成的Si膜53上边,形成过剩地含有Si的SiOx膜54,接着,对该SiOx膜54照射激光束55实行加热处理,就可以形成由多个微粒子54b构成的存储区。
实验例2
其次,参照图55A~图56B,具体地说明制造存储器的例子。
首先,在玻璃基板61上边,用PECVD法形成膜厚200nm的SiO2膜62。接着,在该SiO2膜62上边形成膜厚30nm存储器的隧道用Si膜63。其次,在该Si膜63上边,用PECVD法,形成膜厚1nm~10nm的SiO2膜64,在该SiO2膜64上边,用使用流量20SCCM的SiH4气体和流量20SCCM的N2O气体的PECVD法形成Si过剩的非化学计量组成的SiOx(x<2)膜65。
其次,向形成了该SiOx膜65的玻璃基板61的表面,如图55B所示,照射280mJ/cm2的激光束66。借助于照射该激光束26,如图55C所示,SiOx膜65分解成SiO2膜65a和分散到该SiO2膜65a中的Si的微粒子65b。该微粒子65b分散后的SiO2膜65a将变成浮置栅极。
在形成了微粒子65b之后,如图55D所示,在SiO2膜65a上边,用PECVD法形成膜厚100nm的SiO2膜67。接着,在该SiO2膜67上边形成由膜厚100nm的Ta(钽)构成的控制栅极68。就是说,采用在SiO2膜67上边,用例如溅射法形成钽膜,然后,在该钽膜上边形成栅极图形的光刻胶膜,以该光刻胶膜为掩模,进行钽膜的刻蚀,剥离光刻胶膜的办法,形成控制栅极68。
其次,如图56A所示,例如,用使用含有CF4和H2的混合气体的等离子体刻蚀,以控制栅极68为掩模,顺次选择除去SiO2膜67,含有微粒子65b的SiO2膜65a和SiO2膜64。接着,以控制栅极68为掩模,在90℃的低温下,用使用PH3的等离子体掺杂法,向Si膜63中导入n型杂质(磷(P))。借助于此,在控制栅极68的下边的传导区63a的两侧自我整合性地形成第1杂质区63b和第2杂质区63c。接着,向基板表面照射准分子激光束(波长308nm),使第1杂质区63b和第2杂质区63c中的杂质激活化。
接着,如图56B所示,在基板表面上用例如PECVD法形成作为保护摸的Si3N4膜69。在该Si3N4膜69上形成了源极、栅极和漏极用的接触孔之后,用例如溅射法淀积铝(Al),然后,使之图形化,以分别形成源极电极70a、栅极电极70b和漏极电极70c。
采用以上的方法,就可以制作具备含有微粒子的浮置栅极(存储区)的非易失性的存储器。另外,在该存储器中,如果在电流在第1杂质区63b和第2杂质区63c之间流动的状态下,给栅极电极70b加上对传导区63a大的正偏压,则在Si微粒65b上将存储以绝缘膜为隧道的电子,其结果是I-V特性将发生变化。此外,如果给栅极电极60b加上负偏压,则在Si微粒65b上存储的电子将以绝缘膜为隧道被放出到传导区63a,结果是返回到原来的特性中去。如上所述,采用在栅极绝缘膜中形成Si微粒65b的办法,就可以进行电荷的存储和放出,使之具有存储效应。该构造虽然表现出与具有连续的Si浮置栅极的所谓闪速存储器相同的作用,但是,由于是微粒状的浮置栅极,故存储在各个微粒上的电荷通过漏泄而逸散的比率小,从而将变成保持力强的存储装置。
虽然举出了以上的实施例来说明本发明,但是,本发明不受上述实施例的限制。例如,在上述实施例中,虽然对适合于硅微粒存储器的制造的例子来说明本发明,但是只要是使用硅的微粒子,也可以应用于其它的各种器件的制造中去。例如,作为基板若使用硅基板,则可以应用到具有浮置栅极的闪速存储器中去。
此外,在上述实施例中,虽然说明的是形成硅微粒的例子,但是也可以形成其它的半导体微粒。例如也可以使用作为其它的IV族元素的锗(Ge)和作为IV族化合物半导体的SiFe2、SiGe,此外还可以形成II-VI族化合物半导体或III-V族化合物半导体的微粒,或者金属(Al、Sb、Sn)等的微粒。
作为II-VI族化合物半导体的微粒形成例子,可以举出向掺入了Se的ZnO(或ZnO/ZnSe/ZnO的叠层构造)照射激光形成ZnSe微粒的例子,或不用该例子的Se而用Te(碲)形成ZnTe微粒的例子。此外,III-V族化合物半导体微粒的形成例子,则可以举出向掺入了Ga的SiNx(或Si3N4/GaN/Si3N4的叠层构造)照射激光,在Si3N4中形成GaN微粒的例子,以及向AlGaAs/InAs/AlGaAs的叠层构造照射激光,在AlGaAs中形成InAs微粒的例子。
如上所述,倘采用本发明的存储器或其制造方法或集成电路,则由于可以用分散开来的多个微粒子(dot)构成存储区的同时,形成下述构成:使存储器中的微粒子的面密度比在隧道绝缘膜中产生的构造性的孔(针孔)的面密度还大,或者使存储区中的微粒子的个数为5个以上,或者用表面的粗糙度在0.1nm以上100nm以下的多晶硅膜形成传导区,同时使存储区的微粒子的个数变成为比传导区中的晶粒个数还多,故可以在玻璃或塑料制的基板上边,在低温下,制造隧道绝缘膜。此外即便是在隧道绝缘膜上发生了针孔等的缺陷,存储在一部分的微粒子上的电荷漏掉,存储在不存在缺陷的区域上形成的微粒子上的电荷也不会漏泄。因此,得以长时间地保持信息。
此外,倘采用本发明的半导体装置的制造方法,由于对过剩地含有半导体的非化学计量组成的存储区形成用薄膜施行激光束照射等的加热处理,故也可以在玻璃或塑料制的基板上边,也可以容易地形成由分散的多个微粒子构成的存储区。
工业上利用的可能性
如上所述,由于本发明的存储器,可以在玻璃或塑料制的基板上边,在低温下,制造隧道绝缘膜,同时可以长时间地保持信息,故在非易失性的存储装置和数据处理装置中使用是合适的。

Claims (6)

1、一种存储器的制造方法,具备下述工序:
在由非硅材料构成的基板上边形成了半导体膜之后,在该半导体膜上边,形成含有过剩半导体元素的非化学计量比组成的存储区形成用薄膜的工序;
采用加热处理的办法,使含有上述半导体元素的微粒分散到上述存储区形成用薄膜中去形成存储区的工序。
2、权利要求1所述的存储器的制造方法,其特征是:上述存储区形成用薄膜是上述半导体元素过剩的氧化膜或氮化膜。
3、权利要求1所述的存储器的制造方法,其特征是:含有上述半导体元素的微粒是Si、Ge、SiFe2、SiGe、II-VI族化合物半导体和III-V族化合物半导体中的任何一种的微粒。
4、权利要求1所述的存储器的制造方法,其特征是:采用照射能束的办法施行加热处理。
5、权利要求4所述的存储器的制造方法,其特征是:用准分子激光照射能束。
6、权利要求1所述的存储器的制造方法,其特征是:在上述基板和半导体膜之间形成绝缘膜。
CNB2006101108998A 1998-01-26 1999-01-26 半导体装置的制造方法 Expired - Fee Related CN100524633C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2774798 1998-01-26
JP27747/1998 1998-01-26
JP321377/1998 1998-10-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB998001775A Division CN1169225C (zh) 1998-01-26 1999-01-26 存储器及其制造方法以及集成电路和半导体装置的制造方法

Publications (2)

Publication Number Publication Date
CN1979769A CN1979769A (zh) 2007-06-13
CN100524633C true CN100524633C (zh) 2009-08-05

Family

ID=38130878

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101108998A Expired - Fee Related CN100524633C (zh) 1998-01-26 1999-01-26 半导体装置的制造方法

Country Status (1)

Country Link
CN (1) CN100524633C (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138214A (zh) * 1995-03-14 1996-12-18 现代电子产业株式会社 快速电可擦可编程只读存储器单元及其制造方法
US5633178A (en) * 1993-11-29 1997-05-27 Sgs-Thomson Microelectronics S.A. Method of making volatile memory cell with interface charge traps

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633178A (en) * 1993-11-29 1997-05-27 Sgs-Thomson Microelectronics S.A. Method of making volatile memory cell with interface charge traps
CN1138214A (zh) * 1995-03-14 1996-12-18 现代电子产业株式会社 快速电可擦可编程只读存储器单元及其制造方法

Also Published As

Publication number Publication date
CN1979769A (zh) 2007-06-13

Similar Documents

Publication Publication Date Title
US6285055B1 (en) Memory device and method of manufacturing the same, and integrated circuit and method of manufacturing semiconductor device
US7485527B2 (en) Nonvolatile semiconductor storage device and its manufacturing method
US4677742A (en) Electronic matrix arrays and method for making the same
US6580124B1 (en) Multigate semiconductor device with vertical channel current and method of fabrication
CN100365768C (zh) 带有超薄垂直体晶体管的快速存储器
KR0174633B1 (ko) 이중 제어 게이트를 갖는 실리콘-온-절연물 상의 반도체 랜덤 액세스 메모리 셀
US10090463B2 (en) Non-volatile solid state resistive switching devices
US4545111A (en) Method for making, parallel preprogramming or field programming of electronic matrix arrays
US6054349A (en) Single-electron device including therein nanocrystals
US7491995B2 (en) DRAM with nanofin transistors
EP0801427A2 (en) Field effect transistor, semiconductor storage device, method of manufacturing the same and method of driving semiconductor storage device
KR100305038B1 (ko) 부유게이트의밀도와치수의제어성을개선할수있는반도체기억소자
US20070228491A1 (en) Tunneling transistor with sublithographic channel
EP0117045A2 (en) Liquid crystal flat panel display
US20110266605A1 (en) Memristive Transistor Memory
EP0105802A2 (en) Programmable read only memory
JP2002050704A (ja) メモリ素子およびその製造方法並びに集積回路
JP2001085545A (ja) メモリ素子の製造方法
JPH1041234A (ja) シリコン薄膜、シリコン単結晶粒子群及びそれらの形成方法、並びに、半導体装置、フラッシュメモリセル及びそれらの製造方法
US6800511B2 (en) Method for fabricating semiconductor device with negative differential conductance or transconductance
CN100524633C (zh) 半导体装置的制造方法
JP2000106401A (ja) メモリ素子およびその製造方法ならびに集積回路
US10164061B2 (en) Method of fabricating non-volatile memory device array
JP4059299B2 (ja) シリコン薄膜、シリコン単結晶粒子群、半導体装置、及び、フラッシュメモリセル
CN115224191B (zh) 一种铁电超晶格多值存储器件及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090805

Termination date: 20160126

EXPY Termination of patent right or utility model