CN100518034C - 波分复用系统 - Google Patents

波分复用系统 Download PDF

Info

Publication number
CN100518034C
CN100518034C CN200510001781.7A CN200510001781A CN100518034C CN 100518034 C CN100518034 C CN 100518034C CN 200510001781 A CN200510001781 A CN 200510001781A CN 100518034 C CN100518034 C CN 100518034C
Authority
CN
China
Prior art keywords
wavelength
multimode fiber
division multiplex
multiplex system
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200510001781.7A
Other languages
English (en)
Other versions
CN1645779A (zh
Inventor
官宁
竹永胜宏
姬野邦治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of CN1645779A publication Critical patent/CN1645779A/zh
Application granted granted Critical
Publication of CN100518034C publication Critical patent/CN100518034C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种波分复用系统包括:包括共掺杂有锗和氟的多模光纤的波分复用传输路径。所述波长复用系统可进一步包括:复用器和解复用器,其中所述复用器和解复用器经由多模光纤被耦合。所述波长复用系统可进一步包括:第一复用器/解复用器和第二复用器/解复用器,其中所述第一复用器/解复用器和第二复用器/解复用器经由多模光纤被耦合,以便于能够进行双向波分复用。

Description

波分复用系统
技术领域
本发明涉及一种使用多模光纤的波分复用系统。更具体地,本发明涉及一种使用在宽波长范围展现高传输带宽的多模光纤的波分复用系统,通过使用多模光纤实现了从前一直不可能的波分复用系统。
要求2004年1月21日提交的日本专利申请号2004-13075的优先权,所述申请的内容在此被引入作为参考。
背景技术
具有大的芯半径和高的数值孔径(NA)的多模光纤(MMF),如GI(渐变折射率)光纤,已经被广泛用作光学局域网(LAN)中的传输路径。受到较快速LAN需求的驱使,传统GI纤的特性(profile)受到非常严格地控制,并且目前看来几乎不可能对性能有进一步改善。为了增加比那些目前可利用的光纤具有较宽传输带宽的多模光纤的传输带宽(此后被称为“带宽),波分复用(WDM)的使用已经被需求。
然而,GI纤的最佳特性取决于波长,并且针对某一波长被优化的GI纤并不适合于波分复用,因为这样的光纤在非最佳波长处展现出非常有限的带宽。图1示出50/125μm纤的波长特征,每个纤针对850nm或1300nm的波长λ0被优化,并且在过满注入(OFL)带宽具有0.01的最大相对折射率差Δ以及25μm的芯半径“a”(见IEC 60793-1-49说明书)。如曲线中所示,当波长离开最佳波长时带宽急剧下降。
为了计算这个图形中所示的实例和其它实例,使用在N.Shibata和T.Edahiro的“Refractive-index dispersion for GeO2-,P2O5-andB2O3-doped silica glasses in optical fibers”,Trans.IECE Japan,vol.E65,pp.166-172,1982中所讨论的纯二氧化硅(silica)和掺杂锗的二氧化硅的材料色散指数(index)值,以及使用在J.W.Fleming的“Material Dispersion in Lightguide Glasses”,Electron Lett.,vol.14,pp.326-328,1978中所讨论的掺杂氟的二氧化硅的材料色散指数值,并且入射光的RMS光谱范围被假设为0.35nm。基于从分布中所计算的每个模的群延迟,计算出带宽(见K.Okamoto,“Comparison ofCalculated and Measured Impulse Response of Optical Fibers,”Appl.Opt.,vol.18,pp.2199-2206,1979)。
发明内容
鉴于上述背景本发明得以设想,并且其目的是提供一种通过使用多模光纤能够进行波分复用的波分复用系统。
为了达到上述目的,本发明提供一种包括波分复用传输路径的波分复用系统,所述传输路径包括被共掺杂有锗和氟的多模光纤。
在本发明的波分复用系统中,对于传输通过大约720nm和大约1400nm之间的任意波长处的信号,多模光纤能提供1.5GHz·km或更高的过满注入带宽。
此外,对于传输通过大约720nm和大约1400nm之间的任意波长处的信号,所述多模光纤能提供2.5GHz·km或更高的过满注入带宽。
更进一步,对于传输通过大约500nm至700nm的波长范围内的任意波长处的信号,所述多模光纤能提供1.5GHz·km或更高或2.5GHz·km或更高的过满注入带宽。
本发明的波分复用系统可进一步包括复用器和解复用器,其中复用器和解复用器利用多模光纤被耦合。
作为选择地,本发明的波分复用系统可进一步包括第一复用器/解复用器和第二复用器/解复用器,其中第一复用器/解复用器以及第二复用器/解复用器利用多模光纤被耦合,以便于能够进行双向波分复用。
本发明的波分复用系统可用于具有20nm或更高波长间隔的粗波分复用。
在本发明的波分复用系统中,多模光纤可具有在0.007和0.015之间的最大相对折射率Δ,以及在20μm和30μm之间的芯半径。
在本发明的波分复用系统中,多模光纤可具有在0.015和0.025之间的最大相对折射率Δ,以及在30μm和35μm之间的芯半径。
被共掺杂有锗和氟的多模光纤被用作本发明波分复用系统中的波分复用传输路径,其能够实现从前一直不可能的使用多模光纤的波分复用系统。因此,多模光纤的传输速率可以得到显著增加。
附图说明
结合下面的说明和附图,本发明的这些和其他特征、方面和优点将变得更加易懂,说明和附图不应被理解为以任何方式限制本发明,其中:
图1是传统GI多模光纤的过满注入(OFL)带宽随波长变化的曲线图;
图2是根据本发明的示例的波分复用系统的示意图;
图3是作为本发明波分复用系统另一实例的双向波分复用系统的示意图;
图4是本发明的示例MMF及实例1的传统MMF的带宽随波长变化的曲线图;
图5是本发明的示例MMF及实例2的传统MMF的带宽随波长变化的曲线图;以及
图6是用于根据本发明的波分复用系统中的示例多模光纤的横断面视图。
具体实施方式
此后,参考附图将对本发明的各种实施例加以说明。
图2是示出根据本发明第一实施例的波分复用系统的示意图。波分复用系统1包括经由多模光纤2耦合的复用器(MUX)3和解复用器(DEMUX)4。在波分复用系统1中,在具有各种波长λ1、λ2、...、λn的光信号由复用器3复用之后,所述被复用的信号通过多模光纤2传输且由解复用器4解复用。
图6是用在根据本发明的波分复用系统中的多模光纤实例的横断面视图。用于本发明波分复用系统1中的多模光纤2包括:由共掺杂有锗和氟的石英基玻璃制成的芯10,以及置于芯10的外周边周围且由石英玻璃或掺杂氟的石英玻璃制成的包层11。多模光纤2在宽波长区域展现高的OFL,从而能够实现波分复用,并且在720nm和1400nm之间的波长区域内在给定通道处,多模光纤2优选地展现出1.5GHz·km或更高的OFL带宽,且更优选地展现出2.5GHz·km或更高的OFL带宽。
多模光纤2的实例包括,例如展现出由下面所说明的方程式(1)所表达的折射率分布的光纤。这样的光纤的芯包含:随着波长的增加总体上单调地减少方程式(1)中折射率分布指数参数的最佳值αopt的物质(此后被称为“物质A”),以及至少一种随着波长的增加总体上单调地增加折射率分布指数参数的最佳值αopt的物质(此后被称为“物质B”)。通过使用Wentzel-Kramers-Brillouin方法(此后被称为“WKB”方法,见R.Olshansky和D.B.Keck的“Pulse Broadening in Graded-indexOptical Fibers”,Appl.Opt.,vol.15,pp.483-491,1976),折射率分布指数参数被优化,这样在工作波长范围处的传输带宽被最大化。
n ( r ) = n 1 [ 1 - 2 Δ ( r a ) α ] 1 / 2 ( 0 ≤ r ≤ a ) n 1 ( 1 - 2 Δ ) 1 / 2 ( r > a ) · · · ( 1 )
其中n(r)是在距离芯10的中心12“r”处的光纤的折射率,n1是芯10的中心12处的折射率,Δ是芯10的中心12相对于包层11的相对折射率差,“a”是芯半径,以及α是折射率分布指数参数。虽然折射率分布指数参数α被调节成在所希望的波长处提供最大传输带宽的值,但是其最佳值αopt依赖于掺杂进石英玻璃中的掺杂物而变化。
由公式(1)所表示的多模光纤的折射率分布被如此成形,以便于一旦折射率在芯中心处达到最高值,则它随着离中心距离的增加而逐渐减少。因此,以较低阶模传播通过多模光纤的信号光行进较短的距离但却以较慢的速率。相对照,在其中折射率较小的芯和包层之间的边界附近,以较高阶模传播的信号光行进较长的距离但却以较高的速率。
因而,通过适当地选择确定分布形状的α值,直到传播通过多模光纤的处于各种模的光信号到达输出端口的到达时间差可以被最小化。在适当选择的α下,模态色散变为理论最小,从而在信号光波长提供最大传输带宽。另一方面,α的最佳值αopt依赖于所采用的波长而变化。此外,这个变化受到掺杂进芯的一种或更多种掺杂物以及一种或更多种掺杂物的浓度的影响。当使用单一的掺杂物时,掺杂物可以分成两种类型:随着波长的增加总体上单调地减少折射率分布指数参数α的最佳值αopt的物质A,以及随着波长的增加总体上单调地增加最佳值αopt的物质B。锗(Ge)被用作物质A,且氟(F)被用作物质B。
此外,在所希望的波长范围内,多模光纤的最佳值αopt的变化范围优选地为0.025或更小,且更优选地为0.01或更小。如果最佳值αopt的变化范围超出0.025,则在所希望的波长范围内传输带宽随着波长的变化显著地变化。
此外,在多模光纤中,上述公式(1)中的芯半径“a”优选地不小于10μm且不大于35μm,且更优选地不小于20μm且不大于30μm。如果芯半径“a”小于10μm,则变得难以耦合纤或耦合纤和光源。另一方面,如果“a”大于35μm,则产生太多的模且传输带宽被降低。
此外,多模光纤的芯中心相对于包层的相对折射率差Δ由下述方程式表示:Δ=Δ12来表达,其中Δ1是物质A(锗)相对于包层的相对折射率差(即Δ1为ΔGe)且Δ2是物质B(氟)相对于包层的相对折射率差(即Δ2为ΔF)。
通过优化Δ1和Δ2的值,选择相对折射率差Δ,使得所希望的折射率分布和最佳值αopt满足上述关系。
Δ1与Δ2的比率(Δ12)优选地在1/1和0/1之间,且更优选地为1/4。如果Δ12小于1/4,则最佳值αopt随着波长的增加单调地增加。相反,如果Δ12大于1/4,则最佳值αopt随着波长的增加单调地减小。
此外,物质A(锗)和物质B(氟)被掺杂进芯中,以便于Δ1和Δ2满足上述关系。更具体地,增加折射率的掺杂物的浓度分布是这样,随着距芯中心距离的增加,朝向芯和包层之间的边界的浓度单调地减少,并且在芯和包层之间的边界处为零。相反,减少折射率的掺杂物的浓度分布是这样,在芯中心处浓度为零,并且随着距芯中心距离的增加,朝向芯和包层之间的边界的浓度单调地增加。
表示这个光纤折射率分布的上述公式(1)的多模光纤的折射率分布指数参数α被控制为最佳值,并且最佳值αopt大约是平的。换句话说,最佳值αopt展现出非常小的波长依赖性,并且在整个波长范围中最佳值αopt的变化范围非常小。因此,即使多模光纤中在某一波长处折射率分布指数参数α被优化以便于传输带宽被最大化,但是在几乎整个波长范围中也取得大的传输带宽。例如,芯中包含氟且被设计成在较短波长范围具有α的最佳值以便于传输带宽被最大化的本发明多模光纤,在较长的波长范围具有远大于传统的掺杂锗多模光纤的传输带宽。
通过掺杂两种掺杂物(锗和氟),并且精确地控制掺杂物的量,以便于获得所希望的折射率分布,使用PCVD(等离子体化学气相沉积)或MCVD(修改的等离子体化学气相沉积)方法来制造本发明多模纤的预制棒。通过向所得到的预制棒施加高温并且拉制所述预制棒,则获得本发明的多模纤。
图2中所示的波分复用系统1包括作为传输路径且在宽的波长范围中展现出高的OFL带宽的多模光纤2。波分复用系统1具有通过以某一波长间隔划分工作波长范围来限定的多通道,并且通过使用这些多通道能够实现波分复用。
图3是作为根据本发明的波分复用系统第二实施例的双向波分复用系统5的示意图。双向波分复用系统5包括经由多模光纤2被耦合的第一复用器/解复用器(MUX/DEMUX)6以及第二复用器/解复用器(MUX/DEMUX)7,以便于能够实现双向波分复用。
类似于用于第一实施例的波分复用系统1中的多模光纤2,这个多模光纤2包括:由被共掺杂有锗和氟的石英基玻璃所制成的芯10,以及由被置于芯10的外周边四周的石英玻璃或掺杂有氟的石英玻璃制成的包层11。多模光纤2在宽波长区域展现高的OFL,从而能够实现波分复用,并且在720nm和1400nm之间的波长区域内在给定通道处,其优选地展现出1.5GHz·km或更高的OFL带宽,且更优选地展现出2.5GHz·km或更高的OFL带宽。
在双向波分复用系统5中,通过以某一波长间隔来划分多模光纤2的工作波长范围来对多通道加以限定。这些通道被分成两组,并且具有波长λ1、λ2、...、λm的第一组通道被用于在一个方向上发送,且具有波长λ’1、λ’2、...、λ’m的第二组通道被用于在另一方向上发送,以实现双向波分复用。
实例
实例1
被共掺杂有锗(Ge)和氟(F)以及具有0.01的最大相对折射率Δ(ΔGe=0.002且ΔF=0.008)和25μm的芯半径“a”的本发明多模纤(MMF)被使用。在850nm波长处被优化的传统多模纤(MMF)被用于比较。本发明的MMF以及传统的MMF的带宽特征被确定,且结果示于图4。
对于采用具有λ在720nm和1400nm之间的35个通道以及20nm波长间隔的CWDM(粗WDM),本发明MMF及传统MMF的带宽特征示于表1。
表1
可不使用被示于表1的所有通道,并且根据需要可选择一个或更多个所希望的通道。例如,通过将波长间隔设定为40nm仅16个通道可被使用,或者几个特定通道可被选择。此外,对于双向传输,表1中所列的通道当中在720nm和1000nm之间的较短波长通道可用于在一个方向上发送,且在1020nm和1400nm之间的较长波长通道可用于在另一个方向上发送。
表1中所列的结果示出:在720nm和1400nm之间的波长范围内在给定通道,具有0.01的最大相对折射率Δ的本发明MMF可以提供2.5GHz·km或更高的OFL带宽。
实例2
被共掺杂有锗(Ge)和氟(F)以及具有0.02的最大相对折射率Δ(ΔGe=0.004且ΔF=0.016)和32.5μm芯半径“a”的本发明MMF被使用。在850nm波长处被优化的传统MMF被用于比较,其是与实例1中所用相同的MMF。本发明的MMF以及传统的MMF的带宽特征被确定,且结果被示于图5。
对于采用具有λ在720nm和1400nm之间的35个通道以及20nm波长间隔的CWDM(粗WDM),本发明MMF及传统MMF的带宽特征被示于表2。
表2
Figure C20051000178100141
可不使用被示于表2的所有通道,并且根据需要可选择一个或更多个所希望的通道。例如,通过将波长间隔设定为40nm仅16个通道可被使用,或者几个特定通道可被选择。此外,对于双向传输,表1中所列的通道当中在720nm和1000nm之间的较短波长通道可用于在一个方向上发送,且在1020nm和1400nm之间的较长波长通道可用于在另一个方向上发送。
表2中所列的结果示出:在720nm和1400nm之间的波长范围内在给定通道处,具有0.02的最大相对折射率Δ的本发明MMF可以提供1.5GHz·km或更高的OFL带宽。
虽然本发明的优选实施例在上面被加以说明和示例,但是应该理解到这些是本发明的实例且并不被视为限制性的。可以进行添加、省略、替换和其它修改而不偏离本发明的实质和范围。因而,本发明并不被视为受到上述说明的限制,而仅受到所附权利要求的限制。

Claims (14)

1.一种波分复用系统,包括:
包括共掺杂有锗和氟的、在宽波长范围具有高传输带宽的多模光纤的波分复用传输路径,其中
所述多模光纤具有如在下面的方程式(1)中所示的折射率分布,并且其中
在所希望的波长范围内,所述多模光纤的折射率分布指数参数α的最佳值αopt的变化范围是0.025或者更小,
n ( r ) = n 1 [ 1 - 2 Δ ( r a ) α ] 1 / 2 ( 0 ≤ r ≤ a ) n 1 ( 1 - 2 Δ ) 1 / 2 ( r > a ) . . . ( 1 )
其中n(r)是在距芯的中心达距离“r”处的光纤的折射率,n1是芯的中心处的折射率,Δ是芯的中心相对于包层的相对折射率差,“a”是芯半径,以及Δ等于Δ12并且Δ12在1/1和0/1之间,其中Δ1是锗相对于包层的相对折射率差,而Δ2是氟相对于包层的相对折射率差。
2.根据权利要求1所述的波分复用系统,其中对于以720nm和1400nm之间的任意波长传输通过的信号,所述多模光纤提供1.5GHz·km或更高的过满注入带宽,以及其中芯半径“a”为10μm≤a≤35μm。
3.根据权利要求1所述的波分复用系统,其中对于以720nm和1400nm之间的任意波长传输通过的信号,多模光纤提供2.5GHz·km或更高的过满注入带宽,以及其中芯半径“a”为10μm≤a≤35μm。
4.根据权利要求1所述的波分复用系统,进一步包括:
复用器;以及
解复用器,
其中所述复用器和解复用器经由所述多模光纤被耦合。
5.根据权利要求1所述的波分复用系统,进一步包括:
第一复用器/解复用器;以及
第二复用器/解复用器,
其中所述第一复用器/解复用器和第二复用器/解复用器经由多模光纤耦合,以便于能够进行双向波分复用。
6.根据权利要求1所述的波分复用系统,其用于具有20nm或更大波长间隔的粗波分复用。
7.根据权利要求1所述的波分复用系统,其中所述多模光纤具有0.01的最大相对折射率Δ,以及25μm的芯半径。
8.根据权利要求1所述的波分复用系统,其中所述多模光纤具有0.02的最大相对折射率Δ,以及32.5μm的芯半径。
9.根据权利要求2所述的波分复用系统,其中对于以680nm的波长范围以内的任意波长传输通过的信号,多模光纤提供1.5GHz·km或更高的过满注入带宽。
10.根据权利要求2所述的波分复用系统,其中对于以600nm的波长范围以内的任意波长传输通过的信号,多模光纤提供1.5GHz·km或更高的过满注入带宽。
11.根据权利要求2所述的波分复用系统,其中对于以500nm的波长范围以内的任意波长传输通过的信号,多模光纤提供1.5GHz·km或更高的过满注入带宽。
12.根据权利要求3所述的波分复用系统,其中对于以680nm的波长范围以内的任意波长传输通过的信号,多模光纤提供2.5GHz·km或更高的过满注入带宽。
13.根据权利要求3所述的波分复用系统,其中对于以600nm的波长范围以内的任意波长传输通过的信号,多模光纤提供2.5GHz·km或更高的过满注入带宽。
14.根据权利要求3所述的波分复用系统,其中对于以500nm的波长范围以内的任意波长传输通过的信号,多模光纤提供2.5GHz·km或更高的过满注入带宽。
CN200510001781.7A 2004-01-21 2005-01-19 波分复用系统 Expired - Fee Related CN100518034C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004013075A JP2005210283A (ja) 2004-01-21 2004-01-21 波長多重伝送システム
JP2004013075 2004-01-21

Publications (2)

Publication Number Publication Date
CN1645779A CN1645779A (zh) 2005-07-27
CN100518034C true CN100518034C (zh) 2009-07-22

Family

ID=34631905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200510001781.7A Expired - Fee Related CN100518034C (zh) 2004-01-21 2005-01-19 波分复用系统

Country Status (4)

Country Link
US (1) US7242870B2 (zh)
EP (1) EP1557965B1 (zh)
JP (1) JP2005210283A (zh)
CN (1) CN100518034C (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7656578B2 (en) * 1997-03-21 2010-02-02 Imra America, Inc. Microchip-Yb fiber hybrid optical amplifier for micro-machining and marking
US6275512B1 (en) 1998-11-25 2001-08-14 Imra America, Inc. Mode-locked multimode fiber laser pulse source
DE602004016706D1 (de) * 2003-07-18 2008-11-06 Fujikura Ltd Multimode-Gradientenindex-Faser und Herstellungsmethode
WO2006013745A1 (ja) * 2004-08-05 2006-02-09 Matsushita Electric Industrial Co., Ltd. マルチモード光伝送システム及びマルチモード光伝送方法
WO2009017589A2 (en) * 2007-07-26 2009-02-05 Lightwire, Inc. Offset launch mode from nanotaper waveguide into multimode fiber
US7983563B1 (en) * 2007-11-08 2011-07-19 Lockheed Martin Corporation Internet protocol routing with optical code division multiple access
FR2932932B1 (fr) 2008-06-23 2010-08-13 Draka Comteq France Sa Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes
FR2933779B1 (fr) 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
JP5079664B2 (ja) * 2008-11-12 2012-11-21 日本電信電話株式会社 光波長分割多重通信システム並びに励振器及びモードフィルタ
US20100154478A1 (en) * 2008-12-01 2010-06-24 Panduit Corp. Multimode fiber having improved index profile
FR2940839B1 (fr) * 2009-01-08 2012-09-14 Draka Comteq France Fibre optique multimodale a gradient d'indice, procedes de caracterisation et de fabrication d'une telle fibre
DE102009025232A1 (de) * 2009-06-13 2010-12-16 Technische Universität Dortmund Verfahren und Vorrichtung zur Übertragung optischer Informationen zwischen Senderstation und Empfängerstation über einen Mehrmoden-Lichtwellenleiter
CN101778316B (zh) * 2010-01-02 2012-10-03 吉林大学 多通道双向可逆波分复用器/解复用器
US8842957B2 (en) * 2011-06-30 2014-09-23 Corning Incorporated Multimode optical fiber and system incorporating such
US9100085B2 (en) 2011-09-21 2015-08-04 Spatial Digital Systems, Inc. High speed multi-mode fiber transmissions via orthogonal wavefronts
JP5702697B2 (ja) * 2011-10-04 2015-04-15 日本電信電話株式会社 モード多重伝送システム及びモード多重伝送方法
US8837890B2 (en) * 2012-05-31 2014-09-16 Corning Incorporated Multimode optical fiber and system comprising such fiber
CN103152099B (zh) * 2013-01-31 2016-05-25 华中科技大学 基于模分复用的单纤双向传输系统
US10107957B2 (en) 2014-02-19 2018-10-23 Corning Incorporated Multimode optical fibers operating over an extended wavelength range and system incorporating such
US9608761B2 (en) 2015-03-11 2017-03-28 International Business Machines Corporation Realizing coarse wavelength-division multiplexing using standard multimode optical fibers
US9584225B2 (en) 2015-03-11 2017-02-28 International Business Machines Corporation Realizing coarse wavelength-division multiplexing using standard multimode optical fibers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509101A (en) * 1994-07-11 1996-04-16 Corning Incorporated Radiation resistant optical waveguide fiber and method of making same
CN1192259C (zh) * 1999-03-31 2005-03-09 株式会社藤仓 具有高次波型除去功能的多波型光导纤维
DE10030264A1 (de) * 2000-06-20 2002-01-03 Deutsche Telekom Ag Lichtwellenleiter auf Quarzglasbasis und Verfahren zu seiner Herstellung
US6944404B2 (en) * 2000-12-11 2005-09-13 Harris Corporation Network transceiver for extending the bandwidth of optical fiber-based network infrastructure
WO2002088803A2 (en) * 2001-04-30 2002-11-07 Sterlite Optical Technologies Limited Dispersion shifted fiber having low dispersion slope
US6633715B2 (en) * 2001-12-06 2003-10-14 Fitel Usa Corp. Optical fiber having negative dispersion, negative dispersion slope and large effective area

Also Published As

Publication number Publication date
JP2005210283A (ja) 2005-08-04
EP1557965A2 (en) 2005-07-27
US7242870B2 (en) 2007-07-10
US20050157995A1 (en) 2005-07-21
EP1557965A3 (en) 2009-10-14
CN1645779A (zh) 2005-07-27
EP1557965B1 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
CN100518034C (zh) 波分复用系统
EP1498753B1 (en) Graded-index multimode fiber and manufacturing method therefor
CN100552481C (zh) 渐变折射率多模光纤及其制造方法
CN100520459C (zh) 光纤及其制造方法
CN105683791B (zh) 空分复用所用的少模光纤链路
CN102156323B (zh) 一种单模光纤
CN105683790B (zh) 空分复用所用的少模光纤
CN108700703A (zh) 模分复用所用的少模光纤
JP2005049873A (ja) 屈折率プロファイルを有するマルチモード光ファイバ、マルチモード光ファイバを用いた光通信システム、及びマルチモード光ファイバの製造方法
EP3535610B1 (en) Coupled few mode fibers, and corresponding optical link and optical system
US11916348B2 (en) Polarization-maintaining highly elliptical core fiber with stress-induced birefringence
CA2385935A1 (en) Distribution management optical fiber, its manufacturing method, optical communication system employing the optical fiber and optical fiber base material
CN107608023A (zh) 一种阶跃型超低衰减少模光纤
CN100535692C (zh) 渐变折射率多模光纤
CN109073825A (zh) 模分复用所用的少模光纤
CN105242347A (zh) 一种高纯度、低本征串扰的轨道角动量传输光纤
CN108061927B (zh) 一种光子晶体波分模分混合复用解复用器及方法
JP4421429B2 (ja) グレーテッドインデックス型マルチモードファイバ
WO2004053550A1 (en) Improvements relating to photonic crystal fibres
CN113820780B (zh) 一种全mimo双阶跃7芯6模光纤
CA1038669A (en) Optical fibre having low mode dispersion
JP4141914B2 (ja) グレーテッドインデックス型マルチモードファイバおよびその製造方法
US10454607B2 (en) Mode division multiplexing systems and methods using a rectangular-core optical fiber
EP0194666A2 (en) Method of fabricating birefringent optical fibres
JP2005114766A (ja) グレーテッドインデックス型マルチモードファイバ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090722

Termination date: 20210119

CF01 Termination of patent right due to non-payment of annual fee