CN100516009C - 用于烯类的顺式-二羟基化和氧化裂解的负载型钌纳米颗粒催化剂 - Google Patents

用于烯类的顺式-二羟基化和氧化裂解的负载型钌纳米颗粒催化剂 Download PDF

Info

Publication number
CN100516009C
CN100516009C CNB2005800124234A CN200580012423A CN100516009C CN 100516009 C CN100516009 C CN 100516009C CN B2005800124234 A CNB2005800124234 A CN B2005800124234A CN 200580012423 A CN200580012423 A CN 200580012423A CN 100516009 C CN100516009 C CN 100516009C
Authority
CN
China
Prior art keywords
alkyl
aryl
alkene
oxygenant
cis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2005800124234A
Other languages
English (en)
Other versions
CN1946661A (zh
Inventor
支志明
余永耀
何志明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Hong Kong HKU
Original Assignee
University of Hong Kong HKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Hong Kong HKU filed Critical University of Hong Kong HKU
Publication of CN1946661A publication Critical patent/CN1946661A/zh
Application granted granted Critical
Publication of CN100516009C publication Critical patent/CN100516009C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/26Polyhydroxylic alcohols containing only six-membered aromatic rings as cyclic part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/22Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system
    • C07C35/37Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system with a hydroxy group on a condensed system having three rings
    • C07C35/42Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system with a hydroxy group on a condensed system having three rings derived from the phenanthrene skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/16Preparation of ethers by reaction of esters of mineral or organic acids with hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/30Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/40Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with ozone; by ozonolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • C07C45/512Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups the singly bound functional group being a free hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/64Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/12Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing more than one —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/228Unsaturated compounds having —CHO groups bound to acyclic carbon atoms containing six-membered aromatic rings, e.g. phenylacetaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/28Saturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings
    • C07C47/32Saturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/52Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings
    • C07C47/54Benzaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/403Saturated compounds containing a keto group being part of a ring of a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/29Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with halogen-containing compounds which may be formed in situ
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/147Saturated compounds having only one carboxyl group and containing —CHO groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/04Monocyclic monocarboxylic acids
    • C07C63/06Benzoic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/29Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/013Esters of alcohols having the esterified hydroxy group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • C07C69/21Acetic acid esters of hydroxy compounds with more than three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/675Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids of saturated hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/732Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids of unsaturated hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及接枝到惰性固相支持体上的纳米金属颗粒(例如钌)在烯类氧化中的应用。负载型金属催化剂可以使烯类顺式-二羟基化和氧化裂解而得到相应的顺式-二醇类和羰基产物。

Description

用于烯类的顺式-二羟基化和氧化裂解的负载型钌纳米颗粒催化剂
发明领域
本发明涉及负载型钌纳米颗粒作为催化剂在烯类氧化,包括烯类的顺式-二羟基化和氧化裂解中的应用。
发明背景
如附图1中所示,以顺式方式在烯的碳-碳双键上加成两个羟基为有机合成中的重要转化。所得顺式-1,2-二醇产物为用于药物产品和精细化学品的通用基础材料。
一般来说,使用化学计算量的四氧化锇或高锰酸钾进行顺式-二羟基化(参见:Haines,A.H.Comprehensive Organic Synthesis;Trost,B.M.;Fleming,I.(eds.)Pergamon:Oxford,1991;Vol.7,p.437)。然而,直接的缺陷在于这些方法产生大量的毒性废液。此外,四氧化锇为强毒性并且极其昂贵,这阻碍了它在大规模合成中的应用。就高锰酸钾作为氧化剂的应用而言,反应通常产生不需要的过氧化产物,且产率低于使用四氧化锇获得的产率。
已经广泛寻找了用于烯顺式-二羟基化的催化系统。特别地,锇催化的烯二羟基化及其不对称变化形式的研发代表了现代有机合成中的重要里程碑[参见:(a)Johnson,R.A.;Sharpless,K.B.CatalyticAsymmetric Synthesis;Ojima,I.2nd ed.,VCH:New York,2000.(b)Kolb,H.C.;Van Nieuwenhze,M.S.;Sharpless,K.B.Chem.Rev.1994,94,2483]。已知几种用于有效催化顺式-二羟基化反应的辅助氧化剂,包括金属氯酸盐(参见:Hoffmann,K.A.Chem.1912,45,3329)、过氧化氢(参见:Milas,N.A.;Trepagnier,J.-H.;Nolan,J.T.;Iliopolus,J.Ji.J.Am.Chem.Soc.1959,81,4730)、叔丁基过氧化氢[参见:(a)Sharpless,K.B.;Akashi,K.J.Am.Chem.Soc.1976,98,1986.(b)Carlsen,P.H.J.;Katsuki,T.;Martin,V.S.;Sharpless,K.B.J.Org.Chem.1981,46,3936.(c)Webster,F.X.;Rivas-Enterrios,J.;Silverstein,R.M.J.Org.Chem.1987,52,689.(d)Martin,V.S.;Nunez,M.T.;Tonn,C.E.Tetrahedron Lett.1988,29,2701(e)Caron,M.;Carlier,P.R.;Sharpless,K.B.J.Org.Chem.1988,53,5185]、N-甲基吗啉N-氧化物(NMO,Upjohn process)[参见:(a)Schneider,W.P.;McIntosh,A.V.US 2,769,824(1956).(b)VanRheenen,V.;Kelly,R.C.;Cha,D.Y.Tetrahedron Lett.1976,17,1973]。就位阻的烯类而言,已经报导使用三甲铵N-氧化物作为辅助氧化剂得到了改善的产物产率(参见:Ray,R.;Matteson,D.S.Tetrahedron Lett.1980,21,449)。
为了克服对位阻的烯类的过氧化和惰性的问题,已经研发了使用六氰基铁酸盐(III)作为辅助氧化剂的催化系统(参见:Minato,M.;Yamamoto,K.;Tsuji,J.J.Org.Chem.1990,55,766)。结果是由Sharpless与合作者研发了基于六氰基铁酸盐(III)作为氧化剂的对映选择形式(参见:Ogino,Y.;Chen,H.;Kwong,H.L.;Sharpless,K.B.Tetrahedron Lett.1991,32,3965)。目前,“K2[OsO2(OH)4+K3[Fe(CN)6]”为商购的并且商标为AD-mix。
寻找用于顺式-二羟基化锇的备选的过渡金属催化剂正在引起关注。Shing用合作者的早期工作表明当在反应温度=0℃下使用NaIO4作为氧化剂与乙腈、乙酸乙酯和水的混合物作为溶剂时,RuCl3.xH2O为烯类二羟基化的有效催化剂[参见:(a)Shing,T.K.M.;Tai,V.W.-F.;Tam,E.K.M.Angew.Chem.,Int.Ed Engl.1994,33,2313.(b)Shing,T.K.M.;Tai,V.W.F.;Tam,E.K.M.Chung,I.H.F.;Jiang,Q.Chem.Eur.J.1996,2,50.(c)Shing,T.K.M.;Tam,E.K.M.Tetrahedron Lett.1999,40,2179]。近来,Que与合作者披露可以使用某些铁复合物作为催化剂和过氧化氢作为氧化剂进行具有适度选择性的烯顺式-二羟基化[参见:(a)Chen,K.;Costas,M.;Kim,J.;Tipton,A.K.;Que,L.Jr.J.Am.Chem.Soc.2002,124,3026.(b)Costas,M.;Tipton,A.K.;Chen,K.;Jo,D.-H.;Que,L.Jr.J.Am.Chem.Soc.2001,123,6722.(c)Chen,K.;Que,L.Jr.Angew.Chem.Int.Ed.1999,38,2227]。此外,Jacobs与合作者报导使用过氧化氢作为辅助氧化剂,某些锰环三胺复合物可以将烯转化成其相应的顺式-1,2-二醇,但产率较低(参见:De Vos,D.E.;de Wildeman,S.;Sels,B.F.;Grobet,P.J.;Jacobs,P.A.Angew.Chem.Int.Ed.1999,38,980)。
目前,锇-催化的烯的顺式-二羟基化因其有效性和选择性而仍然是选择的系统。然而,贵金属催化剂的回收是困难的,并且它可能造成产物污染。这已经限制了它在大规模工业化反应中的应用。为了终止这种情况,几个研究小组已经尝试通过使金属催化剂在固相支持体上多相化解决问题[参见:(a)Bolm,C.;Gerlach,A.Eur.J.Chem.1998,21,1.(b)Salvadori,P.;Pini,D.;Petri,A.Synlett.1999,1181.(c)Gravert,D.J.;Janda,K.D.Chem.Rev.1997,97,48]。不过,在金属催化剂的回收和再利用方面获得的成功有限。例如,Kobayashi与合作者目前使用微囊化技术研发了可大量回收和可再利用的用于烯的顺式-二羟基化的聚合物负载的锇催化剂(参见:Kobayashi,S.;Endo,M.;Nagayama,S.J.Am.Chem.Soc.1999,121,11229)。Choudary与合作者的尽其工作报导,发现通过离子交换技术在分层的双重氢氧化物上固定化OsO4 2-,它可以使烯的顺式-二羟基化获得良好的可回收性和可再利用性(参见:Choudary,B,M.;Chowdari,N.S.;Kantam,M.L.;Raghavan,K.V.J.Am.Chem.Soc.2001,123,9220)。尽管有这些进展,但是研发具有优良再循环性和催化活性的更易于操作的金属催化剂仍然是非常需要的。Park与合作者近期的报告表明3-D网状结构的锇纳米材料为烯类的二羟基化和氧化裂解的有效多相催化剂(参见:Lee,K.;Kim,Y.-H.;Han,S.B.;Kang,H.;Park,S.;Seo,W.S.;Park,J.T.;Kim,B.;Chang,S.J.Am.Chem.Soc.2003,125,6844)。
已经报导了用于烯的顺式-二羟基化和烯的氧化裂解的有限实例,包括非基于锇的复合物的负载过渡金属催化剂。在使用过氧化氢作为氧化剂时,负载型锰环三胺复合物将烯类转化成顺式-二醇类,但低产率和选择性使得这种方法不实用(De Vos,D.E.;de Wildeman,S.;Sels,B.F.;Grobet,P.J.;Jacobs,P.A.Angew.Chem.Int.Ed.1999,38,980)。
纳米金属颗粒作为有机转化的催化剂的应用目前得到最新关注[参见:(a)Moreno-Manas,M.;Pleixats,R.Acc.Chem.Res.2003,36,638.(b)Roucoux,A.;Schulz,J.;Patin,H.Chem.Rev.2002,102,3757.(c)Horn,D.;Rieger,J.Angew.Chem.Int.Ed.2001,40,4330.(d)Bonnermann,H.;Richards,R.M.Eur.J.Inorg.Chem.2001,2455.(e)Rao,C.N.R.;Kufkarni,G.U.;Thomas,P.J.;Edwards,P.P.Chem.Soc.Rev.2000,29,27.(f)Johnson,B.F.G.Coord.Chem.Rev.1999,190,1269.(g)Bradley,J.S.In Clusters and Colloids:fromTheory to Application;Ed.:Schmid,G.VCH:Weiheim,1994;p.459.(h)Lewis,L.N.Chem.Rev.1993,93,2693.(i)Schmid,G.Chem.Rev.1992,92,1709]。纳米金属颗粒因其活性部位的高表面积和高密度而表现出比相应的疏松材料更为优良的催化活性。
文献中已经报导了钌纳米颗粒的各种合成方法。在升温下和多元醇溶液中还原钌盐为对钌纳米颗粒而言是具有前途和简便的方法[参见:(a)Viau,G.;Brayner,R.;Poul,L.;Chakroune,N.;Lacaze,E.;Fievet-Vincent,F.;Fievet,F.Chem.Mater.2003,15,486.(b)Balint,I.;Mayzaki,A.;Aika,K.-I.J.Catal.2002,207,66.(c)Miyazaki,A.;Balint,I.;Aika,K.-I.;Nakano,Y.J.Catal.2001,204,364]。除此之外,几个研究小组已经研发了用于纳米尺寸的钌颗粒的某些新的制备操作步骤。Chaudret与合作者使用了在氢气环境下和有机溶剂中的有机金属钌前体的反应而获得了稳定的钌胶体(参见:Vidoni,0.;Philipport,K.;Amiens,C.;Chaudret,B.;Balmes,0.;Malm,J.0.;Bovin,J.0.Senocq,F.;Casanove,J.Angew.Chem.Int.Ed.Engl.1999,38,3736)。此外,Che与合作者证实钌盐的溶剂加热还原是纳米尺寸的钌颗粒的有活力的途经(参见:Gao,S.;Zhang,J.;Zhu,Y.-F.;Che,C.M.New J.Chem.2000,739)。此外,Alonso-Vante与合作者披露可以在适度条件下和有机溶剂中由钌羰基前体制备高度分散的纳米晶体钌颗粒(参见:Vogel,W.;Le Rhun,V.;Garnier,E.;Alonso-Vante,N.J.Phys.Chem.Chem.B 2001,105,5238)。此外,Lee与合作者报导可以通过氯化钌和氢氧化钌的硼氢化钠还原制备纳米尺寸的钌颗粒(参见:Lee,D.-S.;Liu,T.-K.Journal ofNon-Crystalline Solids,2002,311,323)。
然而,有关这些钌颗粒的催化活性的报导在文献中很少。Miyazaki与合作者报导氧化铝负载的钌纳米颗粒对氨合成具有高度反应性[参见:(a)Balint,I.;Mayzaki,A.;Aika,K.-I.J.CataL 2002,207,66.(b)Miyazaki,A.;Balint,I.;Aika,K.-I.;Nakano,Y.J.Catal.2001,204,364]。Wakatsuki与合作者披露TiO2-负载的钌纳米金属颗粒表现出SO2与H2还原成元素硫(参见:Ishiguro,A.;Nakajima,T.;lwata,T.;Fujita,M.;Minato,T.;Kiyotaki,F.;Izumi,Y.;Aika,K.-I.;Uchida,M.;Kimoto,K.;Matsui,Y.;Wakatsuki,Y.Chem.Eur.J.2002,8,3260)。Schmid与合作者揭示出纳米多孔氧化铝膜催化的烯氢化中包括钌纳米颗粒(参见:Pelzer,K.;Philippot,K.;Chaudret,B.;Meyer-Zaika,W.;Schmid,G.Zeitschrift fur anorganische undallgemieine chemie,2003,629,1217)。美国专利US6,551,960中披露了负载型纳米尺寸的钌促会见的制备及其在甲醇再形成中的反应性。Chan与合作报导了通过油包水型逆微乳化制备的Ru-Pt纳米颗粒,当碳电极上负载时,它取代了甲醇氧化的催化活性(参见:Zhang,Z.;Chan,K.-Y.Chem.Mater.2003,15,451)。近来,据报导沸石化-封闭的纳米尺寸的二氧化钌可以有效地促进醇类的需氧氧化(参见:Zhan,B.-Z.;White,M.A.;Sham,T.-K.;Pincock,J.A.;Doucet,R.J.;Rao,K.V.R.;Roberson,K.N.;Cameron,T.S.J.Am.Chem.Soc.2003,125,2195)。然而,钌纳米颗粒对烯类的顺式-二羟基化和氧化裂解的反应性迄今为止尚未在文献中已知。
已知钌盐和复合物为用于各种氧化转化的通用催化剂[参见:(a)Murahashi,S.-I.;Komiya,N.In Biomimetic Oxidations Catalyzed byTransition Metal Complexes;Ed.:Meunier,B.;Imperial CollegePress,2000;p.563.(b)McLain,J.L.;Lee,J.;Groves,J.T.InBiomimetic Oxidations Catalyzed by Transition Metal Complexes;Ed.:Meunier,B.;Imperial College Press,2000;p.91.(c)Ley,S.V.;Norman,J.;Griffith,W.P.;Marsden,S.P.Synthesis,1994,639.(d)Griffith,W.P.Chem.Soc.Rev.1992,21,179]。在本文中,我们报导了固定在羟磷灰石上的钌纳米颗粒为用于烯类的顺式-二羟基化和氧化裂解的优良催化剂。由于使用反式肉桂酸乙酯作为底物,所以负载型催化剂可再循环用于连续的顺式-二羟基化反应,而没有催化活性的显著退化。
附图和表的简述
附图1.解释了所述的两个羟基在碳-碳双键上的顺式-加成。
附图2.提供了羟磷灰石负载的钌纳米颗粒催化剂及其作为对照的母体羟磷灰石的X射线衍射(XRD)光谱。
附图3.提供了羟磷灰石负载的钌纳米颗粒催化剂的典型传输电子显微照片。
表1.提供了钌纳米颗粒催化的烯类的顺式-二羟基化的有代表性的实例。
表2.提供了钌纳米颗粒催化的烯类的氧化裂解的有代表性的实例。
表3.提供了钌纳米颗粒催化的α,β-不饱和烯类的氧化裂解的有代表性的实例。
发明详述
本发明涉及负载在惰性固相支持体(例如羟磷灰石钙)上的钌胶体在烯类的氧化转化中的应用。通过在羟磷灰石上1,2固定钌胶体制备稳定的钌胶体。通过在150℃和有乙酸钠(1mmol)存在下的1,2-丙二醇(100mL)中还原,随后进行报导的操作步骤制备稳定的钌胶体(参见:Viau,G.;Brayner,R.;Poul,L.;Chakroune,N.;Lacaze,E.;Fievet-Vincent,F.;Fievet,F.Chem.Mater.2003,15,486)。
在这项工作中,我们选择了羟磷灰石钙作为固相支持体的实例。报导的羟磷灰石的应用包括人造骨和牙齿、吸附剂、离子交换剂和催化剂[参见:(a)Elliott,J.C.Structure and Chemistry of the Apatite andOther Calcium Orthophosphates;Elsevier,Amsterdam,1994.(b)Sugiyama,S.;Minami,T.;Hayashi,H.;Tanaka,M.;Shigemoto,N.;Moffat,J.B.J.Chem.Soc.Faraday Trans.1996,92,293]。按照报导的方法制备羟磷灰石钙(参见:Hayek,E.;Newesely,H.Inorg.Synth.1963,7,63)。通过用羟磷灰石钙(0.4g)和H2O(50mL)将胶体溶液处理24小时成功地规定钌纳米颗粒。在离心后获得了羟磷灰石-负载的钌纳米颗粒(纳米-RuHAP),为深灰色固体,随后用去离子水洗涤并且在110℃洗涤真空中干燥过夜。基于ICP分析,将纳米-RuHAP的Ru含量测定为5wt%(0.5mmol g-1)且测定的Ca/P摩尔比为1.66,这一结果与1.67的报导值一致,表明成分Ca2+离子没有大量交换。
纳米-RuHAP的X射线衍射(XRD)图案显示在2θ=25.90°、31.85°、32.25°、32.95°和49.55°处存在主峰,将它们分别转换至羟磷灰石[JCPSD card no:09-0432]的六方晶系的(002)、(211)、(112)、(300)和(213)反射(附图2)。应注意对游离的羟磷灰石(即不含Ru颗粒)观察到了几乎相同的XRD图案。这一结果表明在钌纳米颗粒固定后保持了羟磷灰石的结晶度。纳米-RuHAP的传输电子显微照片(TEM)图像显示了均匀分散的颗粒,并且EDX分析证实所述的颗粒相当于具有约4nm平均直径的钌(附图3)。正如通过N2吸附等温线测定的,纳米-RuHAP(25m2g-1)的表面积与其母体羟磷灰石(17m2g-1)相比小幅度增加。这解释了钌纳米颗粒在固相支持体上的物理吸附。
实施例1
纳米-RuHAP催化的烯类的顺式-二羟基化
本发明涉及使用纳米-RuHAP作为烯类的直接顺式-二羟基化的一般和有效的催化剂合成顺式-1,2-二醇的直接方法。一般来说,在搅拌的同时向稀硫酸溶液(0.4N,2mL)中加入NaIO4(642mg,3mmol)而形成澄清溶液。在使用冰-水浴冷却至0℃时,加入纳米-RuHAP(40mg)并且将该混合物搅拌3分钟,随后添加EtOAc-MeCN混合物(1∶1(v/v);12mL)。将合并的混合物在0℃下再搅拌5分钟。一次加入烯(2mmol)并且将该反应混合物搅拌至通过TLC监测的所有的原料均已消耗。使用饱和NaHCO3溶液(10mL)和饱和Na2S2O3溶液(10mL)使过量的酸和NaIO4猝灭。通过离心从反应混合物中分离催化剂。用水洗涤回收的催化剂且任何在真空中干燥,此后进行再循环。用乙酸乙酯(3×15mL)提取上清液,并且用MgSO4干燥有机提取物。通过硅胶(230-400目)快速色谱法获得纯的顺式-1,2-二醇类并且用IR、MS和NMR光谱表征。在进行一系列对照实验后,20mol%的H2SO4得到了最高产率;进一步增加H2SO4不会改善该产率。证实在次氯酸盐、过氧化氢和叔丁基过氧化氢中使用NaIO4作为氧化剂最佳。
使用纳米-RuHAP催化的方案,将烯类选择性转化成相应的顺式-1,2-二醇,具有中度到良好的产率(参见表1)。α,β-不饱和烯类,诸如反式-肉桂酸乙酯、巴豆酸乙酯、富马酸二甲酯、马来酸二甲酯和异佛尔酮可以被转化成其相应的顺式-1,2-二醇类,分离产率分别为70%、65%、53%、50%和64%(目录号1-5)。在Ru-催化的条件下,苯乙烯和1-十二烯的有效氧化得到了产率良好的苯代乙二醇(85%)和十二碳烯乙二醇(75%)(目录号6和7)。同样,已经实现了1,2-二取代的烯类,包括1,4-二乙酰氧基-顺式-丁-2-烯和菲的二羟基化而得到相应的顺式-1,2-二醇类,产率为61和60%(目录号8和9)。使用1-乙酰氧基环己-2-烯作为底物,Ru-催化的二羟基化得到1-乙酰氧基-2,3-二羟基环己烷,产率为75%(目录号10),主要产物为反式-异构体(反式∶顺式=9∶1)。而三取代的烯类,诸如(3-苄氧基)-1-甲基丁-1-烯的催化二羟基化看起来有效性较低,并且获得的相应顺式-1,2-二醇的产率仅为45%(目录号11)。
根据光谱和分析数据与报导的数据鉴定催化二羟基化的有机产物(参见:Shing,T.K.-M.;Tai,V.W.F.;Tam,E.K.-M.;Chung,I.H.-F.;Jiang,Q.Chem.Eur.J.1996,2,50)。
实施例2
再循环指的是返回到原始的催化剂,使得反应再次开始。这对节省有价值的催化剂并且将产物污染降至最低特别重要。通过离心回收纳米-RuHAP催化剂并且用于在相同反应条件下的第二、第三和第四次试验。由于使用了反式-肉桂酸乙酯作为底物,所以未观察到明显的催化剂活性丧失,并且获得了产物顺式-1,2-二醇,产率分别为80%、82%和66%。在4次连续试验中获得的总产物更新数=298。就催化剂回收的每次循环而言,对上清溶液的ICP-MS分析揭示出残余Ru含量低于5ppm。值得注意的是零-化合价的Ru金属粉对二羟基化反应而言完全无效。
更新数指的是在指定反应耗尽前促产物分子的相对数/催化剂的分子数并且表示催化剂功效的极为重要的方面。应注意对作为反式-肉桂酸酯衍生物的反式-肉桂酸甲酯而言,RuCl3催化剂的更新数不会超过168(参见:Plietker,B.;Niggemann,M.Org.Lett.2003,5,3353)。纳米-RuHAP-催化的方案在大规模下操作时是等效的。例如,反式-肉桂酸酯(10mmol)在有纳米-RuHAP(0.2mol%)下的反应得到相应的顺式-1,2-二醇,分离的产率为67%(产物更新数=330)。
实施例3
NaIO4作为氧化剂,通过纳米-RuHAP催化烯类的氧化裂解(参见:Yang,D.;Zhang,C.J.Org.Chem.2001,66,4814)。
本发明涉及使用纳米-RuHAP作为烯类的氧化裂解的一般和有效催化剂合成醛类和酮类的直接方法。在室温下和10分钟内分部分向含有烯(90mg,0.5mmol)和纳米-RuHAP(40mg)的1,2-二氯乙烷(5mL)和蒸馏水(1mL)的混合物中加入NaIO4(214mg,1mmol)。在基于TLC监测的反应完全后,用饱和Na2S2O3溶液使过量的NaIO4猝灭。通过离心从该反应混合物中分离催化剂,并且用水洗涤回收的催化剂且在真空中干燥,此后再利用。用CH2Cl2(3×10mL)提取上清液并且用无水Na2SO4干燥合并的有机提取物。通过毛细管GC分析,使用1,4-二氯苯作为内标鉴定反应产物并且定量。
由于使用了纳米-RuHAP作为催化剂,所以在室温下和1,2-二氯乙烷-H2O(5∶1v/v)中用NaIO4(1mmol)处理2-3小时时,烯类被裂解成相应的醛类或酮类,产率过量(表2)。在纳米-RuHAP催化的条件下氧化裂解其它芪衍生物,诸如顺式-芪和1-甲基-1,2-二苯基乙烯产生羰基产物,产率极佳(>85%)(目录号2-3)。正如预计的,使用“纳米-RuHAP+NaIO4”方案发现苯乙烯、α-甲基苯乙烯和反式-β-甲基苯乙烯发生了氧化裂解,并且获得了苯甲醛,产率为66-92%(目录号4-6)。当将环芳族烯类,诸如二氢萘用作底物时,分离了相应的二羰基产物,产率为86%,其中76%的底物转化(目录号7)。同样,发现环脂族烯类,诸如降冰片烯和环辛烯发生有效的C=C键裂解而得到相应的二羰基产物,产率为72-87%(目录号8-9)。
实施例4
使用臭氧作为乙氧基通过纳米-RuHAP催化烯类的氧化裂解。
本发明涉及使用纳米-RuHAP作为α,β-不饱和烯类的氧化裂解的一般和有效催化剂合成醛类和酮类的直接方法。在室温下和10分钟内分部分向含有烯(104mg,0.5mmol)和纳米-RuHAP(40mg)的CH3CN(7.5mL)和蒸馏水(5mL)的混合物中加入臭氧(770mg,1.25mmol)和NaHCO3混合物。基于TLC监测反应完全时,用饱和Na2S2O3溶液使过量的NaIO4猝灭。通过离心从该反应混合物中分离催化剂,并且用水洗涤回收的催化剂且在真空中干燥,此后再利用。用CH2Cl2(3×10mL)提取上清液并且用无水Na2SO4干燥合并的有机提取物。通过快速色谱法纯化反应产物并且用IR、MS和NMR光谱表征。“纳米-RuHAP+臭氧”方案也可以影响α,β-不饱和烯类的氧化裂解。当在室温下用在NaHCO3缓冲的MeCN-H2O(1.5∶1v/v)中的臭氧(1.25mmol)和纳米-RuHAP(4mol%)将查耳酮(0.5mmol)处理3小时时,产生了苯甲醛和苯甲酸(目录号1)。在异佛尔酮和(+)-长叶薄荷酮中发现了类似的氧化裂解产物(目录号2,3)。注意,还观察到了C=C键的便利的氧化裂解。例如,使炔类,诸如1-苯基-1-丙炔经历Ru-催化的条件产生苯甲酸,产率为82%(目录号4)。

Claims (19)

1.由烯合成顺式-1,2-二醇的方法,包括使氧化剂和酸与烯在催化量的固相负载的钌纳米颗粒作为催化剂存在下反应的步骤。
2.权利要求1中所述的由烯、氧化剂和酸合成顺式-1,2-二醇的方法,其中所述的烯具有结构R1R2C=CR3R4,且
其中R1-R4为H、烷基、CN、COOH、COO-烷基、COO-芳基、CO-烷基、CO-芳基、O-烷基、O-芳基、O-CO-烷基、O-CO-芳基、OCOO-烷基、OCOO-芳基、N-烷基2、N-芳基2、NH-烷基、NH-芳基、NO、NO2、NOH、芳基、氟、氯、碘、CHO、SO3H、SO3-烷基、SO2-烷基、SO-烷基、CF3,烷基为1-18个碳原子的烃,芳基为芳族环。
3.权利要求1中所述的由烯、氧化剂和酸合成顺式-1,2-二醇的方法,其中氧化剂为超化合价碘化合物、超化合价氯化合物、过氧化氢或其衍生物、过酸化合物或其衍生物。
4.权利要求1中所述的由烯、氧化剂和酸合成顺式-1,2-二醇的方法,其中该方法在溶剂中进行,所述溶剂为水与有机溶剂的混合物,所述的有机溶剂为乙腈、乙酸乙酯、二氯甲烷、氯仿、1,2-二氯乙烷、己烷、苯、甲苯、甲醇、乙醇、异丙醇、叔丁醇或其混合物。
5.权利要求1中所述的由烯、氧化剂和酸合成顺式-1,2-二醇的方法,其中反应温度在-78-40℃。
6.权利要求1中所述的由烯、氧化剂和酸合成顺式-1,2-二醇的方法,其中酸为硫酸、硝酸、盐酸或乙酸。
7.权利要求1中所述的由烯、氧化剂和酸合成顺式-1,2-二醇的方法,其中钌纳米颗粒的大小在1-100nm的范围,并且负载在羟磷灰石上。
8.权利要求1中所述的由烯、氧化剂和酸合成顺式-1,2-二醇的方法,所述催化剂通过过滤或离心分离并且再利用。
9.由烯合成醛或酮的方法,包括使氧化剂与烯在催化量的固相负载的钌纳米颗粒存在下反应。
10.如权利要求9中所述的方法,其中所述的烯具有结构R1R2C=CR3R4,且
其中R1-R4为H、烷基、CN、COOH、COO-烷基、COO-芳基、CO-烷基、CO-芳基、O-烷基、O-芳基、O-CO-烷基、O-CO-芳基、OCOO-烷基、OCOO-芳基、N-烷基2、N-芳基2、NH-烷基、NH-芳基、NO、NO2、NOH、芳基、氟、氯、碘、CHO、SO3H、SO3-烷基、SO2-烷基、SO-烷基、CF3,烷基为1-18个碳原子的烃,芳基为芳族环。
11.如权利要求10中所述的方法,其中氧化剂为超化合价碘化合物、超化合价氯化合物、过氧化氢或其衍生物、过酸化合物或其衍生物。
12.如权利要求10中所述的方法,其中该方法在溶剂中进行,所述的溶剂为水与如下溶剂的混合物:乙腈、乙酸乙酯、二氯甲烷、氯仿、1,2-二氯乙烷、己烷、苯、甲苯、甲醇、乙醇、异丙醇、叔丁醇或其混合物。
13.如权利要求10中所述的方法,其中钌纳米颗粒具有1-100nm大小。
14.由烯合成醛、酮或羧酸的方法,包括使用催化量的固相负载的钌纳米颗粒使氧化剂在缓冲剂存在下与烯反应。
15.如权利要求14中所述的方法,其中所述的烯具有结构R1R2C=CR3R4,且
其中R1-R4为H、烷基、CN、COOH、COO-烷基、COO-芳基、CO-烷基、CO-芳基、O-烷基、O-芳基、O-CO-烷基、O-CO-芳基、OCOO-烷基、OCOO-芳基、N-烷基2、N-芳基2、NH-烷基、NH-芳基、NO、NO2、NOH、芳基、氟、氯、碘、CHO、SO3H、SO3-烷基、SO2-烷基、SO-烷基、CF3,烷基为1-18个碳原子的烃,芳基为芳族环。
16.如权利要求15中所述的方法,其中氧化剂为超化合价碘化合物、超化合价氯化合物、过氧化氢或其衍生物、过酸或其衍生物。
17.如权利要求15中所述的方法,其中所述的缓冲剂为NaHCO3
18.如权利要求15中所述的方法,其中该方法在乙腈、乙酸乙酯、二氯甲烷、氯仿、1,2-二氯乙烷、己烷、苯、甲苯、甲醇、乙醇、异丙醇、叔丁醇、水或其混合物存在下反应。
19.如权利要求15中所述的方法,其中钌纳米颗粒的大小在1-100nm范围。
CNB2005800124234A 2004-04-20 2005-04-20 用于烯类的顺式-二羟基化和氧化裂解的负载型钌纳米颗粒催化剂 Active CN100516009C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56364504P 2004-04-20 2004-04-20
US60/563,645 2004-04-20

Publications (2)

Publication Number Publication Date
CN1946661A CN1946661A (zh) 2007-04-11
CN100516009C true CN100516009C (zh) 2009-07-22

Family

ID=35196892

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800124234A Active CN100516009C (zh) 2004-04-20 2005-04-20 用于烯类的顺式-二羟基化和氧化裂解的负载型钌纳米颗粒催化剂

Country Status (5)

Country Link
US (1) US7393985B2 (zh)
CN (1) CN100516009C (zh)
DE (1) DE112005000879T5 (zh)
GB (1) GB2427404B (zh)
WO (1) WO2005102971A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2409962A1 (en) 2010-07-21 2012-01-25 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House A one-pot method for the oxidation of unsaturated organic compounds
JP2020059671A (ja) * 2018-10-10 2020-04-16 旭化成株式会社 ジアルデヒドの製造方法
CN109942423A (zh) * 2019-04-16 2019-06-28 中国日用化学研究院有限公司 一种合成9,10-二羟基十八碳硬脂酸甲酯的方法
CN114044734B (zh) * 2021-09-08 2023-08-29 新疆维吾尔自治区中药民族药研究所 松香烷二萜及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769824A (en) * 1954-04-26 1956-11-06 Upjohn Co Hydroxylation of delta-pregnenes
US4393253A (en) * 1980-11-24 1983-07-12 Exxon Research & Engineering Co. Hydroxylation of olefins
DE19920038A1 (de) * 1999-04-25 2000-10-26 Bayer Ag Verfahren zur Dihydroxylierung von Olefinen mittels Übergangsmetall-Katalysatoren
US6551960B1 (en) * 2000-06-19 2003-04-22 Canon Kabushiki Kaisha Preparation of supported nano-sized catalyst particles via a polyol process

Also Published As

Publication number Publication date
GB0619819D0 (en) 2006-11-22
GB2427404B (en) 2008-09-17
CN1946661A (zh) 2007-04-11
WO2005102971A1 (en) 2005-11-03
GB2427404A (en) 2006-12-27
DE112005000879T5 (de) 2008-07-03
US7393985B2 (en) 2008-07-01
US20050234260A1 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
Ho et al. Ruthenium nanoparticles supported on hydroxyapatite as an efficient and recyclable catalyst for cis-dihydroxylation and oxidative cleavage of alkenes
Gusso et al. Platinum-catalyzed oxidations with hydrogen peroxide: enantiospecific Baeyer-Villiger oxidation of cyclic ketones
Zhu et al. Direct aldol reactions catalyzed by 1, 1, 3, 3-tetramethylguanidine lactate without solvent
Naeimi et al. Efficient one-pot click synthesis of β-hydroxy-1, 2, 3-triazoles catalyzed by copper (i)@ phosphorated SiO 2 via multicomponent reaction in aqueous media
Gogoi et al. Rice husk derived nanosilica supported Cu (II) complex: an efficient heterogeneous catalyst for oxidation of alcohols using TBHP
JP2019531873A (ja) 高度に効率的な有機変換のための金属酸化物に支持された地球に豊富な金属の触媒
Fernandes et al. Mild homogeneous oxidation and hydrocarboxylation of cycloalkanes catalyzed by novel dicopper (II) aminoalcohol-driven cores
CN100516009C (zh) 用于烯类的顺式-二羟基化和氧化裂解的负载型钌纳米颗粒催化剂
Zhang et al. Highly efficient chiral metal cluster systems derived from Ru 3 (CO) 12 and chiral diiminodiphosphines for the asymmetric transfer hydrogenation of ketones
Samanta et al. A mononuclear copper (II) complex immobilized in mesoporous silica: An efficient heterogeneous catalyst for the aerobic oxidation of benzylic alcohols
Babaee et al. MOF-Zn-NHC as an efficient N-heterocyclic carbene catalyst for aerobic oxidation of aldehydes to their corresponding carboxylic acids via a cooperative geminal anomeric based oxidation
CN105837416A (zh) 一种铜配合物催化醇类选择性氧化制备醛或酮的方法
Cheng et al. Highly efficient Cu (ii)-pyrazoledicarboxylate heterogeneous catalysts for a base-free aerobic oxidation of benzylic alcohol to benzaldehyde with hydrogen peroxide as the oxidant
US20060167313A1 (en) Process for preparing encapsulated metalloporphyrin catalyst and process for oxidation of alcohols
Malumbazo et al. Silica immobilized salicylaldimine Cu (II) and Co (II) complexes as catalysts in cyclohexene oxidation: A comparative study of support effects
Nagaraju et al. Iron and vanadium containing molybdophosphoric acid catalyst for selective oxidation of alcohols with molecular oxygen
JP4242288B2 (ja) マンガン(iv)錯体塩及びそれらの酸化触媒としての使用
JP2008019265A (ja) β−ヒドロキシヒドロペルオキシド類の製造法とその触媒
Tan et al. A porous Anderson-type polyoxometalate-based metal–organic framework as a multifunctional platform for selective oxidative coupling with amines
JP2790885B2 (ja) ハロゲン化ポルフィリン錯体触媒によるオレフィンの酸素酸化法
JP2009136807A (ja) 酸化触媒およびその利用
CN102372745A (zh) 一种氢甲酰化催化剂前体的制备方法
JP2005514446A6 (ja) マンガン(iv)錯体塩及びそれらの酸化触媒としての使用
Annunziata et al. Synthesis of a bifunctional ligand for the sequential enantioselective catalysis of various reactions
JP2003146978A (ja) シス−β構造を有するサレンコバルト錯体を用いる光学活性なラクトン化合物の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant