CN100510739C - 改进的以托盘给样的扫描声学显微镜以及主要用于在检查期间使部件固定的方法 - Google Patents

改进的以托盘给样的扫描声学显微镜以及主要用于在检查期间使部件固定的方法 Download PDF

Info

Publication number
CN100510739C
CN100510739C CNB2004800096615A CN200480009661A CN100510739C CN 100510739 C CN100510739 C CN 100510739C CN B2004800096615 A CNB2004800096615 A CN B2004800096615A CN 200480009661 A CN200480009661 A CN 200480009661A CN 100510739 C CN100510739 C CN 100510739C
Authority
CN
China
Prior art keywords
pallet
parts
acoustic microscope
ultrasonic beam
scanning acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004800096615A
Other languages
English (en)
Other versions
CN1849510A (zh
Inventor
劳伦斯·W·凯斯勒
约翰·比洛内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Sonoscan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonoscan Inc filed Critical Sonoscan Inc
Publication of CN1849510A publication Critical patent/CN1849510A/zh
Application granted granted Critical
Publication of CN100510739C publication Critical patent/CN100510739C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2698Other discrete objects, e.g. bricks

Landscapes

  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种用于以托盘给样的扫描声学显微镜的改进的扫描台和方法,具有真空系统,所述真空系统在由超声波束发生器进行声穿透的过程中,至少辅助将松散保持部件固定在托盘中。

Description

改进的以托盘给样的扫描声学显微镜以及主要用于在检查期间使部件固定的方法
技术领域
本发明涉及在对微电路部件进行非破坏性测试中使用的扫描声学显微镜,主要在于提出一种用于提高这些系统的性能、以使得处于测试中的部件固定的系统和方法。
背景技术
典型地,扫描声学显微镜具有在处于测试中的部件上方快速地来回移动的超声波束发生器。为了经过整个部件,当该部件在正交方向上平移通过超声波束时,超声波束发生器在两个方向或一个方向上被扫描。
扫描声学显微镜的图像输出被用于对上述部件的内部物理特性进行非破坏性分析。扫描声学显微镜能够穿透部件表面,并且对固体(例如金属、陶瓷、聚合物和合成物)中的微观内部特征进行成像。被测试的典型组件包括例如集成电路(IC)的微电子组件、多层陶瓷电容器以及多芯片模块。这些被测试的部件的典型故障包括分层、裂缝、不连续层的倾斜、结合分离(disbond)、未完全覆盖以及空隙的形成(voiding)。
这些部件可以在托盘(tray)中运送到扫描台,本领域公知为“JEDEC”托盘。JEDEC托盘的特征在于,其包含单个单元或袋(pocket)的X-Y矩阵,它们的形状和尺寸根据运送的具体部件而定制。
高频超声波的特征是,虽然它能够穿过上面描述的固体,但是如果没有严重衰减,高频超声波束不能穿过在超声波束发生器和处于测试中的部件之间的空气间隙。因此,使用流体介质来将超声波束发生器的扫描头的高频输出耦合到该部件。虽然可使用醇或者其它流体,但流体介质通常是水。在一个普通方法中,耦合流体以环绕在超声波周围的喷液器(fountain)喷出的下降流或上升流的方式来分配。
微电子学发展的必然趋势是(例如)IC的部件变得越来越小。随着这些部件尺寸减小,它们变得更加难以操作和使用,特别是在生产环境中进行测试时。特别是当耦合流体通过扫描声学显微镜时,耦合流体流非常容易扰动这些小部件,甚至是使得它们从托盘移位。
理解以下内容是很重要的:JEDEC托盘被开发出来作为将集成电路和其它半导体产品从一个半导体制造步骤或位置运送到另一个步骤或位置的装置。因为在制造过程中通常通过真空“拾取器(picker)”,这些单独的部件可多次从它们单独的袋中被移走,以及将它们置于它们单独的袋中,因此它们必须被自由地保留在它们的袋中,从而使得它们可容易地被移走或者放回,而不会损坏这些部件。
JEDEC托盘的设计不是用来在通过扫描超声显微镜的检查过程中固定部件,通过扫描超声显微镜的检查需要在检查过程中让这些部件完全固定不动。部件与袋的松配合便利了JEDEC托盘的基本运输功能,但是,在通过扫描超声显微镜检查部件的托盘时,却产生严重问题。一个主要问题在于部件(特别是小部件)从托盘移位。第二个严重问题在于当这些部件被超声扫描时需要使它们固定。
如果这些部件在声穿透(insonification)操作过程中不能被固定,那么耦合流体流会扰动这些部件,使得它们在被扫描超音波束检查时在其各自的袋中移动。这些部件在检查过程中的移动使得形成的检查信号失真,从而产生能够损害整个检查过程的严重误差。例如,如果检查过程是用于识别半导体管芯中非常细小的裂缝,那么由在超声检查过程中部件移动引起的信号失真可能会产生足以使得裂缝不能被可靠检测到的误差。
扫描部件的JEDEC托盘的另一问题在于,通常的塑料托盘可被弯曲,因此造成制造缺陷或者拖延使用或滥用。弯曲的托盘改变了部件的二维阵列部件的相对高度和平面度,这可能导致检查误差。
Kessler等共有的第5,684,252号美国专利解决了上述移位和固定的问题,其公开并要求保护了以托盘给样(tray-fed)的扫描声学显微镜系统,其中部件的托盘是成对的,并具有开放网筛(screen),以在部件穿过扫描台时将其固定在托盘中。在完成扫描操作之后,网筛从托盘移除。这一技术需要大量不同尺寸和结构的网筛,以适应不同的托盘尺寸和结构。这些网筛增加了资金和维护费用,其处理导致了劳力成本和延期的产生。
同样属于本发明的所有者的第6,357,136号美国专利给出了解决部件移位问题的教导,即在部件固定的一些应用中,通过在超声波束发生器和部件固定托盘之间设置单个固定的抑制结构(hold-down structure)。通过使用单个抑制结构克服了多个网筛的成本增加的缺陷,抑制结构能够防止耦合流体在检查过程中使部件从其托盘移位。
第6,357,136号专利的系统和方法在与JEDEC或部件的其它托盘一起使用时发挥最佳功能,其中,被测试的单个部件(通常相同)的高度(厚度)比固定这些部件的袋的深度要大。因此,固定的抑制结构能够实际地与突出的部件接合,并使得它们在被超声波束检查时在其各自的袋中稳固地固定。
但是,在被检查的部件的高度比容纳袋的深度小的应用中,这种固定抑制结构虽然仍然能有效地防止部件移位,但是不能有效地使得被容纳的部件在检查过程中固定不动。为了解决检查精确性问题,在某些应用中需要降低扫描速率,但是扫描速率的降低会降低检查的处理速率。
发明内容
本发明的一般目的在于提供解决在扫描声学显微镜中,对以托盘给样(tray-fed)的部件检查中发生的某些缺陷的方法。
一个目的在于提高以托盘给样的扫描声学显微镜的性能,以在超声检查过程中使得微电子IC和其它部件能够固定,从而降低检查误差并提高检查的处理速率。
为了达到上述目的,本发明提供了一种托盘给样的扫描声学显微镜,所述显示镜具有用于对穿孔托盘上的松散保持部件进行检查的改进托盘扫描台,包括:托盘输送装置;耦合流体分配装置;超声波束发生器,配置为在对所述托盘进行扫描的过程中,引导超声波束通过所述耦合流体而到达所述托盘上,所述被分配的耦合流体在扫描过程中不合乎需要地趋向于扰动所述部件;以及真空系统,配置为在托盘扫描过程中,在所述托盘的底部上产生真空。
本发明还提供了一种采用扫描声学显微镜进行检查期间使部件固定的方法,包括:将松散保持的部件的穿孔托盘输送至扫描台上;在所述扫描台中,以穿过向下的耦合流体流的超声波束对所述托盘进行声穿透;在所述扫描操作过程中,在所述托盘上抽真空,以至少帮助将所述部件固定在所述托盘中。
附图说明
图1是实现本发明的具有多个装载台(stage)的以托盘给样的扫描声学显微镜装置的正面示意图,图1A是穿过图1的装置的部件固定托盘的表面的细节图,图1B是在干燥台中使用的固定的部件抑制装置的立体图,图1C描绘了图1B所示的干燥元件的操作细节;
图2是按照本发明的一个方面的固定的部件抑制结构的平面图,图2A是该结构的立体图,而图2B和2C分别示出了该结构的侧视图和端部视图;
图3是按照本发明的一个方面的固定的部件抑制结构的剖面图;
图4是按照本发明的一个方面的部分结构图,并描述了用于波束通过的槽的可选实施方案;
图5是表示图3所示的结构的可选实施方案的结构剖面图;
图6-8描述了用于在部件通过扫描台之前使得部分移出的部件重新装入托盘中的可选装置;
图9描述了实现本发明一个方面的真空系统;
图10是图9的真空系统的充气室构成部分的顶视图;
图11表示与图10的系统类似的真空系统,但是配置用于以X-Y形式扫描的声学显微镜;
图12是图11的真空系统的充气室构成部分的顶视图;
图13-15表示出了在其中干燥台和抑制真空系统采用共用真空泵的真空系统;
图16-17表示图1-15的系统的变化方案;
图18-19描述了可选的结构,其中,扫描超声波束发生器和用于在超声波束发生器的区域中产生局部抽吸的装置组合在一起并由共用的运动台移动;
图20是用于使得局部抽吸产生装置对超声波束发生器的移动进行跟随的另一方法。
具体实施方式
本发明提出了一种扫描声学显微镜检查系统和方法,其能够对部件进行检查,尤其是对不能通过现有技术的以托盘给样的扫描声学显微镜系统处理的小尺寸部件进行检查。
本发明的实施将在附图中进行描述,其中,不同附图中相同的附图标记表示相同结构。首先,列出所描述的实现的元件,并以能启发本领域技术人员的简要的描述性注释进行标记,然后对该系统的结构细节和操作方法进行简要描述。
优选实施方案的结构
附图标记  说明
20        以托盘给样的扫描声学显微镜
21A       用于加载部件的托盘的台
21B       托盘-扫描台
21C       用于干燥部件的托盘的干燥台
22        用于输送部件的托盘
23        托盘22的表面
24        袋24A的开口
24A       用于接收部件25的袋
24B       袋24A的突出部(ledge)或底部
25        微电子部分
25A       从袋移位的部分
26        输送装置-可为两个与托盘的相对侧接合的带
28        输送装置26和托盘22的移动方向
30        超声波束发生器
32        超声波束
36        部件抑制结构
37        转换器头
38                用于分配耦合流体的项圈状(collar)部分
40                耦合流体
42                收集槽
50                槽
56                结构的一侧
58                底盘
60                斜面
64                用于接收抑制螺钉的孔
70                部件抑制装置
72                框架
74A,74B          网孔
78                凸缘
84A               气刀
84B               气刀
86                空气流
90A               气刀84A的平面
91                真空干燥器
91A,91B          结构36的开放侧
92                槽
94                转换器头
95                超声波束
96                耦合流体池
98                结构
100               刷子
102               橡皮刷
104               空气流
106               空气喷嘴
110               真空系统
112               泵
113               充气室114的顶壁
114               充气室
115               开口
116               吸入管路
117               泵贮存器
118               再循环管路
119               主贮存器
120               穿孔顶壁
121               收集槽42的排放口中的过滤装置
122               过滤装置
124               用于使耦合流体再循环的流体泵
126               X运动台
128               X-Y运动台
130               真空系统
132               充气室
133              顶壁
134              开口
136              干燥台
137              顶壁
138              干燥器充气室
139              槽
140              分配阀
141              管路
142              端孔
143              控制装置
144              另一行开口
148              充气室
150              运动台
152              连接元件
154              连接元件
156              开口形式
160              抽吸元件
162              泵
164              分配系统
166              抽吸变换器
168              控制装置
170              运动台
如图1所示的扫描声学显微镜20包括用于加载部件的托盘(示出了一个托盘22)的台21A、用于处理松散保持部件的托盘的经过改进的托盘-扫描台21B、以及用于干燥部件的托盘的干燥台21C。在部件被相继输送到托盘-扫描台21B以及干燥台21C时,托盘22将它们固定。托盘22可为任何类型和结构,例如JEDEC托盘—其为工业标准,存在超过一百种不同结构。作为一个示例,托盘22为了示例目的可为5.25英寸宽和12.5英寸长。
参照图1A,托盘22的表面23被示出为具有多个用于接收IC或其它小部件(其中一个以25表示)的单元或袋24A。在用作示例的JEDEC托盘中,在宽度方向上具有12个袋,在长度方向上具有29个袋,总共248个袋。每个袋24A能够松散地保持单个微电子部件,该微电子部件作为示例,为边长为0.22英寸的正方形以及具有0.125英寸的厚度。每个袋24A的突出部或底部24B具有开口24,以使得耦合流体能够在松散保持的部件周围流动并通过袋24A。其它的JEDEC托盘具有缺少底部的袋结构;部件通过穿过开口的简单系材(tie)而支撑在其各自的袋中。这种类型的袋使得比示出的袋24A具有更多的耦合流体在部件周围流动,其中,在袋24A中,部件置于倾向于在检查过程中部分阻止耦合流体在部件25周围流动的突出部或底部24B上。
可包括一对围绕在托盘的相对侧上的NeopreneTM带的输送装置26,使得托盘22向托盘-扫描台21B、然后向干燥台21C移动。托盘-扫描台21B具有超声波束发生器30,其在托盘22以箭头28所示的方向移动时发射超声波束32(如图3中所示),超声波束32聚焦在被托盘22输送的部件25上。超声波束发生器30具有用于投射波束32的转换器头37。转换器头37还具有项圈状部分38,用于与波束32一起同轴地分配例如水的耦合流体40。当托盘被输送装置26纵向移动时,超声波束发生器30穿过托盘快速地横向(在本应用中为“X”轴)来回移动。用于来回驱动超声波束发生器的运动台(图中未示出)可与弗兰克·J·齐查斯基(Frank J.Cichanski的共有的第4,781,067号美国专利中描述和要求保护的一样。
固定的部件抑制结构36置于超声波束发生器30和通过台21B输送的托盘22之间,并且紧密邻近托盘22。
用于获取通过部件抑制结构36排出的耦合流体40的装置被示为耦合流体收集槽42,其置于扫描台21B和干燥台21C下方。
从项圈状部分38分配的耦合流体40不希望地倾向于使得部件25从托盘22移出(dislodge),或者即使在没有使部件25移出时对其扰动。作为示例,图1A(放大地)示出了当被向下的耦合流体流撞击时,部件25没有贴合地位于袋24A中,而是可能在袋周围摇摆或移动。
但是,被扫描的部件在被超音波束检查时的任何移动可能造成足以引起致使检查操作无效的信号失真和误差。本发明的一个目的在于至少帮助使得部件25固定在其各自的袋24A中,以降低与被扫描部件在检查操作过程中的移动相关的检查误差。
在部件抑制结构36中至少具有一个开口,其尺寸和位置被设定为能够使来自超声波束发生器30的扫描超声波束32通过,但是不能使来自托盘22的小部件25通过。该开口在本发明的这个实施方案中以槽50表示。超声波束发生器30被横向平移到托盘22的路径(在本应用中为“X”轴),开口50在托盘移动方向上具有足够大的宽度,以使耦合流体40以及横向移动的超声波束32通过,但是不能使托盘中的小部件通过。
虽然在操作过程中是固定的,但是结构36可在行程之间通过升降结构(未示出)进行垂直调节,以便适应不同高度的托盘。该升降结构为传统结构。
超声波束发生器30在图3中描述,其将通过槽50的超声波束32聚焦,在托盘22横向移动到达槽50处时,超声波束32撞击在托盘22中的一连串部件25上。
部件抑制结构36的作用是,使小部件25的托盘22可在小部件25横穿扫描台21B时进行检查,而不会被耦合流体从托盘移出。在部件突出到托盘的上表面上方的这种类型的托盘中,抑制结构36用于实际地将部件向下压入袋中并且使得它们在检查过程中固定。但是,在所示的应用中,部件25的高度(厚度)小于袋24A的深度。因此,如果没有本发明,部件25在检查过程中不能被实际地被固定在袋中,而是可能在检查过程中被耦合流体的撞击流所扰动。这一点将在下面详细描述。
参照图2-2C,部件抑制结构36被示为具有三个封闭侧,其中一侧以56表示。结构36具有底盘58,其以被传送的托盘22的行进方向向上倾斜,以形成具有向上的斜面60的第四侧。向上的斜面60的目的在于约束(engage)移出的部分并使得移出的部分重新进入托盘。向上的斜面60相对于底盘58可为10到30度的锐角,优选地约为10度。
作为示例,部件抑制结构36可为大约8.25英寸长和大约3.75英寸宽,向上的斜面部分从底盘58向外延伸大约0.69英寸。浅侧的深度可为约0.44英寸。槽的长度可为约5.75英寸,其宽度约为0.093英寸,以上所有都是作为示例。结构36可由0.032不锈钢垫片架(shim stock)组成。应该注意,盘60的底盘58必须不受对槽进行加工的影响,并且在约0.01英寸内保持平坦,以确保结构36与从其下方通过的托盘22(其具有部件25)紧密相邻。
结构36通过四个机器螺钉(未示出)(优选地为不锈钢制成)保持固定。四个螺钉通过四个孔64插入,并且拧入到扫描声学显微镜的固定部分。
参照图1到13,干燥台21C对通过耦合流体声穿透的部件的托盘进行干燥。干燥台21C至少包括用于去除耦合流体的干燥器,这里所示为用于引导受迫气体流作用到经过干燥台的、湿的部件托盘上。
但是,干燥器不希望地扰动部件,并且倾向于使得它们从托盘移出。固定的部件抑制装置70置于干燥器和托盘之间,并与托盘紧密相邻。在本发明的这一实施方案中,固定的部件抑制装置70被示为具有这样的开口形式,即,开口的尺寸和位置的设定能够使受迫气体流到达托盘,同时阻止小部件从托盘移出。在这一实施方案中,开口形式被示为包括两部分的网孔74A和74B。部件抑制装置70通过附着到扫描声学显微镜的固定部分的凸缘78而被固定。同样的凸缘(未示出)置于框架72的相对侧上。
虽然在操作过程中,部件抑制装置70与结构36类似而固定不动,但是部件抑制装置70可在行程之间通过升降结构(未示出)进行垂直调节,以便适应不同高度的托盘。该升降结构为传统结构。
框架72被示为以箭头28所示的方向跨坐(straddle)于小的、松散保持的部件的托盘22。在托盘22的表面23上的部件放置如图1A所示。在这一实施方案中的干燥器被示为包括一对气刀84A和84B,它们在结构上被示为相同。如图1C所示,在这一实施例中,气刀84A产生沿着平面90A的空气流86(由虚线表示),从而产生向着湿部件的、向下的类似刀的空气流。气刀84B产生类似的空气流。
如下面将更详细地描述,从部件和托盘去除潮湿可通过提供真空干燥器来加强,如图1中以标号91示例性表示。
通过结构36中的槽50排空的耦合流体40、从结构36的开放侧91A和91B流动(见图2A)的流体、以及被来自图1B的气刀84A和85B的受迫气体流而从部件25吹来的耦合流体40,都通过托盘22和输送装置26向下排放,然后进入到耦合流体贮存器42中。在耦合流体贮存器42处,耦合流体可被过滤,然后再次循环到达超声波束发生器30的流体分配项圈状部分38。
虽然示出和描述了结构36中的连续不间断的槽50,但是结构36中的开口可采取一连串的槽92的形式,如图4所示。槽92的尺寸和位置使得能够以这样的方式与从下方通过的部件对准,即,将要被检查的部件或者部件的特定区域暴露给声学探测器。
参照图5,在超高分辨率应用(其中,波束的焦距很短)中,发射超声波束95的转换器头94可淹没于在结构98中的、收集了耦合流体的池96中。附加的耦合流体源设置到结构98中,以控制流体的期望深度。
虽然在描述的实施方案中,移出的部件25A的重新装入通过斜面60而实现,但是重新装入也可通过其它方式实现,例如通过软刷100(图6)、橡皮刷102(图7)或者由空气喷嘴106产生的柔和空气流104(图8)。
在干燥台中,耦合流体的去除在优选的实现中通过一对气体喷嘴来实现。作为替代,也可采用单个喷嘴。气体可被加热。喷嘴可被脉动地调节,或者根据指定的速率变化程序来喷射气体体积。如下面将要更详细地描述,除了气体喷嘴或者气体喷嘴的替代物,或者结合气体喷嘴,托盘可具有抽吸泵。
按照本发明的一个方面,提供一种改进的以托盘给样的扫描声学显微镜,用于检查松散保持的部件的穿孔托盘。该显微镜包括:托盘输送装置、耦合流体分配装置以及超声波束发生器,超声波束发生器配置为在对托盘进行扫描的过程中,引导穿过耦合流体的超声波束到达托盘上。为了减缓先前描述的分配的耦合流体在扫描过程中对部件的不希望地扰动的趋势,提供一种真空系统,其配置为在托盘的底部上形成真空,以在托盘扫描过程中至少帮助固定部件。如将要描述,该真空系统使得空气通过每个托盘中的底部的开口进入托盘和从托盘出去。在对托盘进行扫描的过程中,产生的空气流引导耦合流体,当流体在部件周围流动时由流体施加的压力使得部件稳固地保持在它们各自的袋中。
如图9所示,作为图1中的系统的变化方案,真空系统110包括通过吸入管路116耦合到充气室114的真空泵112。如上关于图1A的描述一样,托盘22具有一连串开口24,每个袋24A一个。充气室114具有穿孔的顶壁120,顶壁120具有在图10中的平面图中更清晰示出的一连串开口115。由泵112产生的真空通过托盘22的开口24以及通过真空室114的顶壁120的开口115牵引空气流。由空气流和产生的耦合流体40施加的压力能够在扫描操作过程中,使部件25固定在它们各自的袋24A中。经过泵112的耦合流体供应给用于存储从收集槽42排放的耦合流体的主贮存器119。位于收集槽42的排出部分中的过滤装置121去除在收集槽42中收集的耦合流体中的杂质。为了示例的简单,输送装置26在图9以及随后的附图中并未示出。
泵112可为单隔膜型或双隔膜型,或者可为适合于产生适当的真空,而不受产生的耦合流体的不利影响的多种其它合适类型。如果泵112是需要流体分隔贮存器的类型(如虚线117所示),那么来自贮存器117的排出物可直接供给主贮存器119(未示出可选泵)。
为了降低补充耦合流体的需要,主贮存器119中的耦合流体被流体泵124通过管路118循环回到分配耦合流体的项圈状部分38。吸入管路116中的过滤装置122去除可能妨碍检查过程的污染物。
图9所示的实施方案适合于通过X运动台126使得超声波束发生器30越过托盘22横向来回移动。应该理解,当超声波束发生器30被扫描(在图9中以进出纸的方向)时,为了优化真空系统110的效果,波束与充气室114的顶壁120中的一连串真空开口115对准。和图1的实施方案一样,在图9中,对托盘的X-Y扫描通过在超声波束发生器被X运动台126沿着正交的X轴扫描时,使得托盘22以箭头的方向(在本应用中为“Y”轴)输送而实现。
图11示意性地表示了图1到9的变化方案,其中,在超声波束发生器30被X-Y运动台128在X-Y光栅中扫描时,托盘在检查过程中不移动,而是保持固定不动。图11的真空系统130与图9的真空系统110类似,不同之处在于充气室132必需要更大,因为它必须适合于被超声波束发生器30在X和Y方向上被扫描的整个托盘区域。室132的顶壁133可具有如图12所示的二维的真空开口134的形式。
如简要描述和示意地表示的那样,图1的干燥台21C具有真空干燥器91,以加速将耦合流体从托盘22和被检查的部件去除。图13表示图1的系统的变化方案,其中用于干燥托盘22的干燥台136包括充气室138。充气室138具有顶壁137,顶壁137具有一连串的真空槽139(图14)。
充气室138可被其自身的泵抽空,但是按照本发明的一个方面,它可通过管路141耦合到泵112,从而泵112可担当用于抑制部件和用于使得托盘以及被容纳的部件干燥的共用泵的作用。
将充气室114的穿孔顶壁120(图10)与充气室138的穿孔顶壁133(图14)相比,很明显,抑制充气室114中的各个真空开口115的总的面积比干燥器充气室138中的真空开口134的总的面积要小得多。这是因为干燥台136需要使得整个托盘和其内容物尽快干燥,而在抑制真空系统119中,只是必须沿着超声波束发生器30的扫描管路提供真空。
但是,在某些使用如图13中的以标号112所示的共用泵的应用中,可能降低抑制真空系统的效率。泵将在克服由干燥器充气室引入的较小的空气阻力的情况下进行抽吸,因而,如果不使用较大的泵,则可能会在抑制充气室114处产生比最佳值小的真空水平。
为了克服所述的问题以及允许使用较小容量和便宜的共用泵112,可在管路116和141之间设置分配阀140(图15)。阀140的最简单形式是简单的换向阀,其被控制装置143控制,以使得泵压头在抑制充气室114(管路116)和干燥器充气室138(管路138)之间转向。这种结构使得泵112在给定时间专有地连接到一个室或者另一个室,而不是同时连接到两个室。
对于许多应用,分配阀140配置为将泵112的输出的受控部分分配给干燥器充气室138和抑制充气室114。这一更加灵活的方法使得产生的整个真空,以及分配为两个用途的部分输出根据被检查的托盘和部件的类型、希望的吞吐率以及其它因素而变化。
如上所述,特别参照图9和10,充气室开口115被示为具有均匀的形式,如图10所示为具有相同尺寸和形状的单行孔。按照本发明的一个方面,在某些应用中,希望具有不均匀的开口形式,以补偿行末尾(end-of-row)情况、特殊效果等等。为此,图16表示了室114的顶壁113的孔的形式,这些孔具有较大的端孔142和附加的整行或部分行的孔144。另一变种(图17)表示出了上述孔可采用不同形状的孔形式,以限定沿着扫描轴的希望的真空水平分布。相同原理可在图11-12中的系统中采用,其中,托盘在检查过程中停止,而X-Y运动台128使得超声波束发生器130越过托盘以光栅形式移动。
所述的实施方案的每一个都包括在抑制真空系统中使用具有沿着X轴排列,或者沿着X和Y轴排列的真空开口形式的充气室,当超声波束发生器30被扫描时,真空在所有时间施加到真空开口。实际上,将抽吸应用到以行分布形式的开口,可能要使用比所需要更大的泵。在某些应用中,希望具有较大尺寸的开口以在探测器对部件进行检查的区域中产生更大的抽吸。但是,由于远离探测器的孔处的过分损耗,使得所有孔变大会具有反效果。
但是,在扫描过程中的任何给定时刻,都需要只在超声探测器和耦合流体流周围的局部区域(下文中称为“抽吸区域”)中提供的真空。只要局部的抽吸区域跟随超声波发生器移动,那么就不需要向远离探测器的位置处的开口进行抽吸。为此,按照本发明的一个方面,将描述产生跟随超声波束发生器30的扫描而移动的局部抽吸区域的多种结构。
在图18的结构中,超声波束发生器30和充气室148被运动台150连接并一体地移动,运动台150可使得发生器30沿着X轴移动,或者沿着X和Y轴移动,如上所述。运动台150被示意地示为通过连接元件152和154耦合到超声波束发生器30和充气室148。对于图18的充气室148结构比先前描述的充气室(见图19)小得多,图19的充气室具有的开口156的形式的尺寸和配置能够产生有效地使得被检查的部件固定的抽吸区域,但不会产生多余的抽吸提供给远离探测器的区域。
图18的结构的变化形式(未示出)采用分离的用于超声波束发生器30和充气室148的运动台。两个运动台的共用控制装置(未示出)使超声波束发生器30和充气室30的运动同步,从而使局部的抽吸区域跟随探测器的移动。
图18的结构的另一变化形式在图20中示意地示出。图20的结构的优点在于,其不需要必须与超声波束发生器30同步移动的充气室。在图20的结构中,跟踪装置包括通过抽吸分配系统164和抽吸变换器166耦合到抽吸泵162的一系列抽吸元件160。控制装置168耦合到变换器166和泵162,以使得泵162中形成的固定和可变的头部根据预定程序选择性地应用于抽吸元件。抽吸元件160与超声波束发生器30的运动同步地由运动台170激活,并且可被单独激活和成组激活。因为上面所述的原因,提供的抽吸水平可相同,或者其水平沿着扫描管路或光栅分布。空气流可被调整,并确保在检查过程中任何这种调整不会扰乱部件。在某些应用中,希望能够调整耦合水流;控制装置被编程或者受控,以适应这些对耦合水流的调整。
本发明的主要优点是,由于使得部件在它们各自的托盘袋中固定而改进了扫描精确性。在扫描过程中使部件有效的固定允许使用较高的扫描速率,因此能获得较高的检查处理速率。本发明的另一优点在于,对变形的托盘的底壁的抽吸的应用能够使得它们平整,并且改进被扫描部件的平面度(特别是在托盘变形形成冠状物时)。
虽然已经描述了本发明的具体实施方案,但是对于本领域技术人员来说,可在不脱离本发明广泛的范围的情况下进行变化。例如,关于图20的系统描述的变量和参数调节将等同地应用于本文描述的其它实施方案。因此,所附的权利要求可覆盖所有这种落在本发明的精神和范围内的变化。在前面描述中提出的问题和附图仅以示例给出,不构成对本发明范围的限制。

Claims (37)

1.一种托盘给样的扫描声学显微镜,所述扫描声学显示镜具有用于对穿孔托盘上的松散保持部件进行检查的改进托盘扫描台,所述扫描声学显示镜包括:
托盘输送装置;
耦合流体分配装置;
超声波束发生器,配置为在对所述托盘进行扫描的过程中,引导超声波束通过所述耦合流体而到达所述托盘上,所述被分配的耦合流体在扫描过程中不合乎需要地趋向于扰动所述部件;以及
真空系统,配置为在托盘扫描过程中,在所述托盘的底部上产生真空。
2.如权利要求1所述的扫描声学显微镜,其中,所述托盘的每一个都具有穿孔的底壁,并且所述真空系统包括充气室,所述充气室包括带有真空开口的壁,所述真空开口在所述扫描操作过程中对着所述穿孔的托盘的所述底壁的位置,以使空气通过所述托盘的所述底壁进入所述托盘和从所述托盘排出,从而在所述扫描操作过程中至少用来辅助固定所述部件。
3.如权利要求1所述的扫描声学显微镜,包括耦合到所述超声波束发生器的X运动台,所述真空系统包括抽吸孔阵列,所述抽吸孔阵列与所述超声波束发生器X轴运动的行程对准。
4.如权利要求1所述的扫描声学显微镜,包括耦合到所述超声波束发生器的X-Y运动台,所述真空系统包括抽吸孔X-Y阵列,所述抽吸孔X-Y阵列与所述超声波束发生器的X-Y轴运动的行程对准。
5.如权利要求1所述的扫描声学显微镜,其中,所述真空系统包括隔膜泵。
6.如权利要求1所述的扫描声学显微镜,其中,所述真空系统在对所述部件进行超声检查过程中使从所述托盘引出的耦合流体再循环到所述耦合流体分配装置。
7.如权利要求1所述的扫描声学显微镜,包括固定的部件抑制结构,其位于所述超声波束发生器与通过所述托盘扫描台输送的所述托盘之间,所述结构通过其中至少一个开口使所述耦合流体从所述分配装置引导到所述部件的所述托盘,所述开口的尺寸和位置也能够使来自所述超声波束发生器的所述超声波通过。
8.如权利要求7所述的扫描声学显微镜,其中,所述超声波束发生器被横向平移到所述托盘的路径,所述开口是在所述托盘移动方向上具有足够宽度的横向槽,以使得所述耦合流体和所述横向移动的超声波束通过。
9.如权利要求1所述的扫描声学显微镜,包括干燥台,其用于干燥被声穿透的所述部件的托盘。
10.如权利要求9所述的扫描声学显微镜,其中,所述干燥台包括用于从所述托盘和部件引出流体的真空干燥器。
11.如权利要求10所述的扫描声学显微镜,其中,所述真空干燥器和所述真空系统共用真空泵。
12.如权利要求11所述的扫描声学显微镜,包括分配阀,其联接到所述泵,并配置为将泵压头分配到所述干燥器和所述真空系统。
13.如权利要求12所述的扫描声学显微镜,包括可操作地联接到所述分配阀的控制装置。
14.如权利要求9所述的扫描声学显微镜,其中,所述干燥台包括:
部件干燥器,所述干燥器不合乎需要地趋向于使得所述部件从所述托盘移出;以及
固定的部件抑制装置,其与所述托盘紧密相邻,所述抑制装置具有开口形式,所述开口形式的尺寸和位置使得能够在所述部件移动通过所述装置时,阻止所述部件被所述部件干燥器从所述托盘移出。
15.如权利要求7所述的扫描声学显微镜,包括:
部件干燥器,用于将受迫气体流引导到已经在耦合流体中被声穿透的湿的部件托盘上,所述受迫气体不合乎需要地扰动所述部件,并且趋向于使得所述部件从所述托盘移出;以及
第二固定的部件抑制装置,其位于所述干燥器和所述托盘之间并与所述托盘紧密相邻,所述抑制装置具有开口的样式,所述开口样式的尺寸和位置设置为:在所述部件移动通过所述装置时,使所述受迫气体流到达所述托盘,同时阻止所述部件被所述部件干燥器从所述托盘移出。
16.如权利要求1所述的扫描声学显微镜,其中,所述托盘的每一个都具有穿孔的底部,并且所述真空系统包括一系列抽吸元件,所述抽吸元件在所述扫描操作过程中对着所述穿孔的托盘的所述底部的位置。
17.如权利要求16所述的扫描声学显微镜,其中,所述抽吸元件通过真空分配器连接到泵。
18.如权利要求17所述的扫描声学显微镜,包括真空转接器,由所述泵产生的抽吸通过所述真空转接器选择性地耦合到所述抽吸元件。
19.如权利要求1所述的扫描声学显微镜,其中,所述真空系统包括用于在所述超声波束发生器的区域中产生局部抽吸的装置。
20.如权利要求19所述的扫描声学显微镜,包括配置为使所述超声波束发生器扫描所述托盘的波束运动台,以及用于使得所述局部区域的抽吸跟随所述超声波束发生器的移动的跟踪装置。
21.如权利要求20所述的扫描声学显微镜,其中,所述跟踪装置包括第二运动台,其耦合到充气室,并配置于使得所述充气室与由所述波束运动台引起的所述超声波束发生器的运动同步地移动。
22.如权利要求20所述的扫描声学显微镜,其中,所述跟踪装置包括充气室,所述充气室和超声波束发生器组合在一起,并通过共用的运动台一体地移动。
23.如权利要求22所述的扫描声学显微镜,其中,所述共用的运动台是X-Y运动台。
24.如权利要求20所述的扫描声学显微镜,其中,所述跟踪装置包括一系列通过抽吸分配器和变换器联接到泵的装置。
25.如权利要求24所述的扫描声学显微镜,其中,所述抽吸跟踪装置包括可操作地联接到所述抽吸变换器的控制装置。
26.一种采用扫描声学显微镜进行检查期间使部件固定的方法,包括:
将松散保持的部件的穿孔托盘输送至扫描台上;
在所述扫描台中,以穿过向下的耦合流体流的超声波束对所述托盘进行声穿透;
在所述扫描操作过程中,在所述托盘上抽真空,以至少帮助将所述部件固定在所述托盘中。
27.如权利要求26所述的方法,其中,所述真空由隔膜泵产生。
28.如权利要求26所述的方法,包括使得在所述真空中输送的所述耦合流体再循环,用于在所述声穿透操作中重复使用。
29.如权利要求26所述的方法,包括在所述托盘被声穿透之后,对所述托盘进行干燥。
30.如权利要求29所述的方法,其中,所述干燥操作包括使用气体流。
31.如权利要求29所述的方法,其中,所述干燥操作包括在所述托盘上产生真空,以帮助对所述托盘进行干燥。
32.如权利要求26所述的方法,包括只在围绕所述超声波束的抽吸区域中局部地应用所述真空。
33.如权利要求32所述的方法,包括使得所述抽吸区域与被扫描的所述波束一起移动。
34.如权利要求33所述的方法,包括提供具有真空的充气室,其中,使用所述充气室产生所述抽吸区域。
35.如权利要求34所述的方法,包括与所述超声波发生器的移动同步地移动所述充气室。
36.如权利要求33所述的方法,包括提供一系列通过抽吸分配系统和抽吸变换器联接到泵的抽吸元件,以及通过所述抽吸元件产生所述抽吸区域。
37.如权利要求36所述的方法,包括对所述转换器进行编程,以使得抽吸区域跟随所述超声波束发生器的移动。
CNB2004800096615A 2003-04-10 2004-04-09 改进的以托盘给样的扫描声学显微镜以及主要用于在检查期间使部件固定的方法 Expired - Lifetime CN100510739C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US46196703P 2003-04-10 2003-04-10
US60/461,967 2003-04-10

Publications (2)

Publication Number Publication Date
CN1849510A CN1849510A (zh) 2006-10-18
CN100510739C true CN100510739C (zh) 2009-07-08

Family

ID=33299884

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800096615A Expired - Lifetime CN100510739C (zh) 2003-04-10 2004-04-09 改进的以托盘给样的扫描声学显微镜以及主要用于在检查期间使部件固定的方法

Country Status (3)

Country Link
US (2) US6912908B2 (zh)
CN (1) CN100510739C (zh)
WO (1) WO2004092779A2 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7181969B2 (en) * 2002-07-16 2007-02-27 Sonix, Inc. Ultrasonic test chamber for tray production system and the like
US7131333B2 (en) * 2002-07-16 2006-11-07 Sonix, Inc. Pulse echo ultrasonic test chamber for tray production system
US7530271B2 (en) * 2003-03-13 2009-05-12 Sonix, Inc. Method and apparatus for coupling ultrasound between an integral ultrasonic transducer assembly and an object
US7661315B2 (en) * 2004-05-24 2010-02-16 Sonix, Inc. Method and apparatus for ultrasonic scanning of a fabrication wafer
US20060213274A1 (en) * 2005-03-22 2006-09-28 Siemens Westinghouse Power Corporation Nondestructive inspection heads for components having limited surrounding space
US7917317B2 (en) * 2006-07-07 2011-03-29 Sonix, Inc. Ultrasonic inspection using acoustic modeling
EP1918324A1 (de) * 2006-10-31 2008-05-07 Cognis Oleochemicals GmbH Zellulose-Kunststoff-Composites
US7815275B2 (en) * 2007-07-27 2010-10-19 Shilin Guo Interactive visual card-selection process for mitigating light-area banding in a pagewide array
SG154370A1 (en) * 2008-01-30 2009-08-28 Advanced Systems Automation Ltd Tray flattener
DE102008002832B4 (de) * 2008-04-24 2010-12-09 Institut für Akustomikroskopie Dr. Krämer GmbH Verfahren und Vorrichtung zur zerstörungsfreien Detektion von Defekten im Inneren von Halbleitermaterial
US8459120B2 (en) 2010-11-05 2013-06-11 Sonix, Inc. Method and apparatus for automated ultrasonic inspection
JP2013543986A (ja) * 2010-11-23 2013-12-09 ソノスキャン,インコーポレイテッド 搭載中走査要素を有する超音波マイクロイメージングデバイス
CN102854250A (zh) * 2011-06-28 2013-01-02 上海华碧检测技术有限公司 一种超声扫描显微镜的扫描方式
JP2013152429A (ja) * 2011-12-27 2013-08-08 Canon Inc 画像処理装置、画像処理方法、およびプログラム
US10228354B2 (en) 2012-10-26 2019-03-12 Nordson Corporation Single channel scanning acoustic microscope with multiple focused ultrasonic transducers
DE102013220294B4 (de) * 2013-10-08 2017-06-22 Infineon Technologies Ag Vermeidung von Kontaminationen durch das Koppelmedium während der Ultraschallanalyse
CN105849549B (zh) * 2013-12-23 2019-01-11 Posco公司 检测钢板缺陷的超声波检测设备和方法
WO2019051000A1 (en) * 2017-09-05 2019-03-14 Utah Valley University COMPACT IMMERSION SCAN SYSTEM FOR HIGH FREQUENCY AUDIO WAVES
TWI723686B (zh) * 2019-12-17 2021-04-01 亞智科技股份有限公司 量測裝置及量測方法
KR20230027599A (ko) * 2021-08-19 2023-02-28 삼성전기주식회사 전자부품의 결함 검출장치 및 검출방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US790281A (en) * 1905-01-21 1905-05-23 William B Bostwick Means for guarding against the reuse of bottles.
US3737573A (en) * 1971-08-30 1973-06-05 Zenith Radio Corp Ultrasonic visualization by pulsed bragg diffraction
JPS5327953B2 (zh) * 1972-03-09 1978-08-11
US3790281A (en) 1973-02-26 1974-02-05 Zenith Radio Corp Combined system for acoustical-optical microscopy
US4008602A (en) * 1973-10-22 1977-02-22 Union Carbide Corporation Ultrasonic testing of multilayer ceramic capacitors
US3898839A (en) * 1973-11-08 1975-08-12 Automation Ind Inc Ultrasonic testing system for a test piece
US3886793A (en) * 1974-01-09 1975-06-03 Us Navy Projectile body testing machine
US4012951A (en) * 1976-03-08 1977-03-22 Kessler Lawrence W Acoustic examination methods and apparatus
US4332016A (en) * 1979-01-26 1982-05-25 A/S Tomra Systems Method, apparatus and transducer for measurement of dimensions
US4208915A (en) * 1979-01-31 1980-06-24 Edwards Bill R Method of determining foreign material in food products using ultrasonic sound
US4518992A (en) * 1982-11-17 1985-05-21 Sonoscan, Inc. Acoustic imaging system and method
JPS59198352A (ja) * 1983-04-27 1984-11-10 Hitachi Ltd 超音波顕微鏡
US5077695A (en) * 1989-11-13 1991-12-31 Board Of Trustees Of The Leland Stanford Junior University Near field scanning acoustic microscope and method
US5431054A (en) * 1994-04-07 1995-07-11 Reeves; R. Dale Ultrasonic flaw detection device
US5600068A (en) * 1995-08-16 1997-02-04 Sonoscan, Inc. Controlled-immersion inspection
US5684252A (en) * 1996-07-15 1997-11-04 Sonoscan, Inc. Method and apparatus for ultrasonic inspection of electronic components
US6460414B1 (en) * 2000-11-17 2002-10-08 Sonoscan, Inc. Automated acoustic micro imaging system and method
US7181969B2 (en) * 2002-07-16 2007-02-27 Sonix, Inc. Ultrasonic test chamber for tray production system and the like

Also Published As

Publication number Publication date
US20060081051A1 (en) 2006-04-20
US20040200284A1 (en) 2004-10-14
CN1849510A (zh) 2006-10-18
WO2004092779A2 (en) 2004-10-28
US6912908B2 (en) 2005-07-05
WO2004092779A3 (en) 2005-10-13
US7395713B2 (en) 2008-07-08

Similar Documents

Publication Publication Date Title
CN100510739C (zh) 改进的以托盘给样的扫描声学显微镜以及主要用于在检查期间使部件固定的方法
US7530271B2 (en) Method and apparatus for coupling ultrasound between an integral ultrasonic transducer assembly and an object
US6357136B1 (en) Scanning acoustic microscope system and method for handling small parts
US20080069677A1 (en) Transport object levitation unit, transport object levitation apparatus and stage apparatus
US7181969B2 (en) Ultrasonic test chamber for tray production system and the like
JP5650339B1 (ja) 超音波検査装置
US5684252A (en) Method and apparatus for ultrasonic inspection of electronic components
CN1380186A (zh) 喷墨记录头及使用这种喷墨记录头的喷墨记录设备
KR102143460B1 (ko) 초음파 검사 장치, 제어 장치 및 검사 방법
US20090249866A1 (en) Methods and apparatus for ultrasonic coupling using micro surface tension and capillary effects
KR102631897B1 (ko) 초음파 프로브를 이용한 불량 소자 자동 검사 장치 및 이를 이용한 검사방법
JP2022504303A (ja) 超音波検査のためのシステム、方法及び装置
US20060054190A1 (en) Plate washing system with ultrasonic cleaning of pipes
EP1604734B1 (de) Verfahren und Vorrichtung zum Nachweis von Analyten
US7131333B2 (en) Pulse echo ultrasonic test chamber for tray production system
JP6895818B2 (ja) 処理液供給装置および処理液供給方法
US20060204692A1 (en) Cathode ray tube-use glass panel and inspection method therefore and inspection device therefor
CN100583398C (zh) 对物品进行处理尤其对半导体元件进行清洁的方法和装置
JP2000191125A (ja) 半田ボ―ル等の供給装置
DE202007019013U1 (de) Vorrichtungen zur Inspektion und Bestrahlung von flächigen Materialien
US6852164B2 (en) Powder supply system for coating installations with a plurality of application units
US20110114121A1 (en) Laminar flow tank
JP7106782B1 (ja) 超音波映像装置および接合ウェハへの液体浸入防止方法
JP7441153B2 (ja) 超音波洗浄機及び自動分析装置
US843185A (en) Process for cleansing the screens of pulp-screening machines.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201118

Address after: Ohio, USA

Patentee after: Nordson Corp.

Address before: Illinois, USA

Patentee before: SONOSCAN, Inc.

TR01 Transfer of patent right
CX01 Expiry of patent term

Granted publication date: 20090708

CX01 Expiry of patent term