CN100470863C - Production method for P type gallium nitride electrode - Google Patents

Production method for P type gallium nitride electrode Download PDF

Info

Publication number
CN100470863C
CN100470863C CNB2006101141905A CN200610114190A CN100470863C CN 100470863 C CN100470863 C CN 100470863C CN B2006101141905 A CNB2006101141905 A CN B2006101141905A CN 200610114190 A CN200610114190 A CN 200610114190A CN 100470863 C CN100470863 C CN 100470863C
Authority
CN
China
Prior art keywords
electrode
layer
gallium nitride
type gallium
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006101141905A
Other languages
Chinese (zh)
Other versions
CN101174660A (en
Inventor
陈宇
王良臣
伊晓燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CNB2006101141905A priority Critical patent/CN100470863C/en
Publication of CN101174660A publication Critical patent/CN101174660A/en
Application granted granted Critical
Publication of CN100470863C publication Critical patent/CN100470863C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

The present invention relates to the preparation method of P-typed gallium nitride electrode, the present invention comprises the procedures that the external Mg on a sapphire substrate is mixed with P-typed gallium nitride kinetosome; a semi-transparent electrode ohm contact layer Ru/Ni is evaporated on the P-GaN kinetosome mixed with Mg through an electronic beam; an adhesion layer Ni is evaporated on the semi-transparent electrode ohm contact layer Ru/Ni through an electronic layer; a layer of high launching mirror Ag is evaporated on the adhesive layer Ni through an electronic beam; a layer of blocking layer Pt is evaporated on the high launching mirror Ag through an electronic beam; a protection layer Au is bonded on the blocking layer Pt so as to prevent the oxidation and the pollution of the metal electrode, thereby completing the preparation of the P-typed gallium nitride electrode.

Description

The preparation method of P type gallium nitride electrode
Technical field
The present invention is used for optoelectronic device manufacturing technology field, be specifically related to P-GaN in the GaN based power type light-emitting diode (LED) electrode body and the preparation method.
Background technology
In the preparation of GaN based power type LED device, because the P-GaN doping content is lower and lack work function metal or the metal system higher than P-GaN work function (7.5eV), make the hole be difficult to the tunnelling Schottky barrier, cause the P-GaN metal electrode to be difficult to form low ohm contact resistance, high transmission and performances such as high reflection, good thermal stability are arranged simultaneously.
General conventional P-GaN metal electrode is by high reflectance electrode Ni/Au or transparent conductive oxide (ITO) layer adds high reflection mirror Ag and protective layer Au forms; Ni/Au/Ag/Au metallization P-GaN electrode is made up of Mg doping P-GaN layer, semitransparent electrode ohmic contact layer Ni/Au, high reflection mirror layer Ag and protective layer Au; though this kind metal system has low ohm contact resistance, its resistivity can reach 10-6 Ω cm 2, the P-GaN electrode only is 73.8% for the transmitance of 450-460nm but this Ni/Au/Ag/Au metallizes, the light that residue is sent is absorbed in electrode interior and is converted into heat energy, causes the thermal stability variation of electrode; There is not barrier layer Pt; protective layer under long-term work conditioned disjunction high-temperature condition easily in diffusion, cause the degeneration of high reflection mirror Ag, make extraction efficiency reduction, leakage current and the contact resistance increase of device light; the thermal stability variation of electrode has a strong impact on the long-term reliability of device.ITO plates high reflection mirror Ag electrode outward and is made up of Mg doping P-GaN layer, ito transparent electrode ohmic contact layer, high reflection mirror layer Ag and protective layer; ITO is for the absorption of light less (10-4-10-6 magnitude); transmissivity for the 455-460nm blue light can reach 97%, but the contact resistance of ito transparent electrode ohmic contact layer and Mg doping P-GaN layer is big, driving voltage is higher and poor heat stability.Therefore, existing electrode system can not satisfy the low specific contact resistivity rate of P-GaN electrode in the GaN based power type LED preparation process, has high-transmission rate and high reflectivity simultaneously, performance requirements such as Heat stability is good.
Summary of the invention
The object of the invention is, a kind of preparation method of P type gallium nitride electrode is provided, has improved the reliability of GaN based power type light-emitting diode, solved the P-GaN electrode and be difficult to form low specific contact resistivity rate, have high-transmission rate and high reflectance simultaneously, advantages such as Heat stability is good.
The preparation method of a kind of P type of the present invention gallium nitride electrode is characterized in that, comprises the steps:
Step 1: extension Mg doping P type gallium nitride matrix on Sapphire Substrate;
Step 2: electron beam evaporation semitransparent electrode ohmic contact layer Ru/Ni on Mg doping P-GaN matrix, behind the stripping electrode, carry out Alloying Treatment;
Step 3: electron beam evaporation one deck adhesion layer Ni on semitransparent electrode ohmic contact layer Ru/Ni, adhesion layer Ni can increase the adhesion strength of semitransparent electrode ohmic contact layer Ru/Ni;
Step 4: electron beam evaporation one deck high emission mirror Ag on adhesion layer Ni, the main effect of high reflection mirror Ag is the speculum that serves as high reflection, electrode pair 455-460nm light reflectance is 84%, increases the light extraction efficiency of electrode;
Step 5: electron beam evaporation one deck barrier layer Pt on high emission mirror Ag, under high temperature or long-term work condition, barrier layer Pt can stop the interior diffusion of bonding protective layer Au, prevent that ohmic contact resistance and reverse leakage from increasing and the degeneration of high reflection mirror Ag, improve P-GaN metal electrode thermal stability;
Step 6: bonding protective layer Au on the Pt of barrier layer, its effect is to prevent the oxidation of metal electrode and pollution.The thickness of wherein translucent ohmic contact layer Ru/Ni is Ru25
Figure C200610114190D00061
And Ni25 Process is at O 2: N 2In=1:2 the atmosphere, 350 ℃ of temperature insulation 8min, be warmed up to the Alloying Treatment of 500 ℃ of insulation 5min then after, semitransparent electrode ohmic contact layer Ru/Ni is 91.5% to the transmissivity of 455-460nm light.
Wherein the thickness of adhesion layer Ni is 1000 The thickness of speculum Ag is 1000
Figure C200610114190D00073
Increase the intensity of sticking of electrode, improve the thermal stability of electrode.
Wherein the thickness of barrier layer Pt is 5000 The thickness of protective layer Au is 3000 It can prevent that ohmic contact resistance from increasing, reverse leakage increases, degeneration and the thermal stability variation of high reflection mirror Ag.
Wherein adhesion layer Ni, high reflection mirror Ag, barrier layer Pt and bonding protective layer Au be for finishing in e-beam evaporation chamber flush distillation successively, avoids the oxidation and the pollution of the metal electrode for preparing, improves the long-term reliability of P-GaN electrode.
The present invention adopts the electrode of preparation method's preparation of P type gallium nitride electrode of the present invention, has satisfied the requirement of low specific contact resistivity rate, high-transmission rate and high reflectance, good thermal stability simultaneously.At the translucent ohmic contact layer Ru/Ni of Mg doping P-GaN matrix 1 surface electronic beam evaporation, at O 2: N 2In=1:2 the atmosphere, 350 ℃ of temperature insulation 8min, be warmed up to the Alloying Treatment of 500 ℃ of insulation 5min then after, electrode pair 450-460nm light transmittance 91.5% and reflectivity are 84%.Electron beam evaporation adhesion layer Ni, high reflection mirror Ag successively, barrier layer Pt and bonding protective layer Au then.Device detection is the result show: under other technology same case, the power-type LED that the P-GaN electrode adopts this system and traditional electrode system to make compares, and under operating current 350mA, operating voltage descends 9.5%, Output optical power improves 28.7%, and light extraction efficiency improves 18%.
Description of drawings
For further specifying concrete technology contents of the present invention, below in conjunction with embodiment and accompanying drawing describes in detail as after, wherein:
Fig. 1 is a P type gallium nitride electrode structural representation of the present invention.
Embodiment
Electrode of the present invention is made of bonding protective layer Au6, barrier layer Pt5, high reflection mirror Ag4, adhesion layer Ni3, translucent ohmic contact layer Ru/Ni2 and Mg doping P-GaN layer 1 etc.; as shown in Figure 1, the concrete preparation process of preparation method of a kind of P type gallium nitride electrode of the present invention is as follows:
1) preparing thickness with common metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxial growth (MBE) method on Sapphire Substrate 10 is 1 μ m, and the Mg doping content is 5*1017cm -3P-GaN matrix 1;
2) sample cleans with chemical cleaning method: the acetone cotton balls is cleaned, chloroazotic acid soaks 15min, HCl:H 2O=1:1 soaks 5min, ethanol boils 5min and deionized water rinsing, cleans the back with doing N 2Dry up, reach the purpose of removing oxide, organic ion, metal micro particles and the steam on surface in material growth and the storage and transport process;
3) sample of finishing dealing with being put in the electron beam evaporation platform reative cell rapidly, the vacuum degree of reative cell is extracted into below the 10-5Pa, is that 96 ℃, speed are in temperature
Figure C200610114190D00091
Evaporation 25
Figure C200610114190D00092
Ru and temperature be 99 ℃ with speed 0.5
Figure C200610114190D00093
/ s evaporation 25
Figure C200610114190D00094
Ni, stripping electrode;
4) behind the stripping electrode, sample is put into annealing furnace, at O 2: N 2In=1:2 the atmosphere, earlier at 350 ℃ of insulations of temperature 8min, be warmed up to 500 ℃ then, insulation 5min carries out Alloying Treatment, reduce translucent ohmic contact layer Ru/Ni2 can with the ohmic contact resistance of doping P-GaN matrix 1, improve the transmissivity of translucent ohmic contact layer Ru/Ni2 to 455-460nm light;
5) sample of process Alloying Treatment; adopt conventional Ka Er Hughes (Karl Suss) mask aligner; make by lithography the P-GaN substrate add thick electrode after; put into rapidly in the electron beam evaporation platform reative cell; the vacuum degree of reative cell is extracted into below the 10-5Pa; evaporate adhesion layer Ni3, high reflection mirror Ag4, barrier layer Pt5, bonding protective layer Au6 successively respectively, promptly temperature be 96 ℃ with speed 3
Figure C200610114190D00095
/ s, evaporation 1000 Ni, temperature be 93 ℃ with speed 2
Figure C200610114190D00097
/ s, evaporation 1000
Figure C200610114190D00098
Ag, temperature be 95 ℃ with speed 5
Figure C200610114190D00101
/ s, evaporation 5000 Pt, temperature be 95 ℃ with speed 2
Figure C200610114190D00103
/ s, evaporation 3000
Figure C200610114190D00104
Au, take out sample and peel off and clean;
6) recording its specific contact resistivity rate with circular transmission line (TLM method) is 4.7*10-5 Ω cm 2, the transmissivity 91.5% and the reflectivity that record electrode with Hitachi's 4100 spectrophotometers are 84%.

Claims (5)

1. the preparation method of a P type gallium nitride electrode is characterized in that, comprises the steps:
Step 1: extension Mg doping P type gallium nitride matrix on Sapphire Substrate;
Step 2:, behind the stripping electrode, carry out Alloying Treatment at the Mg doping P type gallium nitride matrix beam evaporation semitransparent electrode ohmic contact layer Ru/Ni that powers on;
Step 3: electron beam evaporation one deck adhesion layer Ni on semitransparent electrode ohmic contact layer Ru/Ni, adhesion layer Ni can increase the adhesion strength of semitransparent electrode ohmic contact layer Ru/Ni;
Step 4: electron beam evaporation one deck high reflection mirror Ag on adhesion layer Ni, the main effect of high reflection mirror Ag is the speculum that serves as high reflection, electrode pair 455-460nm light reflectance is 84%, increases the light extraction efficiency of electrode;
Step 5: electron beam evaporation one deck barrier layer Pt on high emission mirror Ag, under high temperature or long-term work condition, barrier layer Pt can stop the interior diffusion of bonding protective layer Au, prevent that ohmic contact resistance and reverse leakage from increasing and the degeneration of high reflection mirror Ag, improve P type gallium-nitride metal electrode thermal stability;
Step 6: bonding protective layer Au on the Pt of barrier layer, its effect is to prevent the oxidation of metal electrode and pollution.
2. the preparation method of a kind of P type gallium nitride electrode according to claim 1 is characterized in that, the thickness of wherein translucent ohmic contact layer Ru/Ni is Ru 25
Figure C200610114190C00021
With Ni 25
Figure C200610114190C00022
Process is at O 2: N 2In=1:2 the atmosphere, 350 ℃ of temperature insulation 8min, be warmed up to the Alloying Treatment of 500 ℃ of insulation 5min then after, semitransparent electrode ohmic contact layer Ru/Ni is 91.5% to the transmissivity of 455-460nm light.
3. the preparation method of a kind of P type gallium nitride electrode according to claim 1 is characterized in that, wherein the thickness of adhesion layer Ni is 1000
Figure C200610114190C00023
The thickness of speculum Ag is 1000
Figure C200610114190C00024
Increase the intensity of sticking of electrode, improve the thermal stability of electrode.
4. the preparation method of a kind of P type gallium nitride electrode according to claim 1 is characterized in that, wherein the thickness of barrier layer Pt is 5000
Figure C200610114190C00025
The thickness of protective layer Au is 3000
Figure C200610114190C00026
It can prevent that ohmic contact resistance from increasing, reverse leakage increases, degeneration and the thermal stability variation of high reflection mirror Ag.
5. the preparation method of a kind of P type gallium nitride electrode according to claim 1; it is characterized in that; wherein adhesion layer Ni, high reflection mirror Ag, barrier layer Pt and bonding protective layer Au are for finishing in e-beam evaporation chamber flush distillation successively; avoid the oxidation and the pollution of the metal electrode for preparing, improve the long-term reliability of P type gallium nitride electrode.
CNB2006101141905A 2006-11-01 2006-11-01 Production method for P type gallium nitride electrode Expired - Fee Related CN100470863C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006101141905A CN100470863C (en) 2006-11-01 2006-11-01 Production method for P type gallium nitride electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006101141905A CN100470863C (en) 2006-11-01 2006-11-01 Production method for P type gallium nitride electrode

Publications (2)

Publication Number Publication Date
CN101174660A CN101174660A (en) 2008-05-07
CN100470863C true CN100470863C (en) 2009-03-18

Family

ID=39423013

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101141905A Expired - Fee Related CN100470863C (en) 2006-11-01 2006-11-01 Production method for P type gallium nitride electrode

Country Status (1)

Country Link
CN (1) CN100470863C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888132B2 (en) * 2012-06-08 2016-03-16 豊田合成株式会社 Method for manufacturing light emitting device
CN104377287B (en) * 2013-08-14 2017-04-26 展晶科技(深圳)有限公司 Light-emitting diode and manufacturing method thereof
CN106159044B (en) * 2015-04-01 2018-10-02 映瑞光电科技(上海)有限公司 LED chip structure and preparation method thereof
CN106579564B (en) * 2016-12-23 2020-03-31 湘潭大学 Porous heating film and preparation method thereof
CN113555481B (en) * 2021-07-20 2023-01-17 厦门三安光电有限公司 Light-emitting diode chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176498A (en) * 1996-09-06 1998-03-18 东芝株式会社 Compound semicoductor light-emitting device of gallium nitride series
CN1499651A (en) * 2002-11-05 2004-05-26 炬鑫科技股份有限公司 Method for manufacturing white light LED and illuminator
JP2004327980A (en) * 2003-04-21 2004-11-18 Samsung Electronics Co Ltd Semiconductor light emitting diode and method for manufacturing the same
US20050279990A1 (en) * 2004-06-17 2005-12-22 Yu-Chuan Liu High brightness light-emitting device and manufacturing process of the light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176498A (en) * 1996-09-06 1998-03-18 东芝株式会社 Compound semicoductor light-emitting device of gallium nitride series
CN1499651A (en) * 2002-11-05 2004-05-26 炬鑫科技股份有限公司 Method for manufacturing white light LED and illuminator
JP2004327980A (en) * 2003-04-21 2004-11-18 Samsung Electronics Co Ltd Semiconductor light emitting diode and method for manufacturing the same
US20050279990A1 (en) * 2004-06-17 2005-12-22 Yu-Chuan Liu High brightness light-emitting device and manufacturing process of the light-emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
倒装结构大功率蓝光LEDs的研制. 伊晓燕。郭金霞,马龙,王立彬,陈宇,刘志强,王良辰.光电子·激光,第17卷第6期. 2006 *

Also Published As

Publication number Publication date
CN101174660A (en) 2008-05-07

Similar Documents

Publication Publication Date Title
CN102047454B (en) Light-emitting device and fabricating method thereof
JP5128755B2 (en) III-V group GaN compound semiconductor and p-type electrode applied thereto
CN100470863C (en) Production method for P type gallium nitride electrode
CN104022205A (en) Light emitting device and a fabrication method thereof
TWI224877B (en) Gallium nitride series light-emitting diode structure and its manufacturing method
CN104992988A (en) Crystalline silicon solar cell surface passivation layer having good conductive performance and passivation method
CN102646767A (en) ZnO-based transparent electrode light-emitting diode and preparation method thereof
CN102110595A (en) Method for performing low-temperature metal bonding on InGaAs and GaAs
CN101488539B (en) Light emitting element
KR101203137B1 (en) GaN compound semiconductor light emitting element and method of manufacturing the same
USRE43426E1 (en) Fabrication method of transparent electrode on visible light-emitting diode
KR101239852B1 (en) GaN compound semiconductor light emitting element
CN105742449A (en) Preparation method for electrode of light emitting diode
CN102623589B (en) Manufacturing method of semiconductor light-emitting device with vertical structure
JP5573138B2 (en) Manufacturing method of semiconductor light emitting device
CN202839728U (en) Zno-based transparent electrode light emitting diode
CN102789976A (en) Manufacturing method for GaN (gallium nitride) based LED (light emitting diode) chip
CN113066910A (en) Blue light semiconductor device and preparation method thereof
CN110034215B (en) Method for improving leakage yield of LED chip
CN209544384U (en) A kind of Low dark curient rate LED chip
CN101673793B (en) Preparation method of GaN-based LED chip
CN105932133B (en) A kind of high brightness LED chip and preparation method thereof
CN109037413A (en) Metal-doped transparent conductive film UV LED chip and preparation method thereof
CN111564544B (en) Ultraviolet LED chip epitaxial structure, preparation method thereof and chip
CN108511568B (en) Vertical-structure LED chip with double-insertion-layer reflector structure and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090318

Termination date: 20121101