USRE43426E1 - Fabrication method of transparent electrode on visible light-emitting diode - Google Patents
Fabrication method of transparent electrode on visible light-emitting diode Download PDFInfo
- Publication number
- USRE43426E1 USRE43426E1 US13/152,124 US201113152124A USRE43426E US RE43426 E1 USRE43426 E1 US RE43426E1 US 201113152124 A US201113152124 A US 201113152124A US RE43426 E USRE43426 E US RE43426E
- Authority
- US
- United States
- Prior art keywords
- epitaxial structure
- layer
- transparent electrode
- ohmic metal
- metal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 115
- 239000002184 metal Substances 0.000 claims abstract description 115
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims description 65
- 238000000137 annealing Methods 0.000 claims description 24
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 239000004020 conductor Substances 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000001039 wet etching Methods 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 46
- 238000005253 cladding Methods 0.000 description 26
- 229910021645 metal ion Inorganic materials 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000002207 thermal evaporation Methods 0.000 description 6
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/42—Transparent materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/956—Making multiple wavelength emissive device
Definitions
- the present invention relates to a light-emitting diode (LED), and more particularly, to the method for manufacturing an improved electrode on a visible LED.
- LED light-emitting diode
- An LED is a p-n junction diode that can emit ultraviolet, visible and infrared light.
- a visible LED is usually used as the light source of the operation panel for electric appliances such as, for example, the light source of a camera with an auto-focus function and the light source of a bar code reader.
- a visible LED is an LED that can emit visible light with a wavelength of 400 nm to 700 nm.
- a visible LED can be manufactured by utilizing III-V semiconductor materials having energy gaps within the range of 1.36 eV to 3.26 eY, such as GaP, Ga 1-x Al x As, GaN, and GaAs 1-y , P y .
- the brightness of a visible LED is the most important quality for use thereof.
- Some manufacturing steps can be performed to enhance the brightness of a visible LED, such that a transparent electrode layer is added before forming a metal electrode during the manufacturing process of a visible LED.
- Suitable materials for the transparent electrode layer are used, such as InO, SiO, ZnO, or ITO (Indium Tin Oxide).
- the transparent electrode layer can be used not only to form ohmic contact between the LED devices, but also to diffuse the electricity flowing therethrough to enhance the brightness of the visible LED.
- the conventional procedure for forming the transparent electrode layer by depositing suitable materials directly on the LED element, forms a proper ohmic contact between the LED devices only with difficulty.
- III-V semiconductor materials such as GaAs, GaP, or GaAsP have been used to form a p-type ohmic contact film with heavy doping between the LED element and the transparent electrode layer to reduce the resistance of the transparent electrode layer.
- GaAs is doped into the AlGaInP-based LED element to form the ohmic contact film
- most of the visible light emitted from the LED element can be absorbed by the GaAs because the energy gap of the GaAs, about 1.35 eV, is less than 1.63 eV to 3.26 eV, which is the energy gap of visible light.
- using other materials avoids the energy gap problem, electric resistance still increases.
- a hybrid superlattice structure of the contact layer of the LED element has been used as an alternative way to reduce the electric resistance of the transparent electrode layer.
- the structure still absorbs visible light.
- a problem in this technique is that it can be difficult to fabricate a transparent electrode with low resistance that also does not absorb visible light.
- the objective of the present invention is to provide a transparent electrode of a visible LED, where the transparent electrode has a low resistance and does not absorb visible light absorption.
- An improved manufacturing method is also provided to resolve the drawback of the prior art, and an improved visible LED with high brightness is thereby fabricated.
- the present invention provides a manufacturing method for fabricating an improved transparent electrode of a visible LED.
- the manufacturing method comprises several steps. First, an LED element is formed by a prior technique. Then, an ohmic metal layer is deposited on the LED element. Before removing the ohmic metal layer, a thermal annealing is performed on the ohmic metal layer, such that the ohmic metal ion can diffuse onto the surface of the LED element. An etching step is conducted for removing the ohmic metal layer. A transparent electrode layer is deposited onto the surface of the LED element. Finally, a metal pad is formed on the transparent electrode to complement an LED device.
- the problems of prior art can be overcome by reducing the resistance between the transparent electrode and the LED element, and through the present invention an improved visible LED device with a high degree of brightness can be obtained simultaneously.
- FIGS. 1-1C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the first embodiment of the present invention
- FIGS. 2-2C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the second embodiment of the present invention
- FIGS. 3-3C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the third embodiment of the present invention
- FIGS. 4-4C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the fourth embodiment of the present invention
- FIGS. 5-5C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the fifth embodiment of the present invention.
- FIGS. 6-6C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the sixth embodiment of the present invention.
- the present invention discloses a manufacturing method for fabricating a transparent electrode of a visible LED.
- the present invention is characterized by the thermal diffusion of ohmic metal ions to the surface of the LED element to reduce the resistance between the transparent electrode and the LED element.
- an LED element is formed by a prior technique. Then, an ohmic metal layer is deposited over the LED element. Before removing the ohmic metal layer, a thermal annealing step is performed on the ohmic metal layer, such that the ohmic metal ion can diffuse onto the surface of the LED element. An etching step is conducted for removing the ohmic metal layer. A transparent electrode layer is deposited onto the surface of the LED element. Finally, a metal pad is formed on the transparent electrode to complement an LED device.
- Prior techniques can be used for forming the LED element; for example, an epitaxial structure is grown on a substrate by metal organic chemical vapor deposition (MOCVD).
- the material of the epitaxial structure may be III-V semiconductor materials having energy gaps of 1.63 eV to 3.26 eV, such as GaP, Ga 1-x Al x As, GaN, and GaAs 1-y P y .
- FIGS. 1-1C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the second embodiment of the present invention.
- FIG. 1A illustrates an AlGaInP element comprising a substrate 102 and an epitaxial structure 100 over the substrate 102 .
- the substrate 102 is made of n-type GaAs.
- the epitaxial structure 100 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer, deposited in sequence.
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap.
- the preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW).
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
- the LED element further comprises a metal electrode 112 .
- the preferable metal material 112 of the electrode is Ti, Al, or GeAu alloy.
- the metal electrode 112 and the epitaxial structure 100 are formed respectively on opposite sides of the substrate 102 .
- FIG. 1A illustrates a cross-sectional structure of the LED element after the ohmic metal layer 114 is formed over the epitaxial structure 100 .
- the process such as thermal evaporation, electron enhanced evaporation, or sputtering deposition may be used to deposit ohmic metal over the epitaxial structure 100 .
- the preferred material of the ohmic metal may be PdIn, Zn, Ni, Au, or AuBe alloy.
- the preferred thickness of the ohmic metal layer 114 may be greater than 10 ⁇ .
- the metal electrode 112 and the ohmic metal layer 114 are formed respectively on opposite sides of the epitaxial structure 100 .
- a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ion can diffuse onto the surface of the epitaxial structure 100 .
- the annealing temperatures are, for example, 200 to 700° C., and more preferably to 300 to 500° C.
- an etching step is conducted for removing the ohmic metal layer to form the structure illustrated in FIG. 1B .
- FIG. 1C illustrates a cross-sectional structure of the LED element after the transparent electrode layer 116 is formed over the epitaxial structure 100 .
- a transparent electrode layer 116 is deposited over the epitaxial structure 100 .
- the transparent electrode layer 116 is a layer of conductive material, such as InO, CdSiO, ZnO, MgO, SiO, TiWN or ITO, and preferably ITO.
- a metal pad 118 is formed on the transparent electrode layer 116 to complement an LED device.
- FIGS. 2-2C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the second embodiment of the present invention.
- FIG. 2 illustrates an AlGaInP element comprising a substrate 202 and an epitaxial structure 200 over the substrate 202 .
- the LED element further comprises a metal electrode 212 over a first surface of the epitaxial structure 200 .
- the preferable material of the metal 212 electrode is Ti, Al, or GeAu alloy; and the metal electrode 212 and the epitaxial structure 200 are formed respectively on the same side of the substrate 202 .
- the materials used to fabricate the AlGaInP-Based LED element are the same as those used for the AlGaInP-Based LED element described in the first embodiment of present invention, with the exception of the material of substrate 202 .
- the substrate 202 is made of sapphire rather than n-type GaAs.
- the structures of the first embodiment and the second embodiment are not the same.
- the metal electrode 112 and the epitaxial structure 100 are formed respectively on opposite sides of the substrate 102 .
- the metal electrode 212 and the epitaxial structure 200 are formed respectively on the same side of the substrate 202 .
- the metal electrode 212 is located at least on a portion of the surface of the first surface of epitaxial structure 200 .
- the epitaxial structure 200 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer, formed in sequence.
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap.
- the preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW).
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
- FIG. 2 a illustrates a cross-sectional structure of the LED element after the ohmic metal layer 214 is formed over a second surface of the epitaxial structure 200 .
- a suitable process such as thermal evaporation, electron enhanced evaporation, or sputtering deposition is used to deposit ohmic metal over the epitaxial structure 200 .
- the preferred material of the ohmic metal is PdIn, Zn, Ni, Au, or AuBe alloy.
- the preferred thickness of the ohmic metal layer 214 is greater than 10 ⁇ .
- the metal electrode 212 and the ohmic metal layer 214 are formed respectively on the same side of the substrate 202 .
- a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ions diffuse onto the second surface of the epitaxial structure 200 .
- the annealing temperatures are 200 to 700° C., and more preferably 300 to 500° C.
- an etching step is conducted to remove the ohmic metal layer and form the structure illustrated in FIG. 2B .
- FIG. 2C illustrates a cross-sectional structure of the LED element after the transparent electrode layer 216 is formed over the second surface of the epitaxial structure 200 .
- a transparent electrode layer 216 is deposited over the second surface of the epitaxial structure 200 .
- the transparent electrode layer 216 is a layer of conductive materials, such as InO, CdSiO, ZnO, MgO, SiO, TiWN or ITO, and preferably ITO.
- a metal pad 218 is formed on the transparent electrode layer 216 to complement an LED device.
- FIGS. 3-3C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the third embodiment of the present invention.
- FIG. 3 illustrates an AlInGaN-based LED element comprising a substrate 302 and an epitaxial structure 300 over the substrate 302 .
- the substrate 302 is made of n-type GaAs.
- the structure of the AlInGaN-based LED element described in the third embodiment of present invention is the same as that of the AlGaInP-based LED described in the first embodiment.
- the materials of the epitaxial structure used in both embodiments are, however, quite different.
- the base material of the epitaxial structure 100 is AlGaInP
- the base material of the epitaxial structure 300 is AlInGaN.
- the epitaxial structure 300 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer deposited in sequence.
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap.
- the preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW).
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
- the LED element further comprises a metal electrode 312 .
- the preferred material of the metal electrode 312 is Ti, Al, or GeAu alloy; and the metal electrode 312 and the epitaxial structure 300 are formed respectively on opposite sides of the substrate 302 .
- FIG. 3A illustrates a cross-sectional structure of the LED element after the ohmic metal layer 314 is formed over the epitaxial structure 300 .
- a suitable process such as thermal evaporation, electron enhanced evaporation, or sputtering deposition is used to deposit ohmic metal over the epitaxial structure 300 .
- the preferred material of the ohmic metal is PdIn, Zn, Ni, Au, or AuBe alloy.
- the preferred thickness of the ohmic metal layer 314 is greater than 10 ⁇ .
- the metal electrode 312 and the ohmic metal layer 314 are formed respectively on opposite sides of the epitaxial structure 300 .
- a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ions diffuse onto the surface of the epitaxial structure 300 .
- the annealing temperatures are 200 to 700° C., and more preferably 300 to 500° C.
- an etching step is conducted for removing the ohmic metal layer to form the structure illustrated in FIG. 3 b.
- FIG. 3C illustrates a cross-sectional structure of the LED element after the transparent electrode layer 316 is formed over the epitaxial structure 300 .
- a transparent electrode layer 316 is deposited over the epitaxial structure 300 .
- the transparent electrode layer 316 is a layer of conductive materials, such as InO, CdSiO, ZnO, MgO, SiO, TiWN or ITO, and preferably ITO.
- a metal pad 318 is formed on the transparent electrode layer 316 to complement an LED device.
- FIGS. 4-4C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the fourth embodiment of the present invention.
- FIG. 4 illustrates an AlInGaN-based element comprising a substrate 402 and an epitaxial structure 400 over the substrate 402 .
- the LED element further comprises a metal electrode 412 formed over a first surface of the epitaxial structure 400 .
- the preferable material of the metal electrode 412 is Ti, Al, or GeAu alloy, and the metal electrode 412 and the epitaxial structure 400 are formed respectively on the same side of the substrate 402 .
- the materials used for the AlInGaN-based LED element described in the fourth embodiment of present invention are the same as those used for the AlInGaN-based LED element described in the third embodiment, with the exception of the material of substrate 402 .
- the substrate 402 is made of sapphire rather than n-type GaAs.
- the structures of the third embodiment and the fourth embodiment are not the same.
- the metal electrode 312 and the epitaxial structure 300 are formed respectively on opposite sides of the substrate 302 .
- the metal electrode 412 and the epitaxial structure 400 are formed respectively on the same side of the substrate 402 .
- the metal electrode 412 is at least located on portion of the first surface of the epitaxial structure 400 .
- the epitaxial structure 400 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer deposited in sequence.
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap.
- the preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW).
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
- FIG. 4A illustrates a cross-sectional structure of the LED element after the ohmic metal layer 414 is formed over a second surface of the epitaxial structure 400 .
- a suitable process such as thermal evaporation, electron enhanced evaporation, or sputtering deposition is used to deposit ohmic metal over the second surface of the epitaxial structure 400 .
- the preferred material of the ohmic metal is PdIn, Zn, Ni, Au, or AuBe alloy.
- the preferred thickness of the ohmic metal layer 414 is greater than 10 ⁇ .
- the metal electrode 412 and the ohmic metal layer 414 are formed respectively on the same side of the substrate 402 .
- a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ions diffuse onto the second surface of the epitaxial structure 400 .
- the annealing temperature is 200 to 700° C., and more preferably 300 to 500° C.
- an etching step is conducted for removing the ohmic metal layer to form the structure illustrated in FIG. 4B .
- FIG. 4C illustrates a cross-sectional structure of the LED element after the transparent electrode layer 416 is formed over the second surface of the epitaxial structure 400 .
- a transparent electrode layer 416 is deposited over the second surface of the epitaxial structure 400 .
- the transparent electrode layer 416 is a layer of conductive material, such as InO, CdSiO, ZnO, MgO, SiO, TiWN or ITO, and preferably ITO.
- a metal pad 418 is formed on the transparent electrode layer 416 to complement an LED device.
- FIGS. 5 to FIG. 5C illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the third embodiment of the present invention.
- FIG. 5 illustrates an MgZnSSe-based LED element comprising a substrate 502 and an epitaxial structure 500 over the substrate 502 .
- the substrate 502 is made of n-type GaAs.
- the epitaxial structure 500 used to build the MgZnSSe-based LED element described in the fifth embodiment of present invention is the same as the epitaxial structure 100 described in the first embodiment. But the materials of the epitaxial structure used in both embodiments are quite different.
- the base material of the epitaxial structure 100 is AlGaInP, but in the fifth embodiment of present invention, the base material of the epitaxial structure 500 is MgZnSSe.
- the epitaxial structure 500 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer, deposited in sequence.
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap.
- the preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW).
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
- the LED element further comprises a metal electrode 512 .
- the preferred material of the metal electrode 512 is Ti, Al, or GeAu alloy, and the metal electrode 512 and the epitaxial structure 500 are formed respectively on opposite sides of the substrate 502 .
- FIG. 5 a illustrates a cross-sectional structure of the LED element after the ohmic metal layer 514 is formed over the epitaxial structure 500 .
- a suitable process such as thermal evaporation, electron enhanced evaporation, or sputtering deposition is used to deposit ohmic metal over the epitaxial structure 500 .
- the preferred material of the ohmic metal may be PdIn, Zn, Ni, Au, or AuBe alloy.
- the preferred thickness of the ohmic metal layer 514 is greater than 10 ⁇ .
- the metal electrode 512 and the ohmic metal layer 514 are formed respectively on opposite sides of the epitaxial structure 500 .
- a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ions diffuse onto the surface of the epitaxial structure 500 .
- the annealing temperature is 200 to 700° C., and more preferably 300 to 500° C.
- an etching step is conducted for removing the ohmic metal layer to form the structure illustrated in FIG. 5B .
- FIG. 5C illustrates a cross-sectional structure of the LED element after the transparent electrode layer 516 is formed over the epitaxial structure 500 .
- a transparent electrode layer 516 is deposited over the epitaxial structure 500 .
- the transparent electrode layer 516 is a layer of conductive materials, such as InO, CdSiO, ZnO, MgO, SiO, TiWN or ITO, and preferably ITO.
- a metal pad 518 is formed on the transparent electrode layer 516 to complement an LED device.
- FIG. 6 illustrates an MgZnSSe-based element comprising a substrate 602 and an epitaxial structure 600 over the substrate 602 .
- the LED element further comprises a metal electrode 612 formed over a first surface of the epitaxial structure 600 .
- the preferable material of the metal electrode 612 is Ti, Al, or GeAu alloy, and the metal electrode 612 and the epitaxial structure 600 are formed respectively on the same side of the substrate 602 .
- the material of the MgZnSSe-based LED element described in the sixth embodiment of present invention is the same as the MgZnSSe-Based LED element described in the fifth embodiment, with the exception of the material of substrate 602 .
- the substrate 602 is made of sapphire rather than n-type GaAs.
- the structures of the sixth embodiment and the fifth embodiment are not the same.
- the metal electrode 512 and the epitaxial structure 500 are formed respectively on opposite sides of the substrate 502 .
- the metal electrode 612 and the epitaxial structure 600 are formed respectively on the same side of the substrate 602 .
- the metal electrode 612 is at least located on portion of the first surface of the epitaxial structure 600 .
- the epitaxial structure 600 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer, deposited in sequence.
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap.
- the preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW).
- the preferable material of the buffer layer is n-type GaAs.
- the preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
- FIG. 6A illustrates a cross-sectional structure of the LED element after the ohmic metal layer 614 is formed over the second surface of the epitaxial structure 600 .
- a suitable process such as thermal evaporation, electron enhanced evaporation, or sputtering deposition is used to deposit ohmic metal over the second surface of the epitaxial structure 600 .
- the preferred material of the ohmic metal is PdIn, Zn, Ni, Au, or AuBe alloy.
- the preferred thickness of the ohmic metal layer 614 is greater than 10 ⁇ .
- the metal electrode 612 and the ohmic metal layer 614 are formed respectively on the same side of the substrate 602 .
- a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ions diffuse onto the second surface of the epitaxial structure 600 .
- the annealing temperature is 200 to 700° C., and more preferably 300 to 500° C.
- an etching step is conducted for removing the ohmic metal layer to form the structure illustrated in FIG. 6B .
- FIG. 6C illustrates a cross-sectional structure of the LED element after the transparent electrode layer 616 is formed over the second surface of the epitaxial structure 600 .
- a transparent electrode layer 616 is deposited over the second surface of the epitaxial structure 600 .
- the transparent electrode layer 616 is a layer of conductive materials, such as InO, CdSiO, ZnO, MgO, SiO, TiWN or ITO, and preferably ITO.
- a metal pad 618 is formed on the transparent electrode layer 616 to complement an LED device.
- the method provided by present invention utilized thermal annealing to diffuse ohmic metal ions onto the surface of the epitaxial structure, thereby reducing the resistance between the transparent electrode and the visible LED element. Additionally, the method avoids the problems of visible light absorption.
- the present invention provides a seventh embodiment.
- the seventh embodiment is generally similar to what are illustrated in FIGS. 1-1C .
- the epitaxial structure 100 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer, formed in sequence.
- the preferable material of these layers is selected from a group consisting of AlGaInP, AlInGaN and MgZnSSe.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
A method for forming a transparent electrode on a visible light-emitting diode is described. A visible light-emitting diode element is provided, and the visible light-emitting diode element has a substrate, an epitaxial structure and a metal electrode. The metal electrode and the epitaxial structure are located on the same side of the substrate, or located respectively on the different sides of the substrate. An ohmic metal layer is formed on a surface of the epitaxial structure. The ohmic metal layer is annealed. The ohmic metal layer is removed to expose the surface of the epitaxial structure. A transparent electrode layer is formed on the exposed surface. A metal pad is formed on the transparent electrode layer.
Description
This application is a divisional of U.S. patent application Ser. No. 10/938,309 filed Sep. 9, 2004, now U.S. Pat. No. 7,192,794, which is incorporated herein in its entirety by this reference thereto.
The present invention relates to a light-emitting diode (LED), and more particularly, to the method for manufacturing an improved electrode on a visible LED.
An LED is a p-n junction diode that can emit ultraviolet, visible and infrared light. A visible LED is usually used as the light source of the operation panel for electric appliances such as, for example, the light source of a camera with an auto-focus function and the light source of a bar code reader.
A visible LED is an LED that can emit visible light with a wavelength of 400 nm to 700 nm. A visible LED can be manufactured by utilizing III-V semiconductor materials having energy gaps within the range of 1.36 eV to 3.26 eY, such as GaP, Ga1-xAlxAs, GaN, and GaAs1-y, Py.
The brightness of a visible LED is the most important quality for use thereof. Some manufacturing steps can be performed to enhance the brightness of a visible LED, such that a transparent electrode layer is added before forming a metal electrode during the manufacturing process of a visible LED. Suitable materials for the transparent electrode layer are used, such as InO, SiO, ZnO, or ITO (Indium Tin Oxide). The transparent electrode layer can be used not only to form ohmic contact between the LED devices, but also to diffuse the electricity flowing therethrough to enhance the brightness of the visible LED. However, the conventional procedure for forming the transparent electrode layer, by depositing suitable materials directly on the LED element, forms a proper ohmic contact between the LED devices only with difficulty.
To resolve the problem, some III-V semiconductor materials, such as GaAs, GaP, or GaAsP have been used to form a p-type ohmic contact film with heavy doping between the LED element and the transparent electrode layer to reduce the resistance of the transparent electrode layer. However, when GaAs is doped into the AlGaInP-based LED element to form the ohmic contact film, most of the visible light emitted from the LED element can be absorbed by the GaAs because the energy gap of the GaAs, about 1.35 eV, is less than 1.63 eV to 3.26 eV, which is the energy gap of visible light. Although using other materials avoids the energy gap problem, electric resistance still increases.
On the other hand, a hybrid superlattice structure of the contact layer of the LED element has been used as an alternative way to reduce the electric resistance of the transparent electrode layer. However, the structure still absorbs visible light.
A problem in this technique is that it can be difficult to fabricate a transparent electrode with low resistance that also does not absorb visible light.
Therefore, the objective of the present invention is to provide a transparent electrode of a visible LED, where the transparent electrode has a low resistance and does not absorb visible light absorption. An improved manufacturing method is also provided to resolve the drawback of the prior art, and an improved visible LED with high brightness is thereby fabricated.
According to the aforementioned objectives, the present invention provides a manufacturing method for fabricating an improved transparent electrode of a visible LED. The manufacturing method comprises several steps. First, an LED element is formed by a prior technique. Then, an ohmic metal layer is deposited on the LED element. Before removing the ohmic metal layer, a thermal annealing is performed on the ohmic metal layer, such that the ohmic metal ion can diffuse onto the surface of the LED element. An etching step is conducted for removing the ohmic metal layer. A transparent electrode layer is deposited onto the surface of the LED element. Finally, a metal pad is formed on the transparent electrode to complement an LED device.
Accordingly, the problems of prior art can be overcome by reducing the resistance between the transparent electrode and the LED element, and through the present invention an improved visible LED device with a high degree of brightness can be obtained simultaneously.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawing, wherein:
The present invention discloses a manufacturing method for fabricating a transparent electrode of a visible LED.
The present invention is characterized by the thermal diffusion of ohmic metal ions to the surface of the LED element to reduce the resistance between the transparent electrode and the LED element. In order to make the illustration of the present invention more explicit and complete, the following description is stated with reference to some preferred embodiments of the present invention.
According to present invention, an LED element is formed by a prior technique. Then, an ohmic metal layer is deposited over the LED element. Before removing the ohmic metal layer, a thermal annealing step is performed on the ohmic metal layer, such that the ohmic metal ion can diffuse onto the surface of the LED element. An etching step is conducted for removing the ohmic metal layer. A transparent electrode layer is deposited onto the surface of the LED element. Finally, a metal pad is formed on the transparent electrode to complement an LED device.
Prior techniques can be used for forming the LED element; for example, an epitaxial structure is grown on a substrate by metal organic chemical vapor deposition (MOCVD). The material of the epitaxial structure may be III-V semiconductor materials having energy gaps of 1.63 eV to 3.26 eV, such as GaP, Ga1-xAlxAs, GaN, and GaAs1-y Py.
The LED element further comprises a metal electrode 112. The preferable metal material 112 of the electrode is Ti, Al, or GeAu alloy. In the first embodiment of present invention, the metal electrode 112 and the epitaxial structure 100 are formed respectively on opposite sides of the substrate 102.
Then, a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ion can diffuse onto the surface of the epitaxial structure 100. In the first embodiment of present invention, the annealing temperatures are, for example, 200 to 700° C., and more preferably to 300 to 500° C. After the annealing step, an etching step is conducted for removing the ohmic metal layer to form the structure illustrated in FIG. 1B .
Finally, a metal pad 118 is formed on the transparent electrode layer 116 to complement an LED device.
Generally, the materials used to fabricate the AlGaInP-Based LED element are the same as those used for the AlGaInP-Based LED element described in the first embodiment of present invention, with the exception of the material of substrate 202. The substrate 202 is made of sapphire rather than n-type GaAs. Furthermore, the structures of the first embodiment and the second embodiment are not the same. In the first embodiment of present invention, the metal electrode 112 and the epitaxial structure 100 are formed respectively on opposite sides of the substrate 102. In contrast, in the second embodiment of present invention, the metal electrode 212 and the epitaxial structure 200 are formed respectively on the same side of the substrate 202. In addition the metal electrode 212 is located at least on a portion of the surface of the first surface of epitaxial structure 200.
Referring to FIG. 2 , the epitaxial structure 200 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer, formed in sequence. The preferable material of the buffer layer is n-type GaAs. The preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap. The preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW). The preferable material of the buffer layer is n-type GaAs. The preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
Then, a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ions diffuse onto the second surface of the epitaxial structure 200. In the second embodiment of present invention, the annealing temperatures are 200 to 700° C., and more preferably 300 to 500° C. After the annealing step, an etching step is conducted to remove the ohmic metal layer and form the structure illustrated in FIG. 2B .
Finally, a metal pad 218 is formed on the transparent electrode layer 216 to complement an LED device.
Referring to FIG. 3 , the epitaxial structure 300 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer deposited in sequence. The preferable material of the buffer layer is n-type GaAs. The preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap. The preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW). The preferable material of the buffer layer is n-type GaAs. The preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
In the third embodiment of present invention, the LED element further comprises a metal electrode 312. The preferred material of the metal electrode 312 is Ti, Al, or GeAu alloy; and the metal electrode 312 and the epitaxial structure 300 are formed respectively on opposite sides of the substrate 302.
Then, a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ions diffuse onto the surface of the epitaxial structure 300. In the third embodiment of present invention, the annealing temperatures are 200 to 700° C., and more preferably 300 to 500° C. After the annealing step, an etching step is conducted for removing the ohmic metal layer to form the structure illustrated in FIG. 3 b.
Finally, a metal pad 318 is formed on the transparent electrode layer 316 to complement an LED device.
Generally, the materials used for the AlInGaN-based LED element described in the fourth embodiment of present invention are the same as those used for the AlInGaN-based LED element described in the third embodiment, with the exception of the material of substrate 402. The substrate 402 is made of sapphire rather than n-type GaAs. Furthermore, the structures of the third embodiment and the fourth embodiment are not the same. In the third embodiment of present invention, the metal electrode 312 and the epitaxial structure 300 are formed respectively on opposite sides of the substrate 302. In contrast, in the fourth embodiment of present invention, the metal electrode 412 and the epitaxial structure 400 are formed respectively on the same side of the substrate 402. In addition the metal electrode 412 is at least located on portion of the first surface of the epitaxial structure 400.
Referring to FIG. 4 , the epitaxial structure 400 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer deposited in sequence. The preferable material of the buffer layer is n-type GaAs. The preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap. The preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW). The preferable material of the buffer layer is n-type GaAs. The preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
Then, a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ions diffuse onto the second surface of the epitaxial structure 400. In the fourth embodiment of present invention, the annealing temperature is 200 to 700° C., and more preferably 300 to 500° C. After the annealing step, an etching step is conducted for removing the ohmic metal layer to form the structure illustrated in FIG. 4B .
Finally, a metal pad 418 is formed on the transparent electrode layer 416 to complement an LED device.
Referring to FIG. 5 , the epitaxial structure 500 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer, deposited in sequence. The preferable material of the buffer layer is n-type GaAs. The preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap. The preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW). The preferable material of the buffer layer is n-type GaAs. The preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
In the fifth embodiment of present invention, the LED element further comprises a metal electrode 512. The preferred material of the metal electrode 512 is Ti, Al, or GeAu alloy, and the metal electrode 512 and the epitaxial structure 500 are formed respectively on opposite sides of the substrate 502.
Then, a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ions diffuse onto the surface of the epitaxial structure 500. In the third embodiment of present invention, the annealing temperature is 200 to 700° C., and more preferably 300 to 500° C. After the annealing step, an etching step is conducted for removing the ohmic metal layer to form the structure illustrated in FIG. 5B .
Finally, a metal pad 518 is formed on the transparent electrode layer 516 to complement an LED device.
Referring to FIG. 6 to FIG. 6c illustrate a series of cross-sectional structures showing the manufacturing processes for fabricating a transparent electrode of a visible LED in accordance with the fourth embodiment of the present invention. FIG. 6 illustrates an MgZnSSe-based element comprising a substrate 602 and an epitaxial structure 600 over the substrate 602. In the fourth embodiment of present invention, the LED element further comprises a metal electrode 612 formed over a first surface of the epitaxial structure 600. The preferable material of the metal electrode 612 is Ti, Al, or GeAu alloy, and the metal electrode 612 and the epitaxial structure 600 are formed respectively on the same side of the substrate 602.
Generally, the material of the MgZnSSe-based LED element described in the sixth embodiment of present invention is the same as the MgZnSSe-Based LED element described in the fifth embodiment, with the exception of the material of substrate 602. The substrate 602 is made of sapphire rather than n-type GaAs. Furthermore, the structures of the sixth embodiment and the fifth embodiment are not the same. In the fifth embodiment of present invention, the metal electrode 512 and the epitaxial structure 500 are formed respectively on opposite sides of the substrate 502. In contrast, in the sixth embodiment of present invention, the metal electrode 612 and the epitaxial structure 600 are formed respectively on the same side of the substrate 602. In addition, the metal electrode 612 is at least located on portion of the first surface of the epitaxial structure 600.
Referring to FIG. 6 , the epitaxial structure 600 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer, deposited in sequence. The preferable material of the buffer layer is n-type GaAs. The preferable material of the n-type cladding layer is n-type GaAs with a wider energy gap. The preferable material of the active layer is n-type GaAs with a narrower energy gap or n-type GaAs with multiple quantum wells (MQW). The preferable material of the buffer layer is n-type GaAs. The preferable material of the p-type cladding layer is p-type GaAs with a wider energy gap.
Then, a thermal annealing step is conducted on the ohmic metal layer, such that the ohmic metal ions diffuse onto the second surface of the epitaxial structure 600. In the sixth embodiment of present invention, the annealing temperature is 200 to 700° C., and more preferably 300 to 500° C. After the annealing step, an etching step is conducted for removing the ohmic metal layer to form the structure illustrated in FIG. 6B .
Finally, a metal pad 618 is formed on the transparent electrode layer 616 to complement an LED device.
Accordingly, the method provided by present invention utilized thermal annealing to diffuse ohmic metal ions onto the surface of the epitaxial structure, thereby reducing the resistance between the transparent electrode and the visible LED element. Additionally, the method avoids the problems of visible light absorption.
As is understood by a person skilled in the art, the foregoing preferred embodiments of the present invention are illustrated of the present invention rather than limiting of the present invention. It is intended to cover various modifications and similar arrangements; for example the various structures known in the art and any materials within the range of the energy gap (1.36 eV to 3.26 eV) are included within the spirit and scope of the appended claims, the scope of which should be accorded the broadest interpretation so as to encompass all such modifications and similar structure.
The present invention provides a seventh embodiment. The seventh embodiment is generally similar to what are illustrated in FIGS. 1-1C . However, in the seventh embodiment, the epitaxial structure 100 comprises a buffer layer, an n-type cladding layer, an active layer, and a p-type cladding layer, formed in sequence. The preferable material of these layers is selected from a group consisting of AlGaInP, AlInGaN and MgZnSSe.
Claims (11)
1. A method for fabricating a transparent electrode of a visible an LED, comprising:
providing a visible LED element, comprising a substrate, an epitaxial structure, and a metal electrode at least located on a first surface of the epitaxial structure, wherein the metal electrode and the epitaxial structure are formed on a same side of the substrate;
forming an ohmic metal layer over a second surface of the epitaxial structure, wherein the first surface and a the second surface of the epitaxial structure are on the same side of the substrate;
thermal annealing the ohmic metal layer;
entirely removing the ohmic metal layer to expose the second surface of the epitaxial structure;
forming a transparent electrode layer directly contacting the second surface of the epitaxial structure in the absence of the ohmic metal layer; and
forming a metal pad over the transparent electrode layer.
2. The method according to claim 1 , wherein a material of the epitaxial structure is selected from a group consisting of III-V semiconductor materials with energy gaps of about 1.36 eV to 3.26 eV.
3. The method according to claim 2 , wherein a material of the epitaxial structure is selected from a group consisting of AlGaInP, AlInGaN, and MgZnSSe.
4. The method according to claim 1 , wherein a thickness of the ohmic metal layer is greater than about 10 Å.
5. The method according to claim 1 , wherein the annealing temperature is about 200 to 700° C.
6. The method according to claim 1 , wherein the annealing temperature is about 200 to 500° C.
7. The method according to claim 1 , wherein the ohmic metal layer is removed by a wet etching process.
8. The method according to claim 1 , wherein the transparent electrode layer is made of a conductive material, and wherein the conductive material is selected from a group consisting of InO, CdSiO, ZnO, MgO, SiO, TiWN and ITO.
9. The method according to claim 8 , wherein the conductive material is selected from a group consisting of InO, CdSiO, ZnO, MgO, TiWN, and ITO and ZnO.
10. The method according to claim 1 , wherein the metal electrode comprises Al, Ti or GeAu alloy.
11. The method according to claim 1 , wherein the ohmic metal layer comprises PdIn, Zn, Ni, Au, or AuBe alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/152,124 USRE43426E1 (en) | 2004-08-11 | 2011-06-02 | Fabrication method of transparent electrode on visible light-emitting diode |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW093124113A TWI240437B (en) | 2004-08-11 | 2004-08-11 | Fabrication method of transparent electrode on visible light-emitting diode |
TW93124113 | 2004-08-11 | ||
US10/938,309 US7192794B2 (en) | 2004-08-11 | 2004-09-09 | Fabrication method of transparent electrode on visible light-emitting diode |
US11/684,540 US7541205B2 (en) | 2004-08-11 | 2007-03-09 | Fabrication method of transparent electrode on visible light-emitting diode |
US13/152,124 USRE43426E1 (en) | 2004-08-11 | 2011-06-02 | Fabrication method of transparent electrode on visible light-emitting diode |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/684,540 Reissue US7541205B2 (en) | 2004-08-11 | 2007-03-09 | Fabrication method of transparent electrode on visible light-emitting diode |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE43426E1 true USRE43426E1 (en) | 2012-05-29 |
Family
ID=35800475
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/938,309 Active 2024-12-21 US7192794B2 (en) | 2004-08-11 | 2004-09-09 | Fabrication method of transparent electrode on visible light-emitting diode |
US11/684,540 Ceased US7541205B2 (en) | 2004-08-11 | 2007-03-09 | Fabrication method of transparent electrode on visible light-emitting diode |
US13/152,124 Expired - Lifetime USRE43426E1 (en) | 2004-08-11 | 2011-06-02 | Fabrication method of transparent electrode on visible light-emitting diode |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/938,309 Active 2024-12-21 US7192794B2 (en) | 2004-08-11 | 2004-09-09 | Fabrication method of transparent electrode on visible light-emitting diode |
US11/684,540 Ceased US7541205B2 (en) | 2004-08-11 | 2007-03-09 | Fabrication method of transparent electrode on visible light-emitting diode |
Country Status (2)
Country | Link |
---|---|
US (3) | US7192794B2 (en) |
TW (1) | TWI240437B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8101961B2 (en) * | 2006-01-25 | 2012-01-24 | Cree, Inc. | Transparent ohmic contacts on light emitting diodes with growth substrates |
US7829359B2 (en) * | 2008-03-26 | 2010-11-09 | Lattice Power (Jiangxi) Corporation | Method for fabricating highly reflective ohmic contact in light-emitting devices |
TWI446578B (en) * | 2010-09-23 | 2014-07-21 | Epistar Corp | Light-emitting element and the manufacturing method thereof |
DE102012204432B4 (en) * | 2012-03-20 | 2018-06-07 | Osram Oled Gmbh | An electronic structure comprising at least one metal growth layer and methods of making an electronic structure |
CN117293230A (en) * | 2023-11-24 | 2023-12-26 | 南昌凯迅光电股份有限公司 | Gallium arsenide solar cell with omnibearing metal reflector and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6693352B1 (en) | 2000-06-05 | 2004-02-17 | Emitronix Inc. | Contact structure for group III-V semiconductor devices and method of producing the same |
-
2004
- 2004-08-11 TW TW093124113A patent/TWI240437B/en not_active IP Right Cessation
- 2004-09-09 US US10/938,309 patent/US7192794B2/en active Active
-
2007
- 2007-03-09 US US11/684,540 patent/US7541205B2/en not_active Ceased
-
2011
- 2011-06-02 US US13/152,124 patent/USRE43426E1/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6693352B1 (en) | 2000-06-05 | 2004-02-17 | Emitronix Inc. | Contact structure for group III-V semiconductor devices and method of producing the same |
Also Published As
Publication number | Publication date |
---|---|
US7192794B2 (en) | 2007-03-20 |
US20070148798A1 (en) | 2007-06-28 |
US7541205B2 (en) | 2009-06-02 |
TW200607120A (en) | 2006-02-16 |
TWI240437B (en) | 2005-09-21 |
US20060035398A1 (en) | 2006-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8143640B2 (en) | GaN compound semiconductor light emitting element and method of manufacturing the same | |
US6958494B2 (en) | Light emitting diodes with current spreading layer | |
US8502193B2 (en) | Light-emitting device and fabricating method thereof | |
US7675077B2 (en) | Light-emitting diode and method for manufacturing the same | |
CN101188263B (en) | Method of fabricating a nitride semiconductor light emitting device | |
JP2009514197A (en) | Semiconductor light emitting device with electrode for N-polar InGaAlN surface | |
KR101054785B1 (en) | Semiconductor light emitting device and method for manufacturing same | |
JP2001210867A (en) | Gallium nitride semiconductor light emitting element and manufacturing method therefor | |
USRE43426E1 (en) | Fabrication method of transparent electrode on visible light-emitting diode | |
KR100755649B1 (en) | Gan-based semiconductor light emitting device and method of manufacturing the same | |
CN100438101C (en) | Gallium nitride-based compound semiconductor light-emitting device | |
KR101239852B1 (en) | GaN compound semiconductor light emitting element | |
KR20060035424A (en) | Gan compound semiconductor light emitting element and method of manufacturing the same | |
KR20060112064A (en) | Light emitting device | |
KR20090112854A (en) | Group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them | |
KR101353577B1 (en) | Luminous element with semiconductor and method for manufacturing the same element | |
KR101115571B1 (en) | GaN compound semiconductor light emitting element | |
CN1667842B (en) | Structure of gallium nitride family light-emitting diode and process for making same | |
KR20190079787A (en) | Manufacturing method of semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |