CN100466290C - 场效应晶体管制造方法 - Google Patents

场效应晶体管制造方法 Download PDF

Info

Publication number
CN100466290C
CN100466290C CNB2003801024198A CN200380102419A CN100466290C CN 100466290 C CN100466290 C CN 100466290C CN B2003801024198 A CNB2003801024198 A CN B2003801024198A CN 200380102419 A CN200380102419 A CN 200380102419A CN 100466290 C CN100466290 C CN 100466290C
Authority
CN
China
Prior art keywords
semiconductor column
growth
layer
insulating barrier
apply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003801024198A
Other languages
English (en)
Other versions
CN1708864A (zh
Inventor
罗尔夫·克嫩坎普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hahn Meitner Institut Berlin GmbH
Original Assignee
Hahn Meitner Institut Berlin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hahn Meitner Institut Berlin GmbH filed Critical Hahn Meitner Institut Berlin GmbH
Publication of CN1708864A publication Critical patent/CN1708864A/zh
Application granted granted Critical
Publication of CN100466290C publication Critical patent/CN100466290C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/17Memory cell being a nanowire transistor

Abstract

本发明涉及场效应晶体管,其中在源极触点及漏极触点之间设有至少一个垂直定向的、其直径在纳米范围上的半导体柱,在保持一个绝缘距离的情况下该半导体柱被栅极触点环形地包围。本发明提出一种简化的制造方法。所制造的晶体管被这样地构成:半导体柱(2)被埋在第一及第二绝缘层(3,5)中,在这些绝缘层之间设有一个作为栅极触点的、向外导出的金属层(4),该金属层的向上穿过第二绝缘层(5)露出的端部被部分地转换成绝缘体(6)或部分地被去除及通过绝缘材料填充。

Description

场效应晶体管制造方法
本发明涉及一种场效应晶体管,其中在源极触点及漏极触点之间设有至少一个垂直定向的、其直径在纳米范围(纳米线)上的半导体柱(
Figure C200380102419D0004095006QIETU
),在保持一个绝缘距离的情况下该半导体柱被栅极触点环形地包围,及涉及用于该场效应晶体管的制造方法。
已公知了薄层晶体管,其中半导体材料以平面布置被施加在柔性的衬底上。但由于衬底的机械应力半导体易于从衬底上脱离或导致其它的损坏及由此导致功能失效。
已有人提出,以纳米尺度来制造晶体管,其方式是,在由两个塑料薄膜及处于中间的金属层组成的薄膜复合体中借助离子轰击开出离子轨迹沟道,这些沟道由此对于随后的蚀刻很敏感。在蚀刻出的微孔中借助电子淀积或化学槽沉积注入半导体材料。通过接着的薄膜复合体上侧及下侧的金属化构成源极及漏极触点。中间的金属化薄膜用作栅极触点。
这种晶体管的圆柱形垂直结构具有其优点,即它们在机械上非常强健,因为薄膜可弯曲并可扭转。此外有机的薄膜材料实质地比无机的半导体材料软。由此出现的弯曲力、剪切力及压力几乎完全由薄膜材料接收,以使得在弯曲力、剪切力及拉力作用下晶体管特性曲线及其它电参数很大程度上地恒定。
因为可制造出小到30nm的微孔及可用半导体材料填充,对于纳米尺度上的晶体管也可无需光刻及无需掩模来制造。
通过半导体材料沉积类型在该方法中有条件地形成多晶的半导体柱。并且半导体柱的长度对其直径的比例受到微孔内的必需的晶体生长的限制。总地该用于制造晶体管的方法仍太昂贵,因为离子轰击迄今仅在可选的科学装置中进行。
本发明的任务在于,提出一种开始部分所述类型的场效应晶体管,它也可用单晶半导体柱来制造,其中无需离子照射也能够实现。为此应给出适合的、简单的、对于其制造工业上可应用的方法。
据此,半导体柱被埋在第一及第二绝缘层中,在这些绝缘层之间有一个作为栅极触点的、向外导出的金属层。该金属层的向上穿过第二绝缘层露出的端部被部分地转换成绝缘体或部分地被去除并通过一个绝缘材料填充。
这种晶体管可用以下方法步骤来制造:
-在一个导电衬底上垂直地生长独立式(freistehende)的半导体柱,
-在这些半导体柱上施加一个第一绝缘层,
-在该第一绝缘层上接着施加一个第一导电金属层及一个第二绝缘层,
-将形成的层体在这样的程度上被平面蚀刻,以使得该第一导电金属层的覆盖这些半导体柱的部分又被去除,
-将该穿过该层体表面的金属层的端部专门针对金属地进行返回蚀刻()并在该层体上施加一个第三绝缘层,接着将该层体重新进行平面蚀刻,
将该穿过该层体表面的金属层的端部通过氧化或氮化转换成绝缘体,
-接着在该层体上施加一个第二金属层。
该晶体管相对迄今的垂直纳米晶体管具有以下优点:
-该场效应晶体管的结构允许极高的封装密度及极小的尺寸,且无需使用光刻方法;
-所使用的衬底可以是硬性的或柔性的;
-对于制造不是绝对需要离子照射
-该方法现在允许半导体柱单晶地生长。基于单晶半导体的晶体管比多晶的半导体的晶体管具有更高的开关速度。
以下将借助实施例来详细地描述本发明。附图中表示:
图1:用于制造根据本发明的场效应晶体管的第一方法步骤-在一个金属导电衬底上生长独立式的半导体柱,
图2:第二方法步骤-施加第一绝缘层,
图3:第三及第四方法步骤-施加第一金属层及第二绝缘层,
图4:第五方法步骤-平面蚀刻,
图5:第六方法步骤-金属层向上伸出的端部的绝缘,
图6:第七方法步骤-施加第二金属层,制成的晶体管结构的横截面图,
图7:通过该方法可制造的晶体管阵列的横截面图。
如图1中所示,在一个可为柔性的或坚固的导电衬底1上首先生长垂直地独立式的半导体柱2。这里可使用一个无序的工序,如由文献Thin Film Deposition on Free-standingZnO Columns,etal.,Appl.Phys.Lett.77,No 16(16.October 2000),2275-2277(“独立式的ZnO柱上的薄膜沉积”,
Figure C200380102419D0006095119QIETU
等著,Appl.Phys.Lett.77,No16(2000年10月16日),第2275-2277页)公知的ZnO柱的电化学生长。对此变换地,也可通过蒸发Zn或ZnO来施加ZnO,见文献Seung Chu Lyu etal.,Low Temperature Growth of Zno Nano-wire ArrayUsing Vapour Deposition Method,Chemistry of Materials to be published(“使用汽相淀积方法的ZnO纳米线阵列的低温生长”,Seung ChuLyu等人著,待出版的Chemistry of Materials)。但也可这样来预制备一个衬底,即用有序的或无序的方式形成成核籽晶(Nukleationskeime),在该籽晶上开始柱的生长。作为无序的成核籽晶例如对于ZnO柱的生长采用Ni搀杂物,见上述文献;或对于C60-纳米管的垂直生长采用Ni搀杂物,见文献Teo etal.,NanotechConference,Santiago deCompostela,September 9-13,2002-10-09(纳米技术会议,Teo等人的报告,Santiago de Compostela,9月9-13日,2002-10-09),图d。有序的成核籽晶可通过光刻方法来产生,见上述文献,或通过非光刻方法、例如通过在错定位的晶体面上的位错级来产生。在非光刻产生成核籽晶的情况下极大地取消了由光刻产生的量值限制。柱的生长仅通过成核籽晶的量值预给定。但半导体柱也可在聚合物膜的被蚀刻出的离子轨迹沟道中制造。如果接着去除薄膜材料,同样可形成独立式的半导体柱,见文献Engelhardt,,Electrodeposition of Compound Semiconductors in PolymerChannels of100nm Diameter,J.Appl.Phys.,90,No 8(15.October 2002),4287-4289(“在100nm直径的聚合物沟道中化合物半导体的电淀积”,Engelhardt,
Figure C200380102419D0007095204QIETU
著,J.Appl.Phys.Lett.90,No 8(2002年10月15日),第4287-4289页)。
在衬底上生长半导体柱(纳米纤维/纳米管)迄今主要对于用于电子场致发射器件、发光二极管及具有极薄的吸收层的太阳能电池的制造具有重要意义。
除了所述的用于半导体柱的材料外也可考虑其它材料,如GaP,见文献Gudiksen/Lieber,Diameter-Selective Semiconductor Nanowires,J.Am.(“直径选择的半导体纳米线”,Gudiksen/Lieber著,J.Am.Chem.Soc.122(2000年),第8801-8802页);InAs,InP,CdTe等材料。
在半导体柱2生长后施加一个绝缘层3,如图2所示。该层的施加可通过聚合物的旋涂或通过蒸发、CVD(化学汽相淀积)或其它的用于产生如氧化物或氮化物的绝缘层的已知方法来实现。
绝缘层3也覆盖半导体柱1的侧面。在该绝缘层上通过溅射、蒸发、CVD或类似方法施加第一导电金属层4,以后该金属层将构成晶体管的栅极触点。接着再施加另一绝缘层5(图3),及对这样形成的层体的上部分进行平面蚀刻(图4)。这可通过水平的离子束来实现(离子束蚀刻)或通过等离子蚀刻或化学蚀刻或电化学蚀刻方法来实现,正如由半导体技术已充分公知的。接着使从层序列中向上露出的金属层4的端部绝缘(图5)。这可这样地进行,即在金属专用的蚀刻步骤中,使露出在表面上的金属返回蚀刻并施加另一绝缘层,然后将其平面化。对此变换地,如图5中所示,露出在表面上的金属通过化学氧化或氮化被转换成一个绝缘体6。接着施加第二金属层7(图6)。该金属层与半导体柱形成电接触及在以后作为源极触点或漏极触点。
在起栅极触点作用的中间接触区域中,在半导体柱2的外侧上形成一个沟道8,当半导体柱2足够细时,该沟道也可延伸在柱的整个厚度上。
图7中表示一个晶体管阵列。栅极触点总是环形地包围半导体柱2及由此与它完全相关。所有触点(源极,漏极,栅极)可作为阵列被控制或借助光刻方法来划分。这种阵列尤其可应用在电路或显示器中。在显示器中将由几百个晶体管组成一个光像素(Pixel)。
借助该方法可制造具有其直径为10至500nm数量级的半导体柱的晶体管。半导体柱的高度在相同范围内。在直径非常小的情况下晶体管可以在量子等级工作。
参考标号表
1    衬底
2    半导体柱
3    绝缘层
4    金属层
5    绝缘层
6    绝缘体
7    金属层
8    沟道

Claims (8)

1.制造场效应晶体管的方法,其中在一个源极触点及一个漏极触点之间有至少一个垂直定向的、其直径在纳米范围上的半导体柱,在保持一个绝缘距离的情况下该半导体柱被一个栅极触点环形地包围,其特征在于:
-在一个导电衬底上垂直地生长独立式的半导体柱,
-在这些半导体柱上施加一个第一绝缘层,
-在该第一绝缘层上接着施加一个第一导电金属层及一个第二绝缘层,
-将形成的层体在这样的程度上被平面蚀刻,以使得该第一导电金属层的覆盖这些半导体柱的部分又被去除,
-将该穿过该层体表面的金属层的端部专门针对金属地进行返回蚀刻并在该层体上施加一个第三绝缘层,接着将该层体重新进行平面蚀刻,
将该穿过该层体表面的金属层的端部通过氧化或氮化转换成绝缘体,
-接着在该层体上施加一个第二金属层。
2.根据权利要求1的方法,其特征在于:该层体或各个层借助光刻方法被划分成一些单个的阵列。
3.根据权利要求1或2的方法,其特征在于:这些半导体柱的生长是以电化学方式来进行的。
4.根据权利要求1或2的方法,其特征在于:这些半导体柱的生长是通过溅射来进行的。
5.根据权利要求1或2的方法,其特征在于:这些半导体柱的生长是通过CVD方法来进行的。
6.根据权利要求1或2的方法,其特征在于:这些半导体柱的生长是通过蒸发来进行的。
7.根据权利要求1或2的方法,其特征在于:这些半导体柱的生长是在成核籽晶上进行的。
8.根据权利要求1或2的方法,其特征在于:这些半导体柱的生长是在聚合物薄膜的离子轨迹沟道中进行的,接着再去除该聚合物薄膜。
CNB2003801024198A 2002-10-29 2003-10-29 场效应晶体管制造方法 Expired - Fee Related CN100466290C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10250984A DE10250984A1 (de) 2002-10-29 2002-10-29 Feldeffekttransistor sowie Verfahren zu seiner Herstellung
DE10250984.0 2002-10-29

Publications (2)

Publication Number Publication Date
CN1708864A CN1708864A (zh) 2005-12-14
CN100466290C true CN100466290C (zh) 2009-03-04

Family

ID=32115093

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801024198A Expired - Fee Related CN100466290C (zh) 2002-10-29 2003-10-29 场效应晶体管制造方法

Country Status (9)

Country Link
US (1) US7659165B2 (zh)
EP (1) EP1556910B1 (zh)
JP (1) JP2006505119A (zh)
KR (1) KR20050056259A (zh)
CN (1) CN100466290C (zh)
AT (1) ATE469443T1 (zh)
AU (1) AU2003294616A1 (zh)
DE (2) DE10250984A1 (zh)
WO (1) WO2004040616A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097477A (zh) * 2010-12-15 2011-06-15 复旦大学 带栅极的mis及mim器件

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1560792B1 (en) 2002-10-29 2014-07-30 President and Fellows of Harvard College Carbon nanotube device fabrication
US7253434B2 (en) 2002-10-29 2007-08-07 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
US7038299B2 (en) 2003-12-11 2006-05-02 International Business Machines Corporation Selective synthesis of semiconducting carbon nanotubes
US7374793B2 (en) 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
WO2005064664A1 (en) * 2003-12-23 2005-07-14 Koninklijke Philips Electronics N.V. Semiconductor device comprising a heterojunction
US20050167655A1 (en) 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
US7211844B2 (en) 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US7829883B2 (en) 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays
WO2005124888A1 (en) * 2004-06-08 2005-12-29 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
GB0413310D0 (en) 2004-06-15 2004-07-14 Koninkl Philips Electronics Nv Nanowire semiconductor device
US7109546B2 (en) 2004-06-29 2006-09-19 International Business Machines Corporation Horizontal memory gain cells
US7233071B2 (en) 2004-10-04 2007-06-19 International Business Machines Corporation Low-k dielectric layer based upon carbon nanostructures
CN101203740B (zh) 2005-04-06 2011-03-23 哈佛大学校长及研究员协会 用碳纳米管控制的分子鉴定
CN100403550C (zh) * 2005-08-05 2008-07-16 西安电子科技大学 垂直型宽禁带半导体器件结构及制作方法
EP2013611A2 (en) * 2006-03-15 2009-01-14 The President and Fellows of Harvard College Nanobioelectronics
EP2035584B1 (en) 2006-06-12 2011-01-26 President and Fellows of Harvard College Nanosensors and related technologies
US8643087B2 (en) 2006-09-20 2014-02-04 Micron Technology, Inc. Reduced leakage memory cells
US8575663B2 (en) 2006-11-22 2013-11-05 President And Fellows Of Harvard College High-sensitivity nanoscale wire sensors
WO2008129478A1 (en) * 2007-04-19 2008-10-30 Nxp B.V. Nonvolatile memory cell comprising a nanowire and manufacturing method thereof
FR2923651A1 (fr) * 2007-11-13 2009-05-15 Commissariat Energie Atomique Procede de realisation d'une jonction pn dans un nanofil, et d'un nanofil avec au moins une jonction pn.
KR101018294B1 (ko) * 2008-09-19 2011-03-04 한국과학기술원 수직형 트랜지스터 소자
WO2010099216A2 (en) 2009-02-25 2010-09-02 California Institute Of Technology Methods for fabrication of high aspect ratio micropillars and nanopillars
EP2446467A4 (en) * 2009-06-26 2014-07-02 California Inst Of Techn METHOD FOR PRODUCING PASSIVATED SILICON NANODRICES AND APPARATUS THUS OBTAINED THEREFOR
US9297796B2 (en) 2009-09-24 2016-03-29 President And Fellows Of Harvard College Bent nanowires and related probing of species
US8809093B2 (en) 2009-11-19 2014-08-19 California Institute Of Technology Methods for fabricating self-aligning semicondutor heterostructures using silicon nanowires
US9018684B2 (en) 2009-11-23 2015-04-28 California Institute Of Technology Chemical sensing and/or measuring devices and methods
CN102082178B (zh) * 2009-11-30 2012-05-23 华映视讯(吴江)有限公司 垂直式薄膜晶体管及其制造方法及显示装置及其制造方法
FR2962595B1 (fr) * 2010-07-06 2015-08-07 Commissariat Energie Atomique Dispositif microélectronique a niveaux métalliques d'interconnexion connectes par des vias programmables
WO2012170630A2 (en) 2011-06-10 2012-12-13 President And Fellows Of Harvard College Nanoscale wires, nanoscale wire fet devices, and nanotube-electronic hybrid devices for sensing and other applications
CN104157686B (zh) * 2014-08-11 2017-02-15 北京大学 一种环栅场效应晶体管及其制备方法
CN104882487B (zh) 2015-05-15 2017-12-08 合肥鑫晟光电科技有限公司 薄膜晶体管、阵列基板及其制造方法和显示装置
CN113299761A (zh) * 2021-05-12 2021-08-24 深圳市华星光电半导体显示技术有限公司 阵列基板及其制备方法、显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330412A (zh) * 2000-06-27 2002-01-09 三星电子株式会社 使用碳纳米管的竖直纳米尺寸晶体管及其制造方法
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US20030132461A1 (en) * 2000-07-28 2003-07-17 Wolfgang Roesner Field-effect transistor, circuit configuration and method of fabricating a field-effect transistor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2222306B (en) 1988-08-23 1992-08-12 Plessey Co Plc Field effect transistor devices
JP3375117B2 (ja) * 1997-06-11 2003-02-10 シャープ株式会社 半導体装置及びその製造方法、及び液晶表示装置
FR2775280B1 (fr) * 1998-02-23 2000-04-14 Saint Gobain Vitrage Procede de gravure d'une couche conductrice
DE19846063A1 (de) 1998-10-07 2000-04-20 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung eines Double-Gate MOSFETs
WO2003019683A2 (en) * 2001-08-29 2003-03-06 D-Wave Systems, Inc. Trilayer heterostructure josephson junctions
JP4290953B2 (ja) * 2002-09-26 2009-07-08 奇美電子股▲ふん▼有限公司 画像表示装置、有機el素子および画像表示装置の製造方法
US7259023B2 (en) * 2004-09-10 2007-08-21 Intel Corporation Forming phase change memory arrays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330412A (zh) * 2000-06-27 2002-01-09 三星电子株式会社 使用碳纳米管的竖直纳米尺寸晶体管及其制造方法
US20030132461A1 (en) * 2000-07-28 2003-07-17 Wolfgang Roesner Field-effect transistor, circuit configuration and method of fabricating a field-effect transistor
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097477A (zh) * 2010-12-15 2011-06-15 复旦大学 带栅极的mis及mim器件

Also Published As

Publication number Publication date
JP2006505119A (ja) 2006-02-09
DE50312746D1 (de) 2010-07-08
US7659165B2 (en) 2010-02-09
WO2004040616A3 (de) 2004-07-22
EP1556910B1 (de) 2010-05-26
DE10250984A1 (de) 2004-05-19
CN1708864A (zh) 2005-12-14
KR20050056259A (ko) 2005-06-14
EP1556910A2 (de) 2005-07-27
US20060118975A1 (en) 2006-06-08
AU2003294616A1 (en) 2004-05-25
ATE469443T1 (de) 2010-06-15
WO2004040616A2 (de) 2004-05-13
AU2003294616A8 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
CN100466290C (zh) 场效应晶体管制造方法
CN1317768C (zh) 利用垂直纳米管的非易失性存储装置
US6919119B2 (en) Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
US8946789B2 (en) Semiconductor device, method of manufacturing the same, and electronic device including the semiconductor device
CN105679827A (zh) 包括堆叠的纳米片场效应晶体管的装置
KR101960889B1 (ko) 오프셋 전극 tft 구조
US10529877B2 (en) Semiconductor devices including two-dimensional materials and methods of manufacturing the semiconductor devices
CN102906893B (zh) 用于沉积的fet沟道的自对准到栅极的外延源极/漏极接触
KR102395778B1 (ko) 나노구조체 형성방법과 이를 적용한 반도체소자의 제조방법 및 나노구조체를 포함하는 반도체소자
CN103311305A (zh) 硅基横向纳米线多面栅晶体管及其制备方法
US20230036385A1 (en) Thin-film transistor, manufacturing method thereof, array substrate and display panel
CN112531111A (zh) 一种有机单晶半导体结构及其制备方法
KR102059131B1 (ko) 그래핀 소자 및 이의 제조 방법
CN101960611A (zh) 具有高纵横比纳米结构的光伏装置
CN111863961B (zh) 异质结场效应晶体管
CN105047719A (zh) 基于InAsN-GaAsSb材料的交错型异质结隧穿场效应晶体管
CN106058036B (zh) 一种量子干涉器件结构及其制备方法
KR100462468B1 (ko) 나노선과 이를 이용한 나노소자
CN115172440A (zh) 一种氮化物半导体高电子迁移率晶体管外延结构
KR102478481B1 (ko) 페로브스카이트를 포함하는 태양전지
US11011646B2 (en) TFT structure based on flexible multi-layer graphene quantum carbon substrate material and method for manufacturing same
CN105070755A (zh) 基于SiGeSn-GeSn材料的II型异质结隧穿场效应晶体管
KR102578720B1 (ko) 태양 전지 및 그 제조 방법
US20080237650A1 (en) Electrode structure for fringe field charge injection
Salaoru et al. Small organic molecules for electrically re-writable non-volatile polymer memory devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090304

Termination date: 20091130