CN1004522B - 自适应控制空间温度上冲或下冲量的恒温装置 - Google Patents

自适应控制空间温度上冲或下冲量的恒温装置 Download PDF

Info

Publication number
CN1004522B
CN1004522B CN86103962.9A CN86103962A CN1004522B CN 1004522 B CN1004522 B CN 1004522B CN 86103962 A CN86103962 A CN 86103962A CN 1004522 B CN1004522 B CN 1004522B
Authority
CN
China
Prior art keywords
mentioned
thermostat
temperature
slope
set point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN86103962.9A
Other languages
English (en)
Other versions
CN86103962A (zh
Inventor
索马斯·J·比基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell Inc
Original Assignee
Honeywell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Inc filed Critical Honeywell Inc
Publication of CN86103962A publication Critical patent/CN86103962A/zh
Publication of CN1004522B publication Critical patent/CN1004522B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1902Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
    • G05D23/1904Control of temperature characterised by the use of electric means characterised by the use of a variable reference value variable in time

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)
  • Air Conditioning Control Device (AREA)
  • Feedback Control In General (AREA)

Abstract

一种微机式钟控恒温器(30),当设定点改变时,可调节设定点温度(25)的变化斜率(26)恒温器中的微机靠恒温器的传感器温度(14)能够确定空气温度(63)和所需设定点温度(25)之间的上冲或下冲量(22),并能计算升温的斜率变化,从而使上冲处于可接受的水平之内。

Description

自适应控制空间温度上冲或下冲量的恒温装置
本申请与本发明人于1985年6月17日提出的序号745,462,题为“控制上冲和下冲的自适应钟控恒温装置”的申请有关,该申请与本申请属同一发明人并转让给本申请的受让人。
大量生产的钟控恒温器通常安装在各种不同类型的加热及制冷用途中。同一种恒温器也可用来控制强制空气加热及制冷系统,所有电系统,通常的电控强制循环制冷或加热(hydronic)系统和超大型的电控强制循环制冷或加热系统中。在这一领域中也使用多级加热泵,即采用多级加热及制冷,有时还与辅助加热相结合。每一种这类设备有着全然不同的升温或降温特性,这是为了节能的目的通过钟控恒温器实现的。
人们一直企图对某一特定类型的供热站的恒温器循环速率进行调整,而当恒温器按其内部事先安排的程序要求突然升温或降温时,这种供热通常不会提供好而舒适的控制。这些在恒温器设定点上的巨大变化,在单级和多级型环境中会引起明显的上冲问题。上述相关专利申请尤其适合于解决单级装备中的这一问题。
一般来说,早晨明显的升温起动一般是由钟控恒温器提供的。为了节能,空间温度通常在夜晚被控制在较低的温度上,为了使空间温度从省能的较低的水平变为所需较高而舒适的水平,就要升温。这就使供热站锁定在典型的“开足”状态,空间温度按照某一速率上升,此速率是供热站一些特定参数及使用环境的函数。与钟控恒温器所要求的设定点温度相比,这一处理会引起空间温度明显的上冲。通常,在一两个小时内这一上冲会自我校正,不过这是设定点突然变化引起的不希望的结果,而此突变发生于当起动被编入这类恒温器的程序中。
随着以微型计算机为基础的恒温器的出现,有可能用设备内的时钟和伴随微机的存贮器来执行各种类型的控制程序。时钟装置,微机装置,存贮装置可使微机式恒温器测量实时的性能,并将有关性能的信息存贮起来,再计算出恒温器新的运行参数。
当用微机式恒温器在夜晚降温、早晨升温时,设定点的大量改变是自动进行的,夜晚为了节能以较低温度运行(在供暖情况下),最终使温度回升到白天的舒适温度,在这两者之间进行试验和提供折衷。当发生大的升温,典型的情况是使供热站转而迫使空气温度或传感器温度大大地超过所需的设定点温度,在单站系统中,如一台强制暖风炉,电热系统,电控强制循环制冷或加热系统可利用上述相关的申请中所公开的技术,即改变恒温器的增益。在多站装备中,如多级加热泵,这种增益的改变会引起严重问题。本发明克服了此问题,使恒温器的运行改变而恒温器的增益不改变。
在本发明中,可以调节设定点温度变化斜率以补偿设定点温度的突变。就加热型装备而言,若设定点从华氏60度变为华氏70度,很明显开始时供热站将按其最大能力运行。当空气温度升高时,在传感器能反应之前,空气温度将显著地超出所需的70度。若测出此上冲,并在恒温器下一次升温时适当地调整它,则上冲可以减小。由本装置来实现的运行方式是在必要时使设定点的变化斜率改变,这样恒温装置的设定点以渐变速率增加而不是从华氏60度跳变到70度。在下一个循环变化时,可再次测出上冲量。若上冲超过预定值,通常是比所需设定点温度高华氏半度,则变化斜率可以进一步改变。这可在恒温器运行中连续发生,直到上冲保持在可以接受的水平内。利用微机,时钟,和存贮器,本申请中公开的微机式恒温器可以容易地进行调节,使得上冲或下冲受到控制。
本发明提供了自适应控制空间温度上冲或下冲量的钟控恒温器装置,这种上冲或下冲是由于上述恒温器装置中实时温度设定点的改变而引起的。它包括:带有实时时钟装置及存贮装置的微机装置;连接到上述微机装置用于输入一系列所需的控制冷热的温度设定点和所需的由恒温器控制温度的时刻的数据输入装置;用来在恒温装置处作温度监测的,带有连接装置的温度传感装置;将上述传感装置处的温度传送到上述微机装置并与上述微机相连的上述连接装置;上述恒温装置还包括输出开关装置,适用于由上述恒温装置控制加热或制冷设备;上述微机装置及上述存贮装置包括上冲/下冲校正程序装置,它可以用来调整上述恒温装置中实时的温度设定点的变化斜率;上述的上冲/下冲校正程序装置和上述存贮装置提供变化斜率;以减少所述空间温度的上冲/下冲,这种上冲/下冲是由于上述实时的温度设定点的变化引起的,上述的上冲/下冲校正程序装置和上述的存贮装置,在温度设定点变化之后产生一个新的变化斜率,以连续调整上述恒温器的变化斜率,把上述空间温度的上冲或下冲限制在可被接受水平上。
图1为时间和温度的关系,以说明本发明的概念。
图2为微机式恒温器的方块图。
图3至图6为4天中连续的时间与温度间的关系图。
图7和图8表示经改进的设定点变化斜率。
在图1中以时间和温度的关系图来阐明本发明的工作原理。按时间(11)画出的温度(10)是一个钟控恒温器的典型早晨升温的加热循环。此恒温器可以是一个如图2所示的典型装置。通常白天温度为华氏70度(12),为了在夜晚节省能量,到时间(13)降为华氏60度。时间(13)一般约为夜晚10点或11点钟。
图上示出了传感器温度(14),它在(15)处在华氏70度左右徘徊。在时间(13),传感器温度(14)如(16)所示进行漂移,直到在夜晚某个时候降到华氏60度,传感器温度然后在(17)处徘徊。在启动时间Tstart(18),系统的钟控恒温装置开始早晨升温。早晨升温使传感器温度(14)如(20)所示上升,在(21)处与白天运行所需温度70度相交。在所示例子中,所需白天温度华氏70度是在早晨6点钟发生的。在这种运行方式中,固有的上冲达到最大值(22)即Tmax,可认为是华氏73度。然后温度以徘徊状态(23)下降,直到早晨以后一段时间方达到华氏70度。
传感器温度(14)要接近的设定点温度是如图所示按斜率(26)上升的。约半小时的监测周期(19)是从点(21)开始的,这点是恢复的基点。当设定点温度按(25)变化时,传感器温度确实在点(21)达到华氏70度,但将上冲到华氏73度(22)。
现已发现如在微机控制的钟控恒温器的存贮器中将此信息存贮起来,则所得信息可以由一个恒温装置中的程序装置操作,以把上冲或下冲降到一个可接受的水平。典型的可接受水平被认为是从所选的设定点(在本例中为华氏70度)起不大于或不小于华氏半度。
已确定变化斜率可以由微机式恒温器调整到一个新的斜率,使新的变化斜率等于原来斜率加上预定的常数(图示为2.0)乘以华氏半度减去Tmax与Tsetpiont之差的值(〔0.5-(Tmax-Tsetpoint)〕2.0)当这一程序被执行后,使新的斜率更少倾斜,从而使实际传感器温度与设定点温度更加接近。最后,通过一系列步骤,传感器温度可以达到所需设定点的温度,而不超过华氏半度的限制。这可以用图3到图6来详细说明,这些图说明了在连续4天的运行中,恒温器控制系统的工作状态。在讨论工作状态之前,将详细说明图2的微机控制恒温器的设计。
钟控恒温器装置(30)示于图2。恒温器装置(30)包括一个微机(31)及其存贮器(32)和一个时钟装置(33)。与微机装置(31)一起还包括数据输入装置(34),它可以是一个键盘或者是提供各种位置的一些其它装置。恒温装置(30)还包括一个热设定点装置(35)和一个冷设定点装置(36),它们通过(37)和(38)接到数据输入装置(34)。数据输入装置(34)能设定恒温装置(30)的热和冷设定点。
恒温装置(30)通过一传感装置(40)(它可以是热敏电阻或其它类型的热敏传感装置)检测室内或空气的温度。传感装置(40)通过通道(41)将信息送到微机装置(31),还经导体(42)将一个信息号送到两个相加器。热相加点或相加器(43)与热设定点装置(35)相连接,而冷相加器(45)则经导体(46)与冷设定点(36)相连接。热设定点装置(35)和冷定点装置(36)由(47)连接起来,以使微机装置(31)调整热设定点e(35)或冷设定点(36),从而按微机装置(31)予定的斜率来确定设定点温度的变化。设定点斜率的变化可将上冲或下冲调节到最小,如图1的有关说明所述。
相加点(43)和(45)又经导体(50)连接到恒值电路(51),它在(52)与并联的积分装置(53)相加。这样构成常规的电子式恒温器的一部分。相加装置(52)连接到另一相加装置(54),然后接到常规的循环控制器(55)。循环控制器使恒温器以约每小时6次循环,这被认为是提供良好温度控制所必要的。循环控制装置(55)有一输出(56)送到开关装置(57),它可以是任何型式的输出开关,诸如继电器固态开关,用以控制适合于受恒温装置(30)控制的加热及制冷设备。
恒温装置(30)的运行与图1结合起来就很易理解。恒温装置(30)按常规首先起动一个降温循环,然后是升温循环。图1中上冲量(22)由微机(31)和存贮器(32)记录下来,经过计算,算出适当的斜率改变(参看图1)。微机(31)然后经通道(47)提供一个合适的斜率改变至热设定点装置(35)或冷设定点装置(36),这取决于所用的是加热还是制冷循环。新的设定点由恒温装置(30)执行,然后再次计算新的斜率,直到计算出上冲(22)不超过所需舒适范围的设定点温度华氏半度(供暖情况下),或下冲不低于华氏半度(制冷情况下)。
在图3到图6中示出某一典型建筑中一连4天中加热装置夜晚降温,早晨升温的运行情况,以说明变化斜率改变的效果。图3至图6的每一图上在24小时周期内均有两次降温和升温循环。图3至图6的图上还包含一个所谓的最佳启动函数。最佳启动是一个众所周知的方法,即早晨升温的启动时间开始得愈来愈早,因为建筑物外面的天气越来越冷。这一点可以用传感器测量室外温度并调整启动时间来实现,也可以直接结合在固态恒温器装置(30)中如下进行:当供热站已运行时,则对夜晚温度的变化率进行取样,并予测为了在所选时刻达到所需设定点所必须的启动供热站的时间。由于此方法是已知的,而且不是本发明中的一部分。因此,在下面的讨论中将不包括对图3至图6这部分的详细说明。
在图3中,温度(60)按时间(61)的24小时循环而画出,所需设定点温度如(62)所示,已在恒温装置(30)中事先编好程序,并于零点(即午夜)在华氏60度处启动。约在早晨6时,设定点温度升至华氏70度。这时,供热站自我锁定于最大运行状态,如果它是多级的,典型情况是所有各级均达“开足”状态,以满足温度从华氏60度升到华氏70度的需要。这种对建筑物的最大热量输入引起空气温度(63)很陡的上升,超出设定点温度约10度左右。空气温度(63)比起传感器(64)的温度或墙壁温度(65)来惰性要小。传感器温度超出设定点温度(64)要比超出壁温(65)更多。
约在早晨9点,为了白天降温节能,温度降回,此时空气温度(63),传感器温度(64),墙壁温度(65)都向较低的设定点温度(62)漂移下来。约在下午4点钟,设定点温度(62)再次上升,而所有的上冲问题又再次出现。
在本发明中,这一信息被微机(31)和存贮器(32)以及时钟装置(33)累积起来,并为新的设定点温度(62)算出变化斜率。此新的变化斜率比原来的斜率更为平缓,如图4中的(66)。设定点温度(62)的较平缓变化斜率使得空气温度(63)的上冲就不那么严重,而传感器温度,墙壁温度变得更靠近设定点温度(62)。这一信息再次被微机装置(31),存贮装置(32),时钟装置(33)所积累,进行了新的计算供第三天的运行,把此示于图5。在图5中,第三天出现的斜率(67)又比图3和图5中前两天的斜率更平缓。在这一特例中,空气温度现在已降到上冲只有几度,空气温度(63)、墙壁温度(65)与变化斜率更为接近。应当注意,在下午的升温中,设定点温度(62),空气温度(63),传感器温度(64),墙壁温度(65)都降到相互接近,而且正在接近达到最大允许上冲量不超过华氏半度的要求。
在图6中,变化斜率(70)已变得更加平缓。在这一特定情况下,应当注意,倾斜在一天中更早的时间开始,这是由于包含在恒温器中的最佳启动特性的效果,但这并非本发明的一部分。应当注意,在(70)处的斜率使空气温度(63)可以更为平缓地上升,传感器温度(64)更接近于编入系统中的设定点温度。一旦系统开始工作于所需水平上,它继续在存贮器(32)中存贮信息,并和微机装置(31)、时钟装置(33)一起运行。若设定点发生任何变化或环境发生变化时,恒温器能自我调整变化斜率,使最大上冲继续保持在华氏半度以内。
变化斜率(26)到此为止总是示为一直线。实际上,变化斜率可以由任何数量的不同的曲线构成,在图7和图8中示出两种改进曲线,在图7中变化斜率(70)呈阶梯状,在图8中变化斜率(71)为非线性形状,它可以是指数形的。
本说明书中只示出了一种有代表性的恒温装置(30),它是微机型结构的。也只示出了一种调整斜率的方式,但是本发明的范围实际上非常广泛,它包括根据上冲或下冲来逐步调整恒温器设定点温度变化的构思方案,并能用各种特殊的硬件,和采用各种类型的斜率变化公式来执行。据此,申请者希望其发明的范围仅受限于所附权利要求的范围。

Claims (19)

1、一种钟控恒温器装置(30),它用来自适应控制由于在所述恒温器装置中实时温度设定点(35,36)的变化而引起的空间温度的上冲量或下冲量,此恒温器装置包括:
带有实时时钟装置(33)以及存贮装置(32)的微机装置(31);
连接到上述微机装置的数据输入装置(34),以输入一组所需的冷热控温设定点(35,36)以及所需的由上述恒温器装置控制温度的时间;
带有连接装置(42)以监测在上述恒温装置中温度的温度传感装置(40,41);
上述连接装置(42)连到上述微机装置,以将上述传感装置的温度传送到上述微机装置;
适于由上述恒温器装置控制加热设备或制冷设备的输出开关装置(57);
其特征在于:
上述微机装置(31)和上述存贮装置(32)包括上冲/下冲校正程序装置,它用以调整上述恒温装置的实时温度设定点的变化斜率(26);
上述上冲/下冲校正程序装置及上述存贮装置提供一个变化斜率,以减少由于上述实时温度设定点的变化而引起的上述空间温度的上冲/下冲;
上述上冲/下冲校正程序装置及上述存贮装置,在每一次温度设定点改变以后,产生一个新的变化斜率Rnew,这样逐步调整上述恒温器的上述变化斜率,以限制上述空间温度的上冲/下冲量达到可接受的水平。
2、如权利要求1所述的钟控恒温器装置(30),其特征在于上述实时时钟装置(33)在上述实时温度设定点达到预定时间之后,测量一定的时间间隔(19),以使上述上冲/下冲校正程序装置及上述存贮装置确定新的变化斜率,供上述恒温装置用于下一次上述温度设定点的变化。
3、如权利要求2所述的钟控恒温器装置(30),其特征在于所述的一定的时间间隔(19)小于2小时。
4、如权利要求2所述的钟控恒温器装置(30),其特征在于任何时候当上述冲量超过华氏半度时,上述空间温度(64)的上述冲量受限于下一次变化斜率的变化。
5、如权利要求4所述的钟控恒温器装置(30),其特征在于上述一定时间间隔(19)小于2小时。
6、如权利要求5所述的钟控恒温器装置(30),其特征在于上述新的斜率Rnew等于原来的斜率Rold加上预定常数2.0乘以华氏半度减去最大温度与设定点温度(62)之差,即
Rnew=Rold+2.0〔0.5-(Tmax-Tmin)〕。
7、如权利要求1所述的钟控恒温器装置(30),其特征在于上述变化斜率是非线性的(70或71)。
8、如权利要求1所述的钟控恒温器装置(30),其特征在于上述变化斜率是指数性的(71)。
9、如权利要求1所述的钟控恒温器装置(30),其特征在于上述变化斜率是具有平均变化斜率的阶梯式曲线(70)。
CN86103962.9A 1985-06-19 1986-06-09 自适应控制空间温度上冲或下冲量的恒温装置 Expired CN1004522B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US746474 1985-06-19
US06/746,474 US4674027A (en) 1985-06-19 1985-06-19 Thermostat means adaptively controlling the amount of overshoot or undershoot of space temperature

Publications (2)

Publication Number Publication Date
CN86103962A CN86103962A (zh) 1987-02-04
CN1004522B true CN1004522B (zh) 1989-06-14

Family

ID=25001001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN86103962.9A Expired CN1004522B (zh) 1985-06-19 1986-06-09 自适应控制空间温度上冲或下冲量的恒温装置

Country Status (7)

Country Link
US (1) US4674027A (zh)
EP (1) EP0208442B1 (zh)
JP (1) JPS61294504A (zh)
KR (1) KR940002642B1 (zh)
CN (1) CN1004522B (zh)
CA (1) CA1247213A (zh)
DE (1) DE3667556D1 (zh)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3529699A1 (de) * 1985-08-20 1987-03-05 Wolf & Co Kg Kurt Anordnung zum braten mit einem bratgefaess
US4740888A (en) * 1986-11-25 1988-04-26 Food Automation-Service Techniques, Inc. Control system for cooking apparatus
US4805122A (en) * 1986-12-31 1989-02-14 Sensormedics Corporation Temperature control system for cutaneous gas monitor
KR900008978B1 (ko) * 1987-01-22 1990-12-15 마쯔시다덴기산교 가부시기가이샤 가열조리장치
US4702305A (en) * 1987-03-30 1987-10-27 Honeywell Inc. Temperature control system for control of a multiplant environmental unit
US4843576A (en) * 1987-04-15 1989-06-27 Westinghouse Electric Corp. Temperature control arrangement for an extruding process
US4702413A (en) * 1987-05-07 1987-10-27 Honeywell Inc. Temperature control system using a single ramp rate curve for control of a multiplant environmental unit
US4817705A (en) * 1987-07-07 1989-04-04 Honeywell Inc. Thermostatic control without temperature droop using duty cycle control
US4753388A (en) * 1987-07-24 1988-06-28 Robertshaw Controls Company Duty-cycle controlling thermostat construction, system utilizing the same and method of making the same
DE3804258C1 (zh) * 1988-02-11 1989-09-14 Friedhelm 5920 Bad Berleburg De Meyer
US4901918A (en) * 1989-02-27 1990-02-20 Gas Research Institute Adaptive anticipator mechanism for limiting room temperature swings
US5270952A (en) * 1991-09-30 1993-12-14 Honeywell Inc. Self-adjusting recovery algorithm for a microprocessor-controlled setback thermostat
GB2265027A (en) * 1992-03-12 1993-09-15 Worcester Heat Systems Ltd Controlling operation of a gas boiler
US5244148A (en) * 1992-07-30 1993-09-14 Fluidmaster, Inc. Adaptable heater control
US5261481A (en) * 1992-11-13 1993-11-16 American Standard Inc. Method of determining setback for HVAC system
US5309730A (en) * 1993-05-28 1994-05-10 Honeywell Inc. Thermostat for a gas engine heat pump and method for providing for engine idle prior to full speed or shutdown
US5314004A (en) * 1993-05-28 1994-05-24 Honeywell Inc. Thermostat for a variable capacity HVAC and method for providing a ramping set point on a setback thermostat
JP3203126B2 (ja) * 1994-04-19 2001-08-27 三洋電機株式会社 空気調和機の制御装置
US5454511A (en) * 1994-09-22 1995-10-03 Carrier Corporation Controlled setpoint recovery
US5720176A (en) * 1994-10-19 1998-02-24 Whirlpool Corporation Control system for an air conditioner
US5607014A (en) * 1994-10-25 1997-03-04 Carrier Corporation Multi-staging of supplemental heat in climate control apparatus
US5555927A (en) * 1995-06-07 1996-09-17 Honeywell Inc. Thermostat system having an optimized temperature recovery ramp rate
DE19543905A1 (de) * 1995-11-25 1997-05-28 Basf Ag Verfahren und Vorrichtung zum Wechsel des Produktionsprogramms einer für die Herstellung mehrerer Zielprodukte auf chemischem Wege eingerichteten, kontinuierlich betriebenen Anlage
DE19804565C2 (de) 1998-02-05 2000-01-27 Christoph Kummerer Selbstlernendes Regelverfahren
DE10057359C2 (de) * 2000-11-18 2002-10-24 Danfoss As Verfahren zum Steuern einer Fußbodenheizung
US7623028B2 (en) 2004-05-27 2009-11-24 Lawrence Kates System and method for high-sensitivity sensor
US8033479B2 (en) 2004-10-06 2011-10-11 Lawrence Kates Electronically-controlled register vent for zone heating and cooling
US7894943B2 (en) 2005-06-30 2011-02-22 Sloup Charles J Real-time global optimization of building setpoints and sequence of operation
RU2442787C2 (ru) * 2006-09-04 2012-02-20 Мейдзи Сейка Фарма Ко., Лтд. Способ получения оптически активных аминофосфинилбутановых кислот
US7784704B2 (en) 2007-02-09 2010-08-31 Harter Robert J Self-programmable thermostat
US7770806B2 (en) * 2007-06-19 2010-08-10 Nordyne Inc. Temperature control in variable-capacity HVAC system
US7908117B2 (en) * 2007-08-03 2011-03-15 Ecofactor, Inc. System and method for using a network of thermostats as tool to verify peak demand reduction
US8019567B2 (en) 2007-09-17 2011-09-13 Ecofactor, Inc. System and method for evaluating changes in the efficiency of an HVAC system
US7848900B2 (en) * 2008-09-16 2010-12-07 Ecofactor, Inc. System and method for calculating the thermal mass of a building
US8160752B2 (en) 2008-09-30 2012-04-17 Zome Networks, Inc. Managing energy usage
US8010237B2 (en) 2008-07-07 2011-08-30 Ecofactor, Inc. System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency
JP4569678B2 (ja) * 2008-07-11 2010-10-27 ダイキン工業株式会社 空気調和装置の起動制御装置
US8180492B2 (en) * 2008-07-14 2012-05-15 Ecofactor, Inc. System and method for using a networked electronic device as an occupancy sensor for an energy management system
US20100106575A1 (en) * 2008-10-28 2010-04-29 Earth Aid Enterprises Llc Methods and systems for determining the environmental impact of a consumer's actual resource consumption
US8754775B2 (en) 2009-03-20 2014-06-17 Nest Labs, Inc. Use of optical reflectance proximity detector for nuisance mitigation in smoke alarms
US8498753B2 (en) * 2009-05-08 2013-07-30 Ecofactor, Inc. System, method and apparatus for just-in-time conditioning using a thermostat
US8740100B2 (en) 2009-05-11 2014-06-03 Ecofactor, Inc. System, method and apparatus for dynamically variable compressor delay in thermostat to reduce energy consumption
US8596550B2 (en) * 2009-05-12 2013-12-03 Ecofactor, Inc. System, method and apparatus for identifying manual inputs to and adaptive programming of a thermostat
DE102009038450A1 (de) * 2009-08-21 2011-03-03 Robert Bosch Gmbh Verfahren zum Regeln einer Heizungsanlage
US9471045B2 (en) 2009-09-11 2016-10-18 NetESCO LLC Controlling building systems
US10584890B2 (en) 2010-05-26 2020-03-10 Ecofactor, Inc. System and method for using a mobile electronic device to optimize an energy management system
US8556188B2 (en) 2010-05-26 2013-10-15 Ecofactor, Inc. System and method for using a mobile electronic device to optimize an energy management system
US8090477B1 (en) 2010-08-20 2012-01-03 Ecofactor, Inc. System and method for optimizing use of plug-in air conditioners and portable heaters
US8950686B2 (en) 2010-11-19 2015-02-10 Google Inc. Control unit with automatic setback capability
US9104211B2 (en) 2010-11-19 2015-08-11 Google Inc. Temperature controller with model-based time to target calculation and display
US8918219B2 (en) 2010-11-19 2014-12-23 Google Inc. User friendly interface for control unit
US8606374B2 (en) 2010-09-14 2013-12-10 Nest Labs, Inc. Thermodynamic modeling for enclosures
US8727611B2 (en) 2010-11-19 2014-05-20 Nest Labs, Inc. System and method for integrating sensors in thermostats
US8510255B2 (en) 2010-09-14 2013-08-13 Nest Labs, Inc. Occupancy pattern detection, estimation and prediction
US9459018B2 (en) 2010-11-19 2016-10-04 Google Inc. Systems and methods for energy-efficient control of an energy-consuming system
US9448567B2 (en) 2010-11-19 2016-09-20 Google Inc. Power management in single circuit HVAC systems and in multiple circuit HVAC systems
US9075419B2 (en) 2010-11-19 2015-07-07 Google Inc. Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements
WO2013058820A1 (en) 2011-10-21 2013-04-25 Nest Labs, Inc. User-friendly, network connected learning thermostat and related systems and methods
US9714772B2 (en) 2010-11-19 2017-07-25 Google Inc. HVAC controller configurations that compensate for heating caused by direct sunlight
US9268344B2 (en) 2010-11-19 2016-02-23 Google Inc. Installation of thermostat powered by rechargeable battery
US10346275B2 (en) 2010-11-19 2019-07-09 Google Llc Attributing causation for energy usage and setpoint changes with a network-connected thermostat
US8195313B1 (en) 2010-11-19 2012-06-05 Nest Labs, Inc. Thermostat user interface
US9046898B2 (en) 2011-02-24 2015-06-02 Google Inc. Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat
US8850348B2 (en) 2010-12-31 2014-09-30 Google Inc. Dynamic device-associated feedback indicative of responsible device usage
US11334034B2 (en) 2010-11-19 2022-05-17 Google Llc Energy efficiency promoting schedule learning algorithms for intelligent thermostat
US9256230B2 (en) 2010-11-19 2016-02-09 Google Inc. HVAC schedule establishment in an intelligent, network-connected thermostat
US9851728B2 (en) 2010-12-31 2017-12-26 Google Inc. Inhibiting deleterious control coupling in an enclosure having multiple HVAC regions
US9342082B2 (en) 2010-12-31 2016-05-17 Google Inc. Methods for encouraging energy-efficient behaviors based on a network connected thermostat-centric energy efficiency platform
US9417637B2 (en) 2010-12-31 2016-08-16 Google Inc. Background schedule simulations in an intelligent, network-connected thermostat
CN102183978A (zh) * 2011-01-21 2011-09-14 丹纳赫西特传感工业控制(天津)有限公司 一种适用于高低温实验箱的自学习功能平衡式和非平衡式冷却控制方法
WO2012112494A1 (en) * 2011-02-14 2012-08-23 Carrier Corporation Method and apparatus for establishing a set back temperature for an environmental control system
US8944338B2 (en) 2011-02-24 2015-02-03 Google Inc. Thermostat with self-configuring connections to facilitate do-it-yourself installation
US8511577B2 (en) 2011-02-24 2013-08-20 Nest Labs, Inc. Thermostat with power stealing delay interval at transitions between power stealing states
US9115908B2 (en) 2011-07-27 2015-08-25 Honeywell International Inc. Systems and methods for managing a programmable thermostat
EP3486743B1 (en) 2011-10-21 2022-05-25 Google LLC Energy efficiency promoting schedule learning algorithms for intelligent thermostat
US8622314B2 (en) 2011-10-21 2014-01-07 Nest Labs, Inc. Smart-home device that self-qualifies for away-state functionality
US9091453B2 (en) 2012-03-29 2015-07-28 Google Inc. Enclosure cooling using early compressor turn-off with extended fan operation
WO2013149210A1 (en) 2012-03-29 2013-10-03 Nest Labs, Inc. Processing and reporting usage information for an hvac system controlled by a network-connected thermostat
JP6025833B2 (ja) * 2012-05-14 2016-11-16 三菱電機株式会社 空調装置および空気調和システム
US10048706B2 (en) 2012-06-14 2018-08-14 Ecofactor, Inc. System and method for optimizing use of individual HVAC units in multi-unit chiller-based systems
US8620841B1 (en) 2012-08-31 2013-12-31 Nest Labs, Inc. Dynamic distributed-sensor thermostat network for forecasting external events
US8994540B2 (en) 2012-09-21 2015-03-31 Google Inc. Cover plate for a hazard detector having improved air flow and other characteristics
US8630741B1 (en) 2012-09-30 2014-01-14 Nest Labs, Inc. Automated presence detection and presence-related control within an intelligent controller
US8600561B1 (en) 2012-09-30 2013-12-03 Nest Labs, Inc. Radiant heating controls and methods for an environmental control system
EP2904462B1 (en) * 2012-10-01 2019-05-08 Google LLC Radiant heating controls and methods for an environmental control system
US9810442B2 (en) 2013-03-15 2017-11-07 Google Inc. Controlling an HVAC system in association with a demand-response event with an intelligent network-connected thermostat
US9807099B2 (en) 2013-03-15 2017-10-31 Google Inc. Utility portals for managing demand-response events
US9595070B2 (en) 2013-03-15 2017-03-14 Google Inc. Systems, apparatus and methods for managing demand-response programs and events
US10775814B2 (en) 2013-04-17 2020-09-15 Google Llc Selective carrying out of scheduled control operations by an intelligent controller
US9298197B2 (en) 2013-04-19 2016-03-29 Google Inc. Automated adjustment of an HVAC schedule for resource conservation
US9910449B2 (en) 2013-04-19 2018-03-06 Google Llc Generating and implementing thermodynamic models of a structure
US9696735B2 (en) 2013-04-26 2017-07-04 Google Inc. Context adaptive cool-to-dry feature for HVAC controller
US9360229B2 (en) 2013-04-26 2016-06-07 Google Inc. Facilitating ambient temperature measurement accuracy in an HVAC controller having internal heat-generating components
EP2866117B1 (en) * 2013-10-25 2017-03-15 Fourdeg Oy Distributed adaptive and predictive heating control system and method
US9857238B2 (en) 2014-04-18 2018-01-02 Google Inc. Thermodynamic model generation and implementation using observed HVAC and/or enclosure characteristics
US9702582B2 (en) 2015-10-12 2017-07-11 Ikorongo Technology, LLC Connected thermostat for controlling a climate system based on a desired usage profile in comparison to other connected thermostats controlling other climate systems
US10101050B2 (en) 2015-12-09 2018-10-16 Google Llc Dispatch engine for optimizing demand-response thermostat events
US10247436B2 (en) * 2016-09-07 2019-04-02 Solarcity Corporation Systems and methods for controlling operations of a heating and cooling system
US11185207B2 (en) * 2018-07-24 2021-11-30 Qualcomm Incorporated Managing cleaning robot behavior
US11726507B2 (en) 2020-08-28 2023-08-15 Google Llc Compensation for internal power dissipation in ambient room temperature estimation
US11761823B2 (en) * 2020-08-28 2023-09-19 Google Llc Temperature sensor isolation in smart-home devices
US11885838B2 (en) 2020-08-28 2024-01-30 Google Llc Measuring dissipated electrical power on a power rail
MX2022001795A (es) * 2021-02-15 2022-08-16 Illinois Tool Works Metodo y aparato para caracterizacion de temperatura en soldadura.
US11519625B2 (en) 2021-04-13 2022-12-06 Emerson Electric Co. Managing temperature overshoot
US11808467B2 (en) 2022-01-19 2023-11-07 Google Llc Customized instantiation of provider-defined energy saving setpoint adjustments

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1463988A (en) * 1974-02-12 1977-02-09 Satchwell Controls Ltd Systems for controlling the temperature within an enclosure
GB1576615A (en) * 1976-04-14 1980-10-08 Schweizerische Viscose Closed loop control systems and control devices for such systems
JPS53104084A (en) * 1977-02-23 1978-09-09 Meidensha Electric Mfg Co Ltd Differential minor type governor
US4172555A (en) * 1978-05-22 1979-10-30 Levine Michael R Adaptive electronic thermostat
US4373664A (en) * 1980-01-30 1983-02-15 Robertshaw Controls Company Wall thermostat and the like
JPS56149601A (en) * 1980-04-22 1981-11-19 Toshiba Corp Temperature controlling method
US4344128A (en) * 1980-05-19 1982-08-10 Frye Robert C Automatic process control device
US4337388A (en) * 1980-05-29 1982-06-29 July Mark E Rapid-response water heating and delivery system
DE3024983C2 (de) * 1980-07-02 1989-08-10 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Verfahren und Schaltungsanordnung zum Bestimmen einer Vorheiz-Energiemenge
US4386649A (en) * 1980-07-15 1983-06-07 Nuclear Systems, Inc. Programmable thermostatic control device
US4366534A (en) * 1980-07-30 1982-12-28 Honeywell, Inc. Electronic condition control system using digital anticipation
US4390959A (en) * 1980-10-20 1983-06-28 Johnson Controls, Inc. Optimal start programmer
US4356962A (en) * 1980-11-14 1982-11-02 Levine Michael R Thermostat with adaptive operating cycle
US4332352A (en) * 1981-01-30 1982-06-01 Honeywell Inc. Multistage thermostat using integral initiation change means
US4387763A (en) * 1981-09-14 1983-06-14 Honeywell Inc. Multistage thermostat using multirate integral action and exponential setpoint change
US4522336A (en) * 1982-12-09 1985-06-11 Honeywell Inc. Adaptive optimum start/stop control system
US4475685A (en) * 1983-03-07 1984-10-09 At&T Bell Laboratories Control system for efficient intermittent operation of building HVAC equipment
DE3407591A1 (de) * 1983-03-18 1984-09-20 Schrack Elektronik-Ag, Wien Heizkoerperventil mit einer regeleinrichtung zur regelung der raumtemperatur
US4520301A (en) * 1983-06-16 1985-05-28 Kabushiki Kaisha Daini Seikosha Controlling apparatus for positioning
JPS60107103A (ja) * 1983-11-16 1985-06-12 Hitachi Ltd 最適起動停止制御方法

Also Published As

Publication number Publication date
KR870000630A (ko) 1987-02-19
US4674027A (en) 1987-06-16
JPS61294504A (ja) 1986-12-25
EP0208442A1 (en) 1987-01-14
KR940002642B1 (ko) 1994-03-26
CA1247213A (en) 1988-12-20
DE3667556D1 (de) 1990-01-18
EP0208442B1 (en) 1989-12-13
CN86103962A (zh) 1987-02-04

Similar Documents

Publication Publication Date Title
CN1004522B (zh) 自适应控制空间温度上冲或下冲量的恒温装置
US4408711A (en) Thermostat with adaptive operating cycle
US4356962A (en) Thermostat with adaptive operating cycle
US4702413A (en) Temperature control system using a single ramp rate curve for control of a multiplant environmental unit
US4172555A (en) Adaptive electronic thermostat
US3555251A (en) Optimizing system for a plurality of temperature conditioning apparatuses
US4615380A (en) Adaptive clock thermostat means for controlling over and undershoot
US8091375B2 (en) Humidity control for air conditioning system
US4735054A (en) Method for minimizing off cycle losses of a refrigeration system during a cooling mode of operation and an apparatus using the method
CA1288145C (en) Temperature control system for control of a multiplant environment unit
US6729390B1 (en) Control for heat pump with auxiliary heat source
CN1005297B (zh) 具有自动变换及最佳起动的时钟操作恒温器
EP2559953A1 (en) Controller for water heater system, program for controlling water heater system, and method for operating water heater system
US4368549A (en) Swimming pool heater temperature control system
EP0520827A2 (en) Error based comfort zone controller
US4199023A (en) Heat demand regulator
US4671457A (en) Method and apparatus for controlling room temperature
CA1141010A (en) Microcomputer control for supplemental heating in a heat pump
US4911358A (en) Temperature recovery system for an electronic programmable thermostat
EP0074851A2 (en) Multistage thermostat
US5718372A (en) Temperature controller
US4399862A (en) Method and apparatus for proven demand air conditioning control
US4410132A (en) Thermostat with dead zone seeking servo action
US4265298A (en) Microcomputer control for supplemental heating with night set-back
US4393527A (en) Method of controlling non-solar swimming pool heater

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee