CN100438014C - 集成电路及其制造方法 - Google Patents

集成电路及其制造方法 Download PDF

Info

Publication number
CN100438014C
CN100438014C CNB038193833A CN03819383A CN100438014C CN 100438014 C CN100438014 C CN 100438014C CN B038193833 A CNB038193833 A CN B038193833A CN 03819383 A CN03819383 A CN 03819383A CN 100438014 C CN100438014 C CN 100438014C
Authority
CN
China
Prior art keywords
random
unit
parametric variations
random parametric
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB038193833A
Other languages
English (en)
Other versions
CN1675768A (zh
Inventor
A·C·L·希斯塞斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1675768A publication Critical patent/CN1675768A/zh
Application granted granted Critical
Publication of CN100438014C publication Critical patent/CN100438014C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/57Protection from inspection, reverse engineering or tampering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54433Marks applied to semiconductor devices or parts containing identification or tracking information
    • H01L2223/5444Marks applied to semiconductor devices or parts containing identification or tracking information for electrical read out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

根据本发明的集成电路(1)包括一组单元(10),每一单元(11、13、15、19)包括具有器件参数的电子器件(20),该器件参数的参数值为随机参数变化的函数。该组单元(10)包括具有第一随机参数变化的第一子组(12)的识别单元(13);和第二子组(14)的单元(11、15、19),其能够通过测量识别单元(13)的参数值之间的随机差来产生识别代码。根据本发明,第二子组(14)的单元(11、15、19)具有小于第一随机参数变化的第二随机参数变化,由此使识别代码的产生相对较容易。

Description

集成电路及其制造方法
技术领域
本发明涉及一种包括一组单元的集成电路(IC),每一单元包括具有器件参数的电子器件,参数值是随机参数变化的函数,该组单元包括第一子组的识别(ID)单元和用于通过测量ID单元的参数值来产生ID代码的第二子组的单元。
本发明还涉及用于制造这种IC的方法,该IC包括衬底和一组单元,每一单元包括具有器件参数的电子器件,参数值是随机参数变化的函数,该衬底包括第一部分和第二部分,该方法包括产生随机参数变化的步骤。
背景技术
US-6,161,213公开了一种在开篇段落里描述的IC的实例。该IC包括相同设计的ID单元阵列,其每一个为具有两个晶体管的晶体管电路。该晶体管电路产生一对电流,该电流差受到影响形成ID单元的晶体管工作特性的随机参数变化的影响。这些随机参数变化用于产生ID代码。
该IC还包括用于顺序访问阵列中每一ID单元以测量该差异的测量电路。将这些测量结果编码为单个输出。该输出包括ID代码,其对于特定的测量组合是唯一的。假设ID单元阵列足够大,则任意一个IC中的阵列会产生与大量其它IC中的任何一个中的阵列相同的测量组合的几率很低。因此,ID代码可以用作每一芯片的ID号码。
测量电路包括负载电路,其将由ID单元的晶体管产生的两个电流转化成两个电压。提供这两个电压之间的差作为单元输出。对于两个电流到两个电压的转化,使用两个具有与ID单元中的晶体管相似的晶体管的负载单元作为负载电阻器。负载电阻器中以及连接ID单元和负载电路的电路中的失配产生恒定电压偏移量,该偏移量添加到单元输出,导致有效的单元输出。
当恒定电压偏移量超出单元输出时,有效单元输出具有由恒定电压偏移量确定的符号以及由恒定电压偏移量和单元输出确定的幅度。对于为单元输出进行编码,不足以监测有效单元输出的符号。因此,在公知的IC中采取下述测量来产生ID代码:(1)负载单元包括数目相同的串联和并联晶体管的方形阵列;(2)测量电路包括用于比较最新测量的ID单元的有效单元输出和先前测量的ID单元的有效单元输出的自动零位调整比较器;当先前的有效单元输出大于后者时,则最新测量的ID单元被赋值为输出“1”,否则为“0”;和(3)测量电路还包括误差检测单元。
公知IC的缺点是较难从参数值的测量中产生ID代码,该参数值是ID单元中随机参数变化的函数。
发明内容
本发明的目的是提供一种在开篇段落里描述的IC,它具有相对简单的设计,该设计允许相对容易地从作为ID单元中随机参数变化的函数的参数值的测量中产生ID代码。
由独立权利要求限定本发明。从属权利要求限定有利的实施例。
根据本发明,该目的实现在于,ID单元具有第一随机参数变化,且第二子组的单元具有第二随机参数变化,第一随机参数变化大于第二随机参数变化。
因为制造IC的初期已经永久趋向于尽可能地减小随机参数变化。公知的IC利用了剩余的随机参数变化来产生ID代码。然而,ID单元中的随机参数变化与特别是包括第二子组的剩余IC中的那些基本相同,其用于通过测量ID单元的参数值来产生ID代码。
在公知IC中,第二子组受到相同的随机参数变化的影响,其结果是,其产生在第一子组的参数值中的恒定偏移量,其相当于或甚至大于ID单元的参数值中的随机差。因此,在公知IC中,从作为ID单元中的随机参数变化的函数的参数值的测量中产生ID代码相对较难,且需要相对较复杂的测量电路。
在根据本发明的器件中,通过相对于第二子组中的随机参数变化有意地增加第一子组中的随机参数变化,由此违反尽可能减小随机参数变化的趋势,来克服这一缺点。由于第一子组中的随机参数变化大于第二子组中的,因此有效单元输出中的恒定偏移量相比于参数值中的随机差很小,且相对容易地从ID单元中的随机参数变化的测量中产生ID代码。
根据本发明的IC具有另一优点:通常,由于第一子组和/或第二子组中的噪声和漂移,由第二子组所测量的ID单元的参数值会随着时间随机改变,导致ID代码不可预测的改变。根据本发明,由于参数值的较宽分布,减小了这种任意改变的机会,这是另一优点。
根据本发明的ID单元可以包括常规金属氧化物半导体场效应晶体管(MOSFET)作为电子器件。可选择地,或除MOSFET之外,该电子器件还可以包括任何其它具有带有参数值的器件参数的电子器件,该参数值为随机参数变化的函数。例如,其可以包括双极型晶体管、诸如肖特基二极管的二极管、电容器、欧姆电阻器或感应器。
与现有技术相似,根据本发明的器件参数可以包括电压,诸如MOSFET的阈值电压。可选择地,或除现有技术之外,该器件参数还可以包括跨越欧姆电阻器的电压降、电流,诸如由晶体管提供的电流、存储在电容器上的电荷或包括感应器的高频电路的谐振频率。
随机参数变化可以是由于例如在衬底中沉积掺杂原子而引起的,其可以改变MOSFET的阈值电压。可选择地,掺杂原子可以用于控制在包括掺杂原子的衬底顶部上生长的氧化物的厚度,如在EP-A1-1,093,667中所描述的。该氧化物然后可以由另一导电层覆盖,以形成具有受随机参数变化影响的电容值的电容器。掺杂原子的沉积受随机参数变化的影响,因为掺杂原子是随机分布的,导致每单位面积掺杂原子数量上的统计分布,如在US-6,161,213中所描述的。下面将描述根据本发明制造IC的方法。
可选择地,随机参数变化可以是由于在电感器附近随机沉积的磁性粒子而引起的,该电感器的电感受这些随机参数变化的影响。通过确定包括该电感的电路的谐振频率来测量感应器中的差。通常,由于例如制造设备中的污染,导致少量的磁性粒子可能存在于第一子组的ID单元和第二子组的单元中,这通常被尽可能地减小。通过在感应器附近的区域上随机分布小的磁性粒予来故意地增加ID单元中的粒子数量。例如通过光刻掩模来限定该区域。
在另一实施例中,随机参数变化可以包括在多晶硅上沉积的金属原子的分布,诸如钛或钨,以形成硅化物,其是具有电阻的欧姆电阻器。该欧姆电阻器可以是晶体管的一部分,但不限制于此,例如在源极或漏极区中。电阻值是在沉积形成硅化物的金属原子时所产生的随机参数变化的函数。通常,每单位面积上所沉积的原子数目中存在有小的变化。通过例如在金属原子沉积之前,在第一子组中的部分多晶硅上随机分布粒子,来增加这些变化。
在另一实施例中,随机参数变化可以包括具有电绝缘或导电的粒子的随机分布。这些可能源于在制造设备中存在的污染的粒子通常会被尽可能地减小,但是在根据本发明的IC中,在第一子组中故意引入它们,以便例如在电子器件与接地电极之间随机地产生短路。可选择地,或除此之外,可以通过绝缘粒子来引入一些ID单元中的开路。
如果第一随机参数变化在ID单元的参数值之间产生随机差,该随机差各自具有绝对值,该绝对值具有平均值,而第二随机参数变化在ID单元的参数值中产生偏移量,该偏移量具有绝对值,该平均值大于该偏移量的绝对值,则是特别有利的。
通常,由第二子组所测量的ID单元的参数值取决于在ID单元参数值之间产生随机差的第一随机参数变化,并取决于在ID单元的测量参数值中产生偏移量的第二随机参数变化。当随机差的绝对值的平均值大于偏移量的绝对值时,相对较容易产生ID代码。在公知的IC中,则能够省略自动零位调整比较器,并从有效单元输出的符号中产生ID代码。当该平均值不大于偏移量的绝对值时,也可以省略自动零位调整比较器。然而,仅少量的ID单元具有不同于恒定偏移量符号的符号,且需要较大的第一子组来产生ID代码。
假设该平均值大于偏移量的绝对值,如果识别单元各自仅包含一个电子器件,则更加有利。当该平均值大于偏移量的绝对值,能够通过将每一ID单元的单个电子器件的参数值与标准参数值相比较,来产生ID代码。例如,可以通过第二子组中的一个器件来产生该标准参数值。基于此,与其中每一ID单元有一个以上的器件的情形相比较,例如在公知IC中每一ID单元具有两个器件,能够节省空间和成本。
如果随机参数变化包括掺杂原子在电子器件的至少一部分中的随机分布,则是有利的。如果随机参数变化至少部分是由于掺杂原子的随机分布而引起的,则相对于第二子组中的随机参数变化,相对较容易地在第一子组中具有增加的随机参数变化。在IC制造期间,例如,通过随机分布一些至少部分地阻止掺杂原子被注入到ID单元器件中的物体,来获得第一子组中的随机参数变化相对于第二子组中的随机参数变化的增加。
在一个实施例中,具有由于掺杂原子的随机分布而引起随机参数变化的电子器件包括晶体管。该晶体管具有电子器件参数,诸如强烈地取决于掺杂原子的随机分布的阈值电压。因此,利用这些器件相对较容易产生ID代码。
如果晶体管是MOSFET,则是有利的。可以在低电压和低功率下操作这种类型的晶体管。
在一个实施例中,MOSFET包括源极、漏极、栅极,和位于源、漏极与栅极之间的沟道,该沟道通过氧化物与栅极电绝缘,部分电子器件具有包括该沟道的掺杂原子的随机分布。MOSFET的阈值电压对于沟道中掺杂原子的数量和位置特别敏感。
如果电子器件包括具有作为随机参数变化的函数的电阻值的欧姆电阻器,则是有利的。能容易测量欧姆电阻器的电阻。有几种方法增加了改变电阻的第一随机参数变化,如下所述。
在一个实施例中,欧姆电阻器包括硅化物材料且具有形状,随机参数变化包括形状的随机分布。通常,通过首先沉积多晶硅,随后由诸如钛或钨的金属原子薄层来覆盖,从而形成硅化物。然后加热多晶硅和金属层以形成硅化物。这样形成的硅化物的几何形状取决于多晶硅和金属层的形状。
每单位面积所沉积的金属原子的数量受统计变化的影响,其通常被保持得尽可能小。通过在第一子组的区域中随机分布物体来增加第一子组中的统计变化,该物体阻止金属原子形成硅化物。这样,硅化物的形状以及因此通过该硅化物形成的欧姆电阻器的电阻可以被随机改变。
在另一实施例中,随机参数变化包括绝缘物体在欧姆电阻器中的随机分布。通常,将这些物体的数量保持得尽可能地小。根据本发明,有意引入它们以增加第一子组中的随机参数变化,导致电阻中的较大变化。
在该实施例的变形中,第一子组包括各自具有欧姆电阻器的随机数量的ID单元,欧姆电阻器包括第一部分和通过绝缘物体与第一部分电绝缘的第二部分。该物体然后在一些ID单元中产生容易被检测到的随机开路。
实现根据本发明的IC制造方法在于,在至少部分的步骤执行期间,采取了相对于第二部分中的随机参数变化来增加第一部分的至少一部分中的随机参数变化的措施。
如果在采取增加随机参数变化的措施的至少一部分步骤期间,第二部分由第一掩模覆盖,其至少部分地阻止第二部分中的随机参数变化的增加,则是有利的。通过覆盖衬底的第二部分,同时,例如在第一部分中注入掺杂原子并采取用于增加随机参数变化的措施,能够选择地在第一部分中引入随机参数变化,其大于第二部分中的随机参数变化。
如果产生随机参数变化的步骤包括在至少一部分的第二部分中产生随机参数变化的子步骤,而第一部分由第二掩模所覆盖,其在该子步骤期间至少部分地阻止在第一部分中引入随机参数变化,则是有利的。这样,第一部分中的随机参数变化与第二部分中的随机参数变化的相对差被最大化,因为第一部分中的随机参数变化尽可能地大,而第二部分中的随机参数变化尽可能地小。后者具有IC会可靠工作的另一优点。
如果产生随机参数变化的步骤包括注入掺杂原子,则是有利的。如果随机参数变化至少部分地是由于掺杂原子的随机分布,则相对较容易增加随机参数变化。
如果用于增加随机参数变化的措施包括在第一部分的至少一部分上随机分布的物体,该物体至少部分阻止掺杂原子被注入,则是有利的。这样,能够使用通常用于掺杂原子注入的设备而不需要任何另外的调整。
如果由于胶乳球有明确的形状和尺寸而将胶乳球用作该物体,则是有利的。它们容易被随机分布且容易通过清洗剂除去。可选择地,可以分布一些光致抗蚀剂,其如此之小以至于光致抗蚀剂无法形成覆盖整个表面的单层,而是留下一些表面的部分未被覆盖。
如果至少一部分掺杂原子在它们被注入时携带电荷,且将通过施加随机偏转的信号来随机偏转带电的掺杂原子的偏转单元用作用于增加随机参数变化的措施,则是有利的。通过施加电场和/或磁场来偏转带电的掺杂原子。通过分别调节电压和电流来控制这些场。可以相继地将电压源和电流源连接于随机信号发生器以增加随机参数变化。
附图说明
参考附图将进一步阐明和描述根据本发明的IC及其制造方法的这些和其它方案,其中:
图1是IC的框图;
图2A和2B是图1中示出的IC的ID单元的两个实施例的示意图;
图3是图2A和2B中示出的MOSFET的横截面图;
图4是图1中示出的IC的负载单元的实施例的示意图;
图5A和5B是在制造方法的一个实施例中两个阶段的衬底和掩模的顶视图;
图6A和6B分别是根据图5A和5B中的VIA-VIA和VIB-VIB的衬底的横截面图;
图7是在该方法的实施例中使用的离子注入设备的示意图;和
图8是IC实施例的横截面图。
这些附图未按比例绘制。在这些附图中,相同的数字表示相同的部分。
具体实施方式
图1中示出的IC 1设置有一组单元10,其包括第一子组12的ID单元13。在图1的实施例中,ID单元13形成6X4的矩形单元阵列,但是本发明不限于具有该尺寸或形状的阵列的IC。ID单元13连接于列线16、行线17和输出线18。IC 1还设置有第二单元子组14,其包括用于激励单个ID单元13的存取控制单元11。
在图2中示出的一个实施例中,每一ID单元13包括一个电子器件20,该电子器件为P沟道MOSFET 22,如图3中所示。MOSFET 22包括源极23、漏极24、栅极25、和位于源极23、漏极24与栅极25之间的沟道26。沟道26通过氧化物27与栅极25电绝缘。存取控制单元11,例如与US-6,161,213的图11中示出的激励电路中的那些相同,包括MOSFET,其与ID单元13的MOSFET 22的设计相同。
现在参考图2A,对于每一行,栅极25连接于相同的行线17,而对于每一列,源极23连接于相同的列线16。对于每一行,漏极24连接于相同的输出线18。不同行的输出线18相互电连接。为了激励特定ID单元13的MOSFET 22,通过相应列的存取控制单元11,将连接于该MOSFET 22的源极23的列线“置于相对较高的电压,并通过相应行的存取控制单元11,将连接于栅极25的行线17设置相似的偏置电压。该激励的结果是,将MOSFET 22驱动到饱和状态,且其经过漏极24和连接于其的输出线18来传导电流。
作为MOSFET 22的器件参数的电流参数值,是随机参数变化的函数。随机参数变化特别包括在MOSFET 22的沟道26中注入的掺杂原子28的随机分布,如图3中所示。当通过偏置栅极25并将源极23置于相对较高的电压来激励MOSFET 22时,掺杂原子28的数量和位置是确定从源极23经沟道26流向漏极24的电流的参数值的参数之一。
由于掺杂原子28的随机分布,即使向它们提供相同的激励,两个MOSFET 22也产生具有随机差的两个电流。这两个电流之间的随机差用于产生ID代码。为此,将特定ID单元13的电流与通过参考单元15产生的参考电流相比较,该参考单元15包括MOSFET 22b,未示出。向具有与ID单元13和存取控制单元11的MOSFET 22相同设计的MOSFET22b提供与MOSFET 22相同的激励,以产生参考电流,将其设计成与由ID单元13的MOSFET 22产生的电流相同。
通过MOSFET 22产生的电流与参考电流终止在负载单元19中,如图4中所示,其为公知IC的负载单元的简化形式。负载单元19包括两个与ID单元13和存取控制单元11的MOSFET 22设计相同的MOSFET22c。由于参考电流和该电流的终止而在参考线180与输出线18之间引起的电压通过比较器9进行比较,其类似于公知IC中的,比较器9在输出线18与参考线180之间的电压差为正时产生相对高的输出电压,否则产生相对低的输出电压。通过顺序地寻址ID单元13并记录输出电压,来产生ID代码。
根据本发明,第一子组12的ID单元13具有第一随机参数变化,而第二子组14的单元11、15、19具有第二随机参数变化,第一随机参数变化大于第二随机参数变化。下面描述制造这种IC的方法。
当利用标准的IC技术制造IC时,将随机参数变化保持得尽可能地小并不符合上述条件。于是很难检测到电流的参数值中的随机差并产生ID代码,因为存取控制单元11的MOSFET、MOSFET 22、22b和22c都具有基本上相同的随机参数变化。
为了说明最终的困难,应该注意的是,由参考单元15的MOSFET 22b产生的参考电流与根据该设计由理想MOSFET 22应当产生的电流相比较,具有特定的随机但固定的偏移量。例如,会出现参考电流与由ID单元13的MOSFET 22产生的大多数电流相比相对较低。在这种情况下,ID代码不反映通过ID单元13产生的电流之间的随机差,但是其主要通过偏移量来确定。该ID代码不能可靠地用于识别IC。
存取控制单元11的MOSFET还具有这样的随机参数变化,其在所设计的输出与实际输出之间产生固定但随机的差。因此,施加于ID单元13的激励与理想值相比不同。例如,会发生特定行的存取控制单元11包括MOSFET,其相比较于其它MOSFET产生相对较低的激励。因此,该行的所有ID单元13具有偏移量,且产生和参考电流相比较低的电流。同样在这种情况下,ID代码不能可靠地反映由ID单元13产生的电流之间的随机差,但是其很大程度上通过由于MOSFET引起的偏移量来确定。
负载单元19的MOSFET 22c还具有这样的随机参数变化,在向其供给参考电流时该随机参数变化在跨越MOSFET 22c的所设计:电压降与实际电压降之间产生固定但随机的差。例如,会发生连接于参考线180的MOSFET 22c在向其供给参考电流时产生相对大的电压降,而连接于输出线18的MOSFET 22c在向其提供相同电流时产生相对小的电压降。再次地,ID代码不能可靠地反映由ID单元13产生的电流之间的随机差;其很大程度上通过由于MOSFET 22c引起的偏移量来确定。根据本发明,如图4中所示,负载单元19包括两个分别连接到输出线18和参考线180的MOSFET 22c,这比公知IC简单。为了减小由负载单元19引起的偏移量,公知IC包括四个MOSFET 22b的组合,串联和并联的MOSFET 22b的数量相同。
由于第一随机参数变化大于第二随机参数变化,所以不再需要每一输出线18和18’使用四个MOSFET 22b。此外,当第一随机参数变化大于第二随机参数变化时,还很大程度上减小了上述其它困难,因为减小了ID代码主要通过由存取控制单元11的MOSFET、MOSFET 22b和22c而引起的偏移所确定的机会。
在一个实施例中,相对于第二随机参数变化增加第一随机参数变化至如此程度,以至于ID单元13的参数值之间的随机差的绝对值的平均值大于偏移量的绝对值。该条件意味着显著减小了ID代码主要通过由存取控制单元11的MOSFET、MOSFET 22b和22c而引起的偏移来确定的机会。
在另一实施例中,如图2B中所示的ID单元13与US-6,161,213的图4中所示出的相同。每一ID单元13包括两个基本相似的MOSFET 22和22’。两个MOSFET 22和22’的栅极连接于相同的行线17,且两个MOSFET 22和22’的源极连接于相同的列线16。MOSFET 22和22’的漏极分别连接于输出线18和18’。
利用图4中示出的负载单元19,通过比较每一ID单元13的输出线18和18’上的电流来产生ID代码,其中输出线18’连接于参考线180。在该实施例中,参考单元15不存在。进一步通过未示出的误差检测元件,以与US-6,161,213中描述的处理相似的方式,来处理输出线18和18’之间的电压差。
上述用于制造IC 1的方法的大多数步骤在标准IC技术中是通用的。与现有技术相似,该方法包括在沟道26中注入掺杂原子28的步骤,这使单元11、13、15和19具有随机参数变化。图1中示出的IC 1集成在图5A和5B中示出的衬底2中。衬底2具有第一部分3和第二部分4,其在制造工艺完成后分别包括第一子组12和第二子组14。
根据本发明,采取用于相对于第二部分4中的随机参数变化,增加第一部分3的至少一部分中的随机参数变化的措施。在注入掺杂原子28的步骤执行的至少一部分期间,第二部分4由第一掩模5覆盖,其至少部分地阻止掺杂原子28被注入到第二部分4中。图5A和6A中示出的第一掩模5为抗蚀剂层,其中在ID单元13的MOSFET 22的沟道26的位置处借助于光刻制作开口。
在将掺杂原子28注入到ID单元13中的沟道26中之前,将可以为胶乳球的物体31随机分布在第一部分3的至少一部分上。能够到达一定程度,即图6A中示出的物体31覆盖光致抗蚀剂中的一些开口,并由此至少部分阻止掺杂原子28被注入。因此使用物体31作为增加随机参数变化的措施。在将掺杂原子28注入到MOSFET 22的沟道26中之后,除去物体31和第一掩模5。
通过光刻和蚀刻,形成如图5B和6B中所示的第二掩模6,其覆盖第一部分3并至少部分阻止掺杂原子28注入。在第二掩模6中,借助于光刻和蚀刻,分别在存取控制单元11的MOSFET、参考单元15和负载单元19的MOSFET 22b和22c的沟道26a、26b和26c的位置处制作开口,随后注入掺杂原子28。
在该方法的选择实施例中,至少一部分掺杂原子28在其被注入时携带电荷,为此,使用IC制造领域中公知的离子注入设备40。图7中示出的离子注入设备40包括偏转单元41,该偏转单元具有两个四极偏转器42,每一个偏转器包括四个电极,在图7中对于每一个四极偏转器42示出其两个电极。在正常的操作模式下,电极连接于电压发生器,其用于以如此方式扫描衬底2上带电的掺杂原子28的束,以至于尽可能均匀地注入掺杂原子28。
与上述方法相类似,第二部分4由第一掩模5覆盖,其在MOSFET 22的沟道26的位置处具有开口。当执行注入掺杂原子28的步骤时,电极连接于随机信号发生器44,该随机信号发生器产生随机电压。该随机电压可以将添加到在正常操作模式下所使用的电压上,该随机电压随机地偏转掺杂原子28,结果无法均匀地注入掺杂原子28。另外,与上述方法相类似,除去第一掩模5。
在沉积第二掩模6之后,在正常操作模式下,利用离子设备40在存取控制单元11的MOSFET、MOSFET 22b和22c的沟道26a、26b和26c中注入掺杂原子28。结果,相对于第二部分4中的随机参数变化,增加了第一部分3中的随机参数变化。
在另一实施例中,IC 1包括ID单元13,如图2A中所示,每一单元具有图3中示出的MOSFET 22。存取控制单元11的MOSFET、MOSFET22、22b和22c中的每一个的源极23、漏极24和栅极25包括图3中示出的硅化物29。为硅化钛的硅化物分别连接于列线16、行线17和输出线18,如图2A中所示。该硅化物29为具有电阻的欧姆电阻器,该电阻的值为随机参数变化的函数。特别地,硅化物29的电阻为硅化物29的形状的函数。
在标准IC技术中,通过提供具有一层例如钛的金属的硅、并加热硅以形成硅化物,从而形成硅化物29。硅化物29的形状尤其取决于存在的金属量。该数量在沉积金属时受随机参数变化的影响。在标准IC技术中,将这些随机参数变化保持得尽可能地小。
根据本发明的一个实施例,相比较于第二部分4,故意增加第一部分3中的金属层厚度的随机参数变化。为此,施加作为第一掩模的未示出的抗蚀剂层,其覆盖第二部分4并由此阻止将金属层沉积在第二部分4中。在第一掩模中,借助于光刻和蚀刻,在ID单元13的MOSFET 22的源极23和漏极24的位置处制作开口。
随后,随机地分布物体31以覆盖第一掩模中的一些开口,沉积金属层,并加热基板2以形成硅化物29。在与第一掩模中的开口重合的物体3 1的随机位置处,形成较小量的硅化物29,且这些ID单元13会由于硅化物29较大的电阻而产生减小的电流。与上述方法相类似,除去第一掩模。
利用标准IC技术向存取控制单元11的MOSFET、MOSFET 22b和22c的源极23和漏极24提供硅化物29。
在该实施例的变形中,如图8中所示,在已经形成硅化物29之后,图8中未示出,但在将MOSFET 22的源极23、漏极24和栅极25与形成欧姆电阻器的列线16、行线17和输出线18接触之前,将绝缘物体49分布在第一部分3的一部分上。一些欧姆电阻器包括第一部分50和通过绝缘物体49与第一部分50电绝缘的第二部分51,且因此,与第二部分4中的欧姆电阻器相比较,这些欧姆电阻器的电阻是大随机参数变化的函数。其它未示出的欧姆电阻器可以包括绝缘物体49,其减小欧姆电阻器的电导率但不会导致开路。
集成电路包括一组单元,每一单元包括具有器件参数的电子器件,该器件参数的参数值为随机参数变化的函数。该组单元包括具有第一随机参数变化的第一子组的识别单元,和能够通过测量识别单元的参数值之间的随机差来产生识别代码的第二子组的单元。根据本发明,第二子组的单元具有小于第一随机参数变化的第二随机参数变化,由此使识别代码的产生相对较容易。
应该注意的是,上述实施例说明而非限制该发明,且本领域的技术人员能够在不脱离附属权利要求的范围下设计出许多选择的实施例。在权利要求书中,放置于圆括号之间的任何参考标记不应该解释为限制该权利要求。词语“包括”不排除处在权利要求中列举的元件或步骤之外的元件或步骤的存在。在元件前的词语“一”不排除多个这种元件的存在。
附图标记列表:
集成电路1
衬底2
第一部分  3
第二部分  4
第一掩模  5
第二掩模  6
比较器    9
单元组    10
存取控制单元 11
第一子组     12
识别单元     13
第二子组单元 14
参考单元     15
列线         16
行线         17
输出线       18和18’
负载单元  19
电子器件  20
MOSFET 22(ID单元)、MOSFET 22b(参考单元)、MOSFET22c(负载单元)、MOSFET22′
源极23
漏极24
栅极25
沟道26、26a、26b、26c
氧化物27
掺杂原子28
硅化物  29
物体    31
离子注入设备40
偏转单元  41
四极偏转器42
随机信号发生器 44
绝缘物体  49
第一部分  50
第二部分  51
参考线    180

Claims (15)

1、一种集成电路(1),包括一组单元(10),每一单元(11、13、15、19)包括具有器件参数的电子器件(20),该器件参数具有作为随机参数变化的函数的参数值,该组单元(10)包括:
-第一子组(12)的识别单元(13);和
-第二子组(14)的单元(11、15、19),用于通过测量识别单元(13)的参数值来产生识别代码,其特征在于:识别单元(13)具有第一随机参数变化,而第二子组(14)的单元(11,15,19)具有第二随机参数变化,第一随机参数变化大于第二随机参数变化。
2、如权利要求1所述的集成电路(1),其特征在于:
-第一随机参数变化引起识别单元(13)的参数值之间的随机差,该随机差各自具有绝对值,该绝对值具有平均值;和
-第二随机参数变化引起识别单元(13)的参数值中的偏移量,该偏移量具有绝对值,该平均值大于该偏移量的绝对值。
3、如权利要求2所述的集成电路(1),其特征在于:识别单元(13)各自仅包含一个电子器件(20)。
4、如权利要求1所述的集成电路(1),其特征在于:随机参数变化包括在至少一部分电子器件(20)中掺杂原子(28)的随机分布。
5、如权利要求4所述的集成电路(1),其特征在于:电子器件(20)包括金属氧化物半导体场效应晶体管(22),该晶体管(22)包括源极(23)、漏极(24)、栅极(25)和位于源极(23)、漏极(24)与栅极(25)之间的沟道(26),沟道(26)通过氧化物(27)与栅极(25)电绝缘,电子器件(20)的部分具有包括沟道(26)的掺杂原子的随机分布。
6、如权利要求1所述的集成电路(1),其特征在于:电子器件(20)包括具有作为随机参数变化的函数的电阻值的欧姆电阻器。
7、如权利要求6所述的集成电路(1),其特征在于:该欧姆电阻器包括具有形状的硅化物材料,随机参数变化包括形状的随机分布。
8、如权利要求6所述的集成电路(1),其特征在于:随机参数变化包括绝缘物体(49)在欧姆电阻器中的随机分布。
9、如权利要求8所述的集成电路(1),其特征在于:第一子组(12)中的随机数目的识别单元(13)具有包括第一部分(50)和通过绝缘物体(49)与第一部分电绝缘的第二部分(51)的欧姆电阻器。
10、一种制造如权利要求1所述的集成电路(1)的方法;该集成电路(1)包括衬底(2)和一组单元(10),该组单元(10)包括第一子组(12)的单元(13)和第二子组(14)的单元(11、15、19),每一单元包括具有器件参数的电子器件(20),该器件参数具有作为随机参数变化的函数的参数值,衬底(2)包括用于第一子组(12)的单元(13)的第一部分(3)和用于第二子组(14)的单元(11、15、19)的第二部分(4),该方法包括使第一子组和第二子组的单元具有随机参数变化的步骤,其特征在于以下步骤:产生随机参数变化,使得第一子组(12)的单元(13)中的随机参数变化大于第二子组(14)的单元(11、15、19)中的随机参数变化。
11、如权利要求10的方法,其特征在于:在产生随机参数变化的步骤的至少一部分期间,第二部分(4)由第一掩模(5)覆盖,其至少部分地阻止第二部分(4)中随机参数变化的增加。
12、如权利要求11所述的方法,其特征在于:产生随机参数变化的步骤包括在至少一部分的第二部分(4)中产生随机参数变化的子步骤,而在该子步骤期间,第一部分(3)由第二掩模(6)覆盖,其至少部分地阻止在第一部分(3)中引入随机参数变化。
13、如权利要求10所述的方法,其特征在于:产生随机参数变化的步骤包括注入掺杂原子(28)。
14、如权利要求13所述的方法,其特征在于:产生随机参数变化的步骤包括采用随机分布在第一部分(3)的至少一部分上的物体(31),该物体(31)至少部分地阻止掺杂原子(28)被注入。
15、如权利要求13的方法,其特征在于:至少一部分掺杂原子(28)在其注入时携带电荷,且通过施加随机偏转信号来随机偏转带电掺杂原子的偏转单元(41),从而增加随机参数变化。
CNB038193833A 2002-08-15 2003-07-01 集成电路及其制造方法 Expired - Fee Related CN100438014C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02078381.7 2002-08-15
EP02078381 2002-08-15

Publications (2)

Publication Number Publication Date
CN1675768A CN1675768A (zh) 2005-09-28
CN100438014C true CN100438014C (zh) 2008-11-26

Family

ID=31725462

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038193833A Expired - Fee Related CN100438014C (zh) 2002-08-15 2003-07-01 集成电路及其制造方法

Country Status (7)

Country Link
US (1) US20050275001A1 (zh)
EP (1) EP1530802B1 (zh)
KR (1) KR20050030974A (zh)
CN (1) CN100438014C (zh)
AU (1) AU2003285709A1 (zh)
TW (1) TW200414489A (zh)
WO (1) WO2004017408A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8015514B2 (en) * 2008-12-29 2011-09-06 International Business Machines Corporation Random personalization of chips during fabrication
KR101489088B1 (ko) * 2013-09-03 2015-02-04 (주) 아이씨티케이 식별키 생성 장치 및 방법
WO2015063606A1 (en) * 2013-11-04 2015-05-07 Marvell World Trade Ltd. Method and apparatus for authenticating a semiconductor die
US9171810B2 (en) * 2013-11-21 2015-10-27 Nxp B.V. Electronic device incorporating a randomized interconnection layer having a randomized conduction pattern
FR3051600B1 (fr) * 2016-05-20 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif electronique a identification de type puf

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161213A (en) * 1999-02-17 2000-12-12 Icid, Llc System for providing an integrated circuit with a unique identification
DE10025213A1 (de) * 1999-06-24 2001-01-18 Mitsubishi Electric Corp Halbleitereinrichtung
WO2001047016A1 (en) * 1999-12-21 2001-06-28 Intel Corporation Method and apparatus for encoding information in an ic package
US20020024453A1 (en) * 2000-08-31 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, terminal device and communication method
WO2002045139A1 (fr) * 2000-12-01 2002-06-06 Hitachi, Ltd Methode d'identification d'un dispositif a circuit integre a semi-conducteur, procede de fabrication d'un tel dispositif, dispositif a circuit integre a semi-conducteur et microcircuit a semi-conducteur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337507B1 (en) * 1995-09-29 2002-01-08 Intel Corporation Silicide agglomeration fuse device with notches to enhance programmability
FR2835947A1 (fr) * 2002-02-11 2003-08-15 St Microelectronics Sa Extraction d'un code binaire a partir de parametres physiques d'un circuit integre

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161213A (en) * 1999-02-17 2000-12-12 Icid, Llc System for providing an integrated circuit with a unique identification
DE10025213A1 (de) * 1999-06-24 2001-01-18 Mitsubishi Electric Corp Halbleitereinrichtung
WO2001047016A1 (en) * 1999-12-21 2001-06-28 Intel Corporation Method and apparatus for encoding information in an ic package
US20020024453A1 (en) * 2000-08-31 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, terminal device and communication method
WO2002045139A1 (fr) * 2000-12-01 2002-06-06 Hitachi, Ltd Methode d'identification d'un dispositif a circuit integre a semi-conducteur, procede de fabrication d'un tel dispositif, dispositif a circuit integre a semi-conducteur et microcircuit a semi-conducteur

Also Published As

Publication number Publication date
TW200414489A (en) 2004-08-01
KR20050030974A (ko) 2005-03-31
AU2003285709A1 (en) 2004-03-03
EP1530802B1 (en) 2013-06-12
EP1530802A2 (en) 2005-05-18
WO2004017408A3 (en) 2004-09-16
US20050275001A1 (en) 2005-12-15
WO2004017408A2 (en) 2004-02-26
CN1675768A (zh) 2005-09-28
AU2003285709A8 (en) 2004-03-03

Similar Documents

Publication Publication Date Title
US8971527B2 (en) Reliable physical unclonable function for device authentication
US5410254A (en) Method for optimizing the structure of a transistor to withstand electrostatic discharge
CN100438014C (zh) 集成电路及其制造方法
US9564242B2 (en) Method for controlling the breakdown of an antifuse memory cell
EP0792520A1 (en) Transistor structure with specific gate and pad areas
DE102008053956A1 (de) Halbleiterbauelement mit einer aufgeteilten intern verbundenen Sensorstruktur für chipinterne Überwachungszwecke
CN102034816B (zh) 等离子体引入损伤测试装置及制作测试装置的方法
CN103503141A (zh) 具有闭合曲线结构的存储器单元
US11276652B2 (en) Method for securing an integrated circuit upon making it
US6339229B1 (en) Test structure for insulation-film evaluation
US4410904A (en) Notched cell ROM
CN114783500A (zh) 半导体器件的电性测试方法及测试结构
Zucca et al. Process evaluation test structures and measurement techniques for a planar GaAs digital IC technology
US7148534B2 (en) Angled implant in a fabrication technique to improve conductivity of a base material
KR100408944B1 (ko) 반도체 메모리와 그것을 생산하기 위한 방법
US6894518B1 (en) Circuit analysis and manufacture using electric field-induced effects
Valtonen et al. Channel length extraction for DMOS transistors using capacitance-voltage measurements
DE10201645B4 (de) Verfahren zur Codierung und Authentifizierung von Halbleiterschaltungen
US11189578B2 (en) Electronic chip
CN115166461A (zh) 测试器件结构单元、并行测试器件结构及晶圆
DE4426121A1 (de) Halbleitervorrichtung und Verfahren zur Herstellung derselben
JPH09283753A (ja) 半導体装置及びその診断方法
CN105185723A (zh) 一种半导体器件电性测试方法
Bo et al. Analysis and Optimal Design of a New Single-Photon Memristor
DE102015112502A1 (de) Halbleiterbauelemente

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NXP CO., LTD.

Free format text: FORMER OWNER: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Effective date: 20070914

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070914

Address after: Holland Ian Deho Finn

Applicant after: Koninkl Philips Electronics NV

Address before: Holland Ian Deho Finn

Applicant before: Koninklijke Philips Electronics N.V.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081126

Termination date: 20210701