CN100380825C - 双模式蓝牙/无线设备以及同步该设备的方法 - Google Patents

双模式蓝牙/无线设备以及同步该设备的方法 Download PDF

Info

Publication number
CN100380825C
CN100380825C CNB02820249XA CN02820249A CN100380825C CN 100380825 C CN100380825 C CN 100380825C CN B02820249X A CNB02820249X A CN B02820249XA CN 02820249 A CN02820249 A CN 02820249A CN 100380825 C CN100380825 C CN 100380825C
Authority
CN
China
Prior art keywords
bluetooth
wakeup time
plan
time
wireless module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB02820249XA
Other languages
English (en)
Other versions
CN1568579A (zh
Inventor
W·A·李
G·帕塔比拉曼
T·E·文多尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/930,759 external-priority patent/US6968219B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN1568579A publication Critical patent/CN1568579A/zh
Application granted granted Critical
Publication of CN100380825C publication Critical patent/CN100380825C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70707Efficiency-related aspects
    • H04B2201/70709Efficiency-related aspects with discontinuous detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Small-Scale Networks (AREA)
  • Telephone Function (AREA)

Abstract

在双模式蓝牙/无线移动设备中,重新安排下一睡眠模式蓝牙唤醒时间,以与任何即将来临的空闲模式无线唤醒时间同步,否则这个时间将先于蓝牙唤醒时间。在适当的情况下,提前蓝牙时钟,或者对蓝牙模块进行其它重配置,防止扫描频率在被再同步的蓝牙唤醒时间开始的在睡眠模式蓝牙唤醒/扫描时间间隔期间内改变。

Description

双模式蓝牙/无线设备以及同步该设备的方法
技术领域
本发明主要涉及无线通信设备与系统,更准确地说,涉及双模式蓝牙/无线移动设备中功耗的降低。
背景技术
“蓝牙(Bluetooth)”是一种无线个人区域网络技术,支持彼此距离一般在十到一百米之内的不同设备之间的无线语音和数据通信。许多不同设备能支持蓝牙,例如,蜂窝电话、个人数字助理和膝上型计算机。每个这样的设备都装备蓝牙部件,包括接收器和发射器,允许它与在附近的其它类似装备的设备通信,不使用线缆或其它物理连接。
作为例子,无线码分多址(CDMA)蜂窝电话可以能支持蓝牙,意味着该蜂窝电话能够在CDMA网络和蓝牙网络两者中通信。这样的支持蓝牙的CDMA蜂窝电话包括蓝牙和CDMA部件两者。
在支持蓝牙的设备中,蓝牙部件可使用各种“睡眠(sleep)”模式来降低功耗。这些也可被称为“空闲(idle)”模式。一个例子是“寻呼扫描(page scan)”模式,在设备没有与其它支持蓝牙的设备活动地通信的时候,即没有参与蓝牙网络的时候,使用这个模式。在寻呼扫描模式中时,蓝牙部件周期性地执行唤醒进程,在此期间它扫描周围环境以确定是否有其它支持蓝牙的设备正在试图建立通信,这种情况下蓝牙设备退出寻呼扫描模式并参加与这类设备的通信。如果在唤醒/扫描进程中蓝牙部件碰到另外的支持蓝牙的设备并确定需要连接,它执行某些协议以便与其它设备建立短距离的无线连接。否则,关闭唤醒/扫描进程,直到下一个唤醒进程为止。唤醒、扫描和关闭的睡眠循环在寻呼扫描模式持续期间一般每1.28秒重复一次、两次或四次。但是,某些蓝牙规范可能改变循环的时间和方式,例如要求进程持续执行1.28秒,或者每1.28秒重复进程十六次。而且,某些蓝牙规范要求蓝牙唤醒进程每1.28秒、每2.56秒或特定规范要求的任意其它时间间隔中,例如,至少重复一次。
在蓝牙设备还包括CDMA蜂窝电话(“电话”)的实施例中,在电话的蓝牙部件对如以上讨论的其它支持蓝牙的设备的扫描的同时,电话的CDMA部件执行与CDMA有关任务。由于CDMA要求电话和基站之间精确的时间同步,所以CDMA部件的一个任务是与基站同步。为了在CDMA空闲模式时与基站同步,CDMA部件在其分配的时隙期间周期性地“唤醒”以从基站CDMA寻呼频道上接收和处理导频信号。CDMA部件能够通过处理导频信号与基站同步。例如,能够从嵌在导频信号中的信息确定系统时间。
CDMA部件的唤醒频率由时隙循环次数(slot cycle index)(SCI)控制,它可由电话或基站设置,如在本领域中已知的。如果SCI为零,则CDMA部件每1.28秒执行一次唤醒进程,即其分配的时隙大约每1.28秒出现一次。作为不同的例子,SCI可以设置为一,这时唤醒进程每2.56秒执行一次,或为二,这时唤醒进程每5.12秒执行一次。因此,较低的SCI意味着较频繁的唤醒进程和较大的功耗。
无论如何,双模式蓝牙/CDMA设备要消耗功率,不管是蓝牙部件唤醒和扫描其它支持蓝牙的设备然后关闭,或者是CDMA部件唤醒和与基站同步然后关闭。而且,因为这些独立进程的每一个都是重复执行的,功耗可能是很大的。由于双模式蓝牙/CDMA设备的一个重大优点是它们的便携性,它们常常依赖于小电池作为其能量的唯一来源。因此在这种环境中,高功耗需要更频繁地再充电。这至少是不方便。在最坏的情况下,如果电池在邻近没有再充电电源的情况下用完了,则双模式蓝牙/CDMA设备将停止运行。
因此,已知的双模式蓝牙/CDMA设备由于其高速率的功耗而不可能完全适合所有用户。
概述
概括地,本发明的一个实施例涉及一种方法,用于在双模式蓝牙/无线移动设备中,将用于蓝牙模块的唤醒进程与用于无线模块的唤醒进程同步,而且特别地,因此任何蓝牙扫描唤醒进程不承担任何扫描频率改变。最初,蓝牙和无线模块分别安排各自的唤醒进程,分别始于下一个计划的蓝牙唤醒时间和下一个计划的无线唤醒时间。如果下一个计划的无线唤醒时间比下一个蓝牙计划的唤醒时间早,则蓝牙模块采取某些同步动作。如果诸如寻呼扫描或查询扫描这样的扫描模式以及蓝牙扫描频率的下一改变被安排在下一计划的无线唤醒时间之后发生,则蓝牙模块提前其时钟,使得扫描频率改变实质上发生在下一无线唤醒时间。另外,无论蓝牙是否在扫描模式中,蓝牙模块重新安排下一个蓝牙唤醒进程,使它实际在下一无线唤醒时间开始,这是造成任何蓝牙时钟提前的原因。
本发明提供了许多不同的优点。主要地,通过提前蓝牙时钟来节省能量,因为这阻止了在相关的蓝牙唤醒进程中对(寻呼/查询扫描模式)扫描频率的改变。也就是,这允许蓝牙模块的部件在唤醒/扫描进程期间保持非激活状态,而不是留意改变扫描频率。因为蓝牙和无线唤醒时间是同步的,使得它们各自的唤醒进程一致,节省了额外的能量。本发明还提供了许多其它的优点和好处,将从下列发明描述中显而易见。
附图说明
图1是包括双模式蓝牙/CDMA移动设备的示例性无线通信系统的方框图。
图2A-2C是示出双模式蓝牙/CDMA移动设备的唤醒安排表同步的图解。
图3是一个进程的流程图,这个进程用于同步双模式蓝牙/CDMA移动设备的蓝牙模块和CDMA模块的唤醒时间表。
图4是示例性数字数据处理机的方框图。
图5是示例性信号承载介质的方框图。
详细说明
简介
对于那些本领域熟练技术人员而言,本发明的特性、目标和优点将在结合附图思考下列详细描述后变得显而易见。
本发明主要针对具有双模式蓝牙/无线作用的移动设备中的功耗的降低。而且,尽管本发明相关于特定的实施例描述,但如这里所附权利要求所定义的本发明原理可在这里详细描述的说明实施例之外应用。此外,省略了某些细节以避免使本发明的创造性方面模糊不清。本申请中未述及的特定细节都在本领域一般技术人员知识范围中,具有本揭示的益处。
本申请的附图及其所附的详细描述针对本发明不同实施例的例子。为保持简洁,使用本发明原理的本发明其它实施例不在本申请中详细地描述,并且也未由本附图特别示出。词语“示例性”这里专用于指“作为例子、示例或说明”。这里作为“示例性”描述的任何实施例都不必解释为较佳于或优于其它实施例。
无线通信系统
图1示出依照本发明的一个实施例的示例性无线通信系统100。在没有任何故意的限制的情况下,无线通信系统100由双模式蓝牙/CDMA移动设备的部件例示。除了CDMA,本发明的原理另外可应用于其它无线通信系统,可达到相关睡眠循环、唤醒进程等范围。一些例子包括诸如GSM、GPRS、TDMA、WCDMA、HDR等技术。
考虑到在如例示的利用CDMA的特定实施例中,CDMA通信系统的一般原理,以及特别是产生用于在通信信道上传输的扩频信号的一般原理,在美国专利4,901,307标题为“Spread Spectrum Multiple Access Communication SystemUsing Satellite or Terrestrial Repeaters”中描述,并且它被授予QUALCOMM有限公司。在此通过引用将’307专利的揭示内容包括在本申请中。此外,标题为“System and Method for Generating Signal Waveforms in a CDMA WirelessTelephone System”且被授予QUALCOMM有限公司的美国专利5,103,459揭示内容与PN扩展(PN spreading)、沃尔什覆盖(Walsh covering)和产生CDMA扩频通信信号有关的原理。在此通过引用也将’459的揭示完全包括在本申请中。而且,在标题为“Method and Apparatus for High Rate Packet Data Transmission”且申请于1997年11月3日并授予QUALCOMM有限公司的美国专利No.08/963,386中揭示与“高数据速率”通信系统有关的数据的时分复用和各种原理。在此通过引用也将’386的揭示内容完全包括在本申请中。
如图1所示,无线通信系统100包括蓝牙设备110、无线移动设备140和CDMA基站180。蓝牙设备110包括任何支持蓝牙的设备,例如,装备蓝牙部件的膝上型计算机。蓝牙设备110配置成使用其接收器/发送器112和天线114与其它支持蓝牙的设备通信。
无线移动设备140可由各种设备实现,诸如本实施例中的支持蓝牙的CDMA蜂窝电话。象这样,无线移动设备包括蓝牙和CDMA部件,即,分别为蓝牙模块142和CDMA模块144。蓝牙模块142和CDMA模块144连接到处理器146,在一个实施例中,它被配置为监视和控制在其各种睡眠模式中蓝牙模块142的唤醒/睡眠循环和在空闲模式中CDMA模块144的唤醒/空闲循环。无线移动设备140还包括时间基准160,为蓝牙模块142和CDMA模块144提供共用的时钟信号或其它周期基准。
蓝牙模块142参于各种睡眠模式,这些模式构成降低功率运行模式。当它尚未与另一个蓝牙设备通信时,模块142可参于包括“寻呼扫描”或“查询扫描”的睡眠模式。对于寻呼扫描,模块142进行频率扫描以确定附近其它的蓝牙设备是否以前已经发现模块142,现在正在试图建立与模块142的连接。对于查询扫描,模块142进行频率扫描以允许其它蓝牙设备发现模块142的存在。术语“扫描(scanning)”或“唤醒扫描(wakeup scanning)”用来共同表示,在蓝牙模块尚没有处于与另一蓝牙设备建立的连接时的情况下的寻呼扫描、查询扫描及其它这类操作。
在与另一蓝牙设备的通信已初始化后,模块142可参于包括“保持模式(hold mode)”或“侦听模式(sniff mode)”或“停放模式(park mode)”的其它睡眠模式。保持模式指单次事件(one-time event),其中模块142和另一蓝牙设备同意在一段设定的时间内彼此不通信。在侦听模式中,模块142在一段设定的时间内以互相同意的间隔,与另一蓝牙设备简短的通信,在此期间两个设备都能发送包括数据的信号。侦听模式持续到两个设备都希望停止这种运行模式为止。停放模式象侦听模式一样,唯一的不同是数据不能交换。唤醒和完成寻呼扫描、查询扫描、保持、侦听或停机模式任务的进程在此被共同称为“蓝牙唤醒进程”。
以下更为详细地描述寻呼扫描模式。当支持蓝牙的设备140未在蓝牙网络中活动地通信时,蓝牙模块142的一种运行模式是寻呼扫描模式,在其中模块142周期性地从降低能量设置中“唤醒”,以确定其它支持蓝牙的设备诸如110是否尝试与模块142建立一个连接。扫描周围环境寻找其它寻求建立连接的支持蓝牙的设备是以本领域已知方式完成的,并且可能涉及,例如,特定寻呼信号的传送、接收和处理。由蓝牙模块142执行的唤醒、寻呼扫描及然后关闭的特定过程在本申请中也称为“蓝牙寻呼扫描唤醒进程”,不管实现是否使用象这样的寻呼信号或另一种类型的通信。在查询扫描的情况下,运行是类似的,但模块142扫描不同的频率以确定是否发生来自其它设备的查询请求,对此模块142应该响应以便允许那些其它设备发现模块142。唤醒、查询扫描及然后关闭的进程称为“蓝牙查询扫描唤醒进程”。在蓝牙唤醒/扫描进程中,设备140的一些部件(诸如处理器146的任何可应用计算资源)可在扫描期间暂不激活以便“睡眠”。
蓝牙模块142包括连接到蓝牙天线150上的蓝牙接收器/发送器148。在寻呼扫描模式下,蓝牙模块利用蓝牙接收器/发送器148和蓝牙天线150。在本实施例中,蓝牙模块142配置为每1.28秒执行蓝牙寻呼扫描唤醒进程两次。但是,那些本领域的熟练技术人员将意识到蓝牙模块142能够配置成以其它的时间间隔,例如每1.28秒、每0.32秒或每0.16秒执行一次蓝牙寻呼扫描唤醒进程。而且,要理解某些蓝牙规范可要求蓝牙模块,例如,每1.28秒、每2.56秒或者由特定蓝牙规范要求的任何其它时间间隔至少执行一次其蓝牙寻呼扫描唤醒进程。蓝牙设备110和蓝牙模块142使用它们各自的接收器/发送器和天线设备通过蓝牙空中链路116彼此通信。
蓝牙模块142还包括蓝牙时钟158。在一个实施例中,时钟158是蓝牙模块142的内部时钟。时钟158可包括,例如,一个28位的计数器,它记录“当前蓝牙时间”并将当前蓝牙时间转播至处理器146。每当模块142与另一个蓝牙设备通信时设置时钟158。也就是,模块142按照来自以“控制者(master)”角色运行的另一蓝牙设备的时间信号来复位时钟。无论模块142是否不与另一蓝牙设备通信,时钟158的前进均由时间基准160驱动。在所示实施例中,当时钟158的低十二位在模块处于寻呼(或查询)扫描模式中翻转(rollover)完时,引起寻呼(或查询)扫描频率的变化,即,从一个寻呼(或查询)扫描频道到下一个。
现在讨论CDMA模块144,一个部件是CDMA接收器/发送器152,它连接到CDMA天线154。CDMA模块144利用CDMA接收器/发送器152和CDMA天线154在CDMA网络中通信,特别是通过CDMA空中链路184和CDMA基站180。CDMA模块144通过利用CDMA接收器/发送器152和CDMA天线154与CDMA基站180通信来发送和接收信号。同时,CDMA基站180利用基站天线182向CDMA模块144发送和接收信号。CDMA模块144和CDMA基站180之间的通信以本领域中已知的方式进行。
当无线移动设备140不是积极地在CDMA网络中通信时,CDMA模块144假设为“空闲”模式。CDMA模块144在它处于空闲模式时完成许多任务,包括与CDMA系统时间同步其时钟的任务。如本领域已知的,CDMA网络中通信的正确性部分依赖于CDMA网络中每个部件的时间同步,包括移动设备、基站、基站控制器等。
为了与CDMA系统时间同步,CDMA模块144利用接收器/发送器152和CDMA天线154来接收由CDMA基站180发送的导频信号。处理所接收的导频信号,并且从导频信号所包含的数据中确定当前CDMA系统时间。由CDMA模块144对导频信号的处理和由此而来的当前CDMA系统时间的确定以本领域已知的方式完成。在本实施例中,CDMA模块144的当前时间设置为由导频信号导出的CDMA系统时间。CDMA当前时间因此与CDMA系统时间相同。CDMA时钟153记录CDMA当前时间。CDMA当前时间与CDMA系统时间相同。使用时间基准160使CDMA时钟前进,但CDMA时钟每接收一次导频信号,它就与CDMA系统时间重新校准。已按照导频信号设置的CDMA时钟153的前进由时间基准160驱动。
这样,时间基准160为CDMA模块144和蓝牙模块142提供共同的时间基准信号,但当前蓝牙模块时间和当前CDMA模块时间的绝对值可以不同。在一不同的实施例中,时间基准160为CDMA模块144和蓝牙模块142提供共同的时间源,使得两个模块的“当前”时间相同。由CDMA模块144执行的唤醒、与基站180同步和关闭的进程称为“CDMA唤醒进程”。
CDMA模块144的唤醒频率由以本领域已知的方式通过或者话机或者基站设置的SCI控制。例如,如果CDMA模块144的SCI是零,那么CDMA模块144每1.28秒执行CDMA唤醒进程。作为不同的例子,如果SCI设置为一,则每过2.56秒执行CDMA唤醒进程;如果SCI设置为二,则每过5.12秒执行CDMA唤醒进程。这样,SCI越低,CDMA模块144执行其CDMA唤醒进程越频繁。在本实施例中,CDMA模块144的SCI设置为零,因而CDMA模块144每1.28秒执行CDMA唤醒进程。
处理器146使用它从蓝牙时钟158和从CDMA模块144接收的信息,以便同步蓝牙模块142的唤醒安排和CDMA模块144的唤醒安排。在本实施例中,为了同步两个唤醒安排,处理器146确定保留多少时间直到为蓝牙模块142和CDMA模块144安排下一唤醒进程为止。
在一个实施例中,处理器146配置为根据分别设定要执行的蓝牙唤醒进程和CDMA唤醒进程的频繁程度,确定下一个计划的蓝牙和CDMA唤醒时间。如上所述,蓝牙模块142可设置为以不同时间间隔或频率执行蓝牙唤醒进程,诸如,每0.64秒一次,而且CDMA模块144可被设置为根据其SCI每1.28秒、每2.56秒或者每5.12秒执行CDMA唤醒进程。在一个实施例中,处理器146通过监视蓝牙模块142上次执行蓝牙唤醒进程的时间及随后计算下一蓝牙唤醒进程将要执行的时间来确定下一计划蓝牙唤醒时间。这样,作为例示,如果处理器146确定蓝牙模块142上次执行蓝牙唤醒进程在时间T,且蓝牙模块142被设置为每0.64秒执行蓝牙唤醒进程,那么处理器146计算下一计划蓝牙唤醒时间为时间T加上0.64秒。类似地,如果处理器146确定CDMA模块144上次执行CDMA唤醒进程在时间Y,且CDMA模块144被设置为每1.28秒执行CDMA唤醒进程,即,其SCI设置为零,那么处理器146计算下一计划CDMA唤醒时间为时间Y加上1.28秒。
如上所指出的,蓝牙模块142和CDMA模块144配置为计划其各自唤醒进程,在不同周期的时间间隔上开始。现在描述的实施例的一个特征是,处理器146还作用为同步蓝牙模块142和CDMA模块144的计划唤醒时间表,通过确定相对于要执行下一CDMA唤醒进程的时间、要执行下一蓝牙唤醒进程的时间。保留到各自下一次排定时间的唤醒进程为止的时间,由计算当前时间和下一排定时间的唤醒进程的时间之间的时间差来确定。例如,保留至下一次安排的CDMA唤醒进程为止的时间,是下一计划CDMA唤醒时间减去当前CDMA模块时间。如果处理器146确定下一蓝牙唤醒进程被安排在下一CDMA唤醒进程后执行,则处理器146提前蓝牙模块142的唤醒时间表,这样蓝牙模块142在CDMA模块144执行下一CDMA唤醒进程的同时执行下一蓝牙唤醒进程。换句话说,处理器146触发蓝牙模块142在下一计划CDMA唤醒时间执行其下一蓝牙唤醒进程,而不是一直等到下一计划蓝牙唤醒时间。下一蓝牙唤醒进程因此与下一CDMA唤醒进程同步。
同步两个唤醒时间表通过共享能量减少了无线移动设备140的功耗,否则在执行它们各自的唤醒进程时,要求分别开启蓝牙模块142和CDMA模块144。
在无线移动设备140的前述配置的加强中,处理器146可配置成提前蓝牙时钟158(或者如必要时采取其它动作,以在下一寻呼/查询扫描唤醒进程期间防止改变寻呼/查询扫描频率)。如所示的,这在同步蓝牙唤醒时间表到CDMA唤醒时间表之前完成。也就是,处理器146提前时钟158,使得它将在下一CDMA唤醒时间翻转过去(这还将在同步后标记下一蓝牙唤醒时间)。“翻转(rollover)”在蓝牙时钟158的二十八位的最低的十二位“触发(toggle)”,也即经过它们的最大值并复位时发生。
如此提前时钟有助于能量保存,因为否则时钟翻转可能在蓝牙模块142唤醒进程中另外要求处理器146的激活。特别地,在寻呼/查询扫描模式中,蓝牙模块142每当时钟158翻转时控制接收器/发送器148改变扫描的蓝牙频率。尽管一旦开始频率扫描的动作能用更少的设备完成,也就是不涉及处理器146,但改变扫描频率的动作要求包括处理器146,并且因此有较大的功耗。这样,在每个寻呼/查询扫描模式唤醒进程期间,处理器146能够保持很大程度的睡眠状态,这时接收器/发送器148扫描一个单一的频率。任选地,仅当情况表明时钟翻转(即寻呼/查询模式扫描频率改变)将在下一计划蓝牙寻呼/查询模式唤醒进程期间内发生时,也就是,在计划CDMA唤醒时间与等于蓝牙寻呼/查询模式唤醒进程的时间段之间,处理器146可用前述方式提前时钟。
下面更详细地描述设备140的这些和其它部件的运行。
示例性数字数据处理装置
如上所述,可用不同形式实现数据处理实体诸如处理器146。一个例子是数字数据处理装置,如由图4的数字数据处理装置400的硬件部件和互连所例示的。
装置400包括处理器402,诸如微处理器、个人计算机、工作站或其它处理机,连接到存储器404。在本例中,存储器404包括快速存取存储器406,以及非易失性存储器408。快速存取存储器406可包括随机存取存储器(RAM),并可用于存储由处理器402执行的编程指令。非易失性存储器408可包括,例如,电池后备RAM、EEPROM、闪存PROM、一个或多个诸如“硬盘”这样的磁数据存储盘、磁带驱动器、或任何其它适当的存储设备。装置400还包括输入/输出410,诸如连线、总线、线缆、电磁链路,或为处理器402与其它在装置400外部的硬件交换数据的工具。
尽管有特定的上述描述,普通熟练技术人员(具有本揭示内容利益的)将认识到以上所讨论的装置可用不同结构的机器实现,而不脱离本发明的范围。作为一个特定的例子,部件406、408之一可去掉;此外,存储器404、406和/或408可在处理器402单板上提供,或者甚至在装置400的外部提供。
逻辑电路系统
和以上讨论的数字数据处理装置相比,本发明的一个不同的实施例使用逻辑电路系统取代计算机可执行指令来实现诸如处理器146这样的处理实体。取决于应用在速度、费用、加工成本等方面的特定要求,这个逻辑可通过构造具有上千个微小集成晶体管的专用集成电路(ASIC)实现。这样的一个ASIC可用CMOS、TTL、VLSI或另外的合适构造实现。其它的选择包括数字信号处理芯片(DSP)、分立电路系统(诸如电阻、电容、二极管、电感线圈和晶体管)、现场可编程门阵列(FPGA)、可编程逻辑陈列(PLA)、可编程逻辑设备(PLD)等等。
运行-简介
描述了系统100的结构化特点后,现在将描述本发明的运行方面。如上所述,本发明的运行方面一般涉及在无线移动设备中将蓝牙模块的计划唤醒进程与CDMA模块的计划唤醒进程同步,而且特别地,以这样一种方式的任何蓝牙寻呼/查询扫描唤醒进程不经受任何扫描频率改变。
尽管本发明具有广泛应用于不同无线通信模块的功效(power-effecient)同步的能力,但已经描述的结构细节更适合于蓝牙和CDMA类型通信,并且随后的说明将强调这种本发明应用,在没有任何故意的限制的情况下。
运行-信号承载介质
每当一或多个部件的功能使用一或多个机器可执行程序序列实现时,这些序列可嵌入到各种信号承载介质形式中。在图4环境中,这样的信号承载介质可包括,例如,存储器404或另一个信号承载介质,诸如磁数据存储盘500(图5),由处理器402直接或非直接访问。不管是否包含在存储器406、磁盘500或其它什么地方,指令可存储在各种各样的机器可读数据存储介质中。一些例子包括直接存取存储器(例如,常规的“硬盘”、便宜磁盘的冗余陈列(RAID),或另外的直接存取存储设备(DASD))、诸如磁带或光带的串行存取存储器、电子非易失性存储器(例如,CD-ROM、WORM、DVD、数字光带)、纸“穿孔”卡或者包括模拟或数字传输介质和模拟与通信链路及无线通信的其它合适的信号承载介质。在本发明的说明实施例中,机器可读指令可包括由诸如汇编语言、C这样的语言编译而得的软件对象代码。
运行-逻辑电路系统
与上面讨论的信号承载介质相比,本发明的一些或全部功能可使用逻辑电路系统实现,取代使用处理器执行指令。这种逻辑电路系统因此配置为执行完成这种功能的操作。逻辑电路系统可使用许多不同类型的电路实现,如上所述。
运行-图形描述
图2A-2C图形化地辅助示例性技术的说明,所述技术用于在无线移动设备诸如例如图1的无线移动设备140中,把蓝牙模块的唤醒时间表与CDMA模块的唤醒时间表同步。在没有任何故意的限制的情况下,为了便于讨论,对特定的无线移动设备140进行引用。
图2A说明了CDMA模块144在空闲模式中的唤醒时间表的时间序列。纵轴示出CDMA模块144的开/关状态,而横轴对应于时间。也就是,当CDMA模块“开”时(214、216),它正在执行其CDMA唤醒进程,包括同步和任何其它与CDMA有关的任务。因为CDMA模块144在整个图2A中处于其空闲模式,所以CDMA模块在所例示的期限内不被激活以实施无线用户通信;在这种事件中,不需要进行任何唤醒进程。
当前时刻的CDMA系统时间(按照CDMA时钟153)由206显示;这个时间源自于从基站接收的导频信号,如上所述。CDMA模块144在当前CDMA时间206处于空闲模式且不执行CDMA唤醒进程,即,CDMA模块144“关”着。在下一计划CDMA唤醒时间208,CDMA模块144将开启并开始CDMA唤醒进程214。当前CDMA模块时间206和下一计划CDMA唤醒时间208之间的时间间隔210表示当前CDMA时间和下一CDMA唤醒进程要执行的时间之间的时间周期。时间间隔212表示CDMA唤醒进程214的开始和紧接着的CDMA唤醒进程216的开始之间的时间。时间间隔212可以,例如,是1.28秒,如果模块144的SCI设置为零;这意味着CDMA模块144被设置为每1.28秒执行CDMA唤醒进程。
图2B示出蓝牙模块142在与CDMA模块的唤醒时间表同步前的睡眠模式唤醒时间表的时间序列。纵轴示出蓝牙模块的开/关状态,而横轴对应于时间。也就是,当蓝牙模块“开”时(250、256、260),正在执行其蓝牙睡眠模式唤醒进程,诸如寻呼扫描、查询扫描、保持、侦听、停放或其它睡眠模式任务。为说明特定例子,讨论一系列寻呼扫描唤醒进程。因此,在这个例子中,时间间隔250、256、260表示对其它的邻近蓝牙设备的扫描。当前时刻的当前蓝牙时间(按照蓝牙时钟158)由246示出。在这个时间,蓝牙模块142关着,且不在执行任何蓝牙唤醒进程。在下一计划蓝牙唤醒时间248,蓝牙模块142将打开并开始蓝牙唤醒进程250。在当前蓝牙时间246和下一计划蓝牙唤醒时间之间有一时间间隔252。时间间隔252是当前蓝牙时间246和下一计划蓝牙唤醒时间248之间的时间长度。蓝牙模块142在时间248后面的258的规则的时间间隔上重复其唤醒进程,如由256、260所示。如果,例如,蓝牙模块142设置为每0.64秒执行蓝牙唤醒进程,那么时间间隔258和相继的这种时间间隔都等于0.64秒。
比较图2A-2B,间隔252大于间隔210。换句话说,下一计划蓝牙唤醒进程250将在下一计划CDMA唤醒进程214之后发生。这导致无线移动设备140供电上的巨大消耗,因为它要求蓝牙模块142和CDMA模块144独立地开启执行其各自的唤醒进程。
图2C示出蓝牙模块142的唤醒时间表同步后的时间序列。纵轴表示蓝牙模块142的开/关状态,且横轴对应于时间。在图2B中,蓝牙时钟258翻转的时间(即,寻呼扫描模式频率变化)由248标记。时间间隔253是在当前蓝牙时间246和翻转时间249之间测量的。另一间隔259是在下一计划CDMA唤醒时间208和翻转时间249之间测量的。为保证翻转与时间208一致(只在唤醒进程250、256、260构成寻呼或查询扫描模式唤醒进程时要求),且预计蓝牙唤醒进程250的开始将同步于CDMA唤醒进程214的开始,蓝牙时钟258因此按量259提前。量259可以用各种方法计算,诸如(1)通过从253减去210,或(2)通过将时间249减少当前蓝牙时钟246(以计算253),并进一步将它减少208和206之差(也就是210)。在按量259提前时钟158之后的当前蓝牙时间由图2C的276示出。时间276是指提前后的当前时间。因此时钟158在时钟提前时间246的值(图2B)由246a表示(图2C)。
如图2C中所示,下一排定时间的蓝牙唤醒进程已经从250到280被“重新安排”作为同步的结果,并且现在被设置为在同步的时间278执行。这样,蓝牙模块142不是在如图2B所示的时间248执行下一蓝牙唤醒进程,同步蓝牙模块142的唤醒时间表至CDMA模块144的唤醒时间表的结果是下一蓝牙唤醒进程250的临时变动,这使得被重新同步的下一蓝牙唤醒进程280与下一CDMA唤醒进程214的同时被执行。
更具体地,同步要求下一蓝牙唤醒时间278从老的蓝牙时间277被重置到将来的259加210的时间间隔,或者从提前后的当前时间276到将来的时间间隔210。这导致蓝牙唤醒进程280和CDMA唤醒进程214分别在时间278、208的并发执行。在缺乏蓝牙时钟提前时,下一计划蓝牙唤醒时间按将来的时间间隔282(等于210)来安排,如从未提前的蓝牙当前时间246所测。
前述的蓝牙唤醒进程280与CDMA唤醒进程214的同步意味着蓝牙模块142和CDMA模块144可以同时上电执行它们的唤醒进程,导致无线移动设备140功耗可观地减少。而且,通过提前蓝牙时钟158来保证翻转发生在278而不是280期间,更多的能量被保存下来,因为寻呼/查询扫描频率将不能在280期间改变。
蓝牙唤醒进程286在时间长度284流逝后跟着蓝牙唤醒进程280,且蓝牙唤醒进程290跟随在另一流逝的时间288之后。图2C的蓝牙唤醒进程286和290表示图2B的蓝牙唤醒进程256和260,并向前移作为蓝牙唤醒进程280和CDMA唤醒进程214的同步和结果。
运行-按步顺序
图3示出无线移动设备中同步蓝牙模块和CDMA模块的唤醒时间表的序列300。为便于说明,但在没有任何想要限制的情况下,图3的例子在上述图1的硬件环境中描述。
步骤300起始于步骤310,例如,无线移动设备140不在蓝牙网络中通信,而且也不在CDMA网络中通信。换句话说,进程在处理器146探测到蓝牙模块142在睡眠模式而CDMA模块在空闲模式时开始。
在步骤312,处理器146确定当前蓝牙时间和当前CDMA时间。例如,为确定当前蓝牙时间,处理器146可参考时钟158。为确定当前CDMA时间,处理器146可参考时钟153,或触发CDMA模块144通过使用由基站发送并由CDMA模块144接收的CDMA导频信号中的数据确定时间。在一个实施例中,时间基准160为CDMA模块144和蓝牙模块142提供共同的时间源,这样两个模块的“当前”时间在没有来自外部源的重叠的正确的时间信号时是相同的。
在步骤313,处理器146检查连续的计划CDMA唤醒进程之间(例如214、216之间)的时间间隔和连续的计划蓝牙唤醒进程之间(例如250、256之间)的时间间隔。在CDMA的情况下,这由所设的SCI规定;在蓝牙情况下,这个时间间隔由蓝牙模块142的编程或与另一蓝牙模块通信的要求规定。在检查这些时间间隔后,处理器146调整蓝牙唤醒时间间隔,因而CDMA唤醒时间间隔是蓝牙唤醒时间间隔的整数倍,或者因而蓝牙唤醒时间间隔是CDMA唤醒时间间隔的整数倍。以这种方法,在第一蓝牙唤醒进程已同步到下一CDMA唤醒进程后(如下面要讨论的),后继的蓝牙和CDMA唤醒进程彼此超出同步将不发生,除非达到一种类型发生太频繁的程度。在改变蓝牙唤醒时间间隔上由处理器146实施的策略依赖于期望的重复各自CDMA和蓝牙唤醒进程的频率,也就是,以上讨论的SCI和其它蓝牙要求。步骤313以后的执行可能被跳过,如果步骤316导向步骤323、最终通过步骤312返回到步骤313。
在步骤314,处理器146确定下一计划蓝牙唤醒时间和下一计划CDMA唤醒时间。下一计划蓝牙唤醒时间根据由蓝牙模块142执行的在前蓝牙唤醒进程的时间确定。下一计划蓝牙唤醒时间也是蓝牙唤醒进程将要执行的频度,例如,每1.28秒、每0.64秒、每0.32秒等,的函数。在一个实施例中,处理器146监视在前的蓝牙唤醒进程的时间,并根据蓝牙唤醒进程设置的执行频度通过在上一蓝牙唤醒进程的时间上加上,例如,1.28秒、0.64秒或0.32秒来计算下一计划蓝牙唤醒时间。以类似的方式,处理器146还在步骤314中计算下一计划CDMA唤醒时间。例如,处理器146可根据CDMA模块144的SCI设置通过监视上一CDMA唤醒时间并随后加上,例如,1.28秒、2.56秒或者5.12秒,计算下一计划CDMA唤醒时间。
在步骤316,处理器146确定哪个是优先的--下一计划CDMA唤醒时间208还是下一计划蓝牙唤醒时间248。也就是,如果当前蓝牙时间248加上下一计划CDMA时间208与当前CDMA时间206之间的间隔210大于时间248,这表明排定时间要由CDMA模块144执行的下一CDMA唤醒进程,是在排定时间要由蓝牙模块142执行的下一蓝牙唤醒进程之后。在这样一个实例中,通过将下一计划唤醒时间重新安排得无论多早,都没有要实现的优点,因为它已早于下一计划CDMA唤醒时间。在这种情况下,步骤316进行至步骤323,在其中蓝牙模块142和CDMA模块144等待,并随后在如下面讨论的它们预定的时间执行它们各自的唤醒进程。另一方面,如果步骤316发现下一计划蓝牙唤醒时间是在下一计划CDMA唤醒时间之后(如图2A-2B所示),那么进程300进行到步骤319。
在步骤319,处理器146提前蓝牙时钟158,以防止在蓝牙唤醒进程250期间可能发生的翻转(被重新安排为280)。这通过将蓝牙时钟158按时间量259来提前完成。可任选地,时钟158的调整可有条件的执行,即,仅当翻转否则将在蓝牙唤醒进程280期间发生时。一较简单的选项,它不需要考虑进程280的长度,只是限制时钟提前到蓝牙时钟翻转将在时间208之后发生的情况,因此假设最坏的情况是翻转将在进程280期间发生。
在所示实施例中,如果合适只执行步骤319。也就是,如果蓝牙模块142是在寻呼扫描模式、查询扫描模式或者其中还没有与另一蓝牙设备建立通信的另一睡眠模式时(以及还没有通过参考来自另一蓝牙设备的信号建立蓝牙时间),仅执行步骤319。在保持、侦听或停放模式中,蓝牙时钟158的重置跳过,因为时钟自动地按照蓝牙主设备设置,且不能自由地提前它。另外,在同一睡眠模式期间,第二次和后续每次通过序列300中的进行过程中(通过316、323、312等)可跳过步骤319,假设第一次执行步骤319已有设置蓝牙时钟的效果,因而翻转将不在将来的唤醒进程期间发生。
在步骤320,处理器146使下一计划蓝牙唤醒时间248与下一计划CDMA唤醒时间208同步,也就是,重新安排蓝牙唤醒发生在278而不是248。换句话说,由于处理器146在步骤316确定下一CDMA唤醒进程214被安排在下一蓝牙唤醒进程250之前执行,处理器146在步骤320“重新安排”下一蓝牙唤醒进程250到280,它将与下一CDMA唤醒进程214同时执行。
在步骤322,蓝牙模块142等待并随后当到达下一计划蓝牙唤醒时间278时执行蓝牙唤醒进程280。在步骤322,CDMA模块144也执行其CDMA唤醒进程。这里,蓝牙模块142和CDMA模块144在同时执行它们的唤醒进程,由于两个模块同时加电,大大减少了无线移动设备140的功耗。有利地,在寻呼扫描模式或查询扫描模式的情况中,预先执行步骤319,以便重新安排时钟翻转发生在278,且因此处理器146可通过蓝牙唤醒进程280睡眠,同时蓝牙模块142扫描其它蓝牙设备,因而有利于设备140中的能量保存。例程300结束于步骤322,其中CDMA和蓝牙唤醒进程(现在已同步)如排定时间的那样重复,直到模块142、144之一或两者被唤醒。
如上所述,如果下一计划蓝牙唤醒进程已被安排为早于下一计划CDMA唤醒进程发生,步骤316进行至步骤323。在这种情况下,将下一计划蓝牙唤醒时间安排得无论多早,都没有要实现的优点,因为它已早于下一计划CDMA唤醒时间。这样,执行步骤323,其中蓝牙模块142和CDMA模块144等待,并且随后在它们安排的时间以与步骤322相同的方式执行它们各自的唤醒进程。在步骤323之后,例程300返回到步骤312以判断下一计划蓝牙和CDMA唤醒进程。进程300继续直到,例如,蓝牙模块142停止睡眠模式或者CDMA模块144停止空闲模式。
其它实施例
各种所揭示实施例的前面的描述提供来使本领域技术人员能够制作或使用本发明。对本领域那些熟练技术人员而言对这些实施例的各种修改将是显而易见的,而且这里定义的通用原理可应用于其它实施例,而不脱离本发明的精神与范围。因而,本发明不打算限制在这里所示的实施例,但要给予与这里揭示的原理和新颖特征一致的最宽范围。
本领域那些普通熟练技术人员将认识到信息和信号可使用各种不同工艺和技术的任一种来表示。例如,在上述描述中可能提及的数据、指令、命令、信息、信号、比特、符号和芯片可用电压、电流、电磁波、磁场或粒子、光场或粒子、或者任何上述的结合。
那些普通技术人员将进一步意识到结合这里所揭示的实施例描述的各种说明性逻辑方框、模块、电路和算法步骤可实现为电子硬件、计算机软件、或两者的结合。为说明一些示例性实施例,本发明的功能方面已结合各种方框、模块、电路和步骤描述。不论这种功能实现为硬件、软件或两者都依赖于特定应用和加在整个系统上的设计约束。熟练的技工可对每个特定应用以各种不同的方式实现所述功能,但这样的实现决定不应解释为导致脱离本发明范围。

Claims (24)

1.一种方法,用于在双模式蓝牙/无线设备中,为蓝牙模块和无线模块同步空闲模式唤醒时间,所述方法包括下列操作:
判断是否下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间;
如果下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间,执行下列操作:
判断下一蓝牙扫描频率改变是否被安排在下一计划无线模块唤醒时间之后发生,并且仅在这样的事件中,执行下列操作:重新安排下一蓝牙扫描频率改变大体发生在下一计划无线模块唤醒时间;
重新安排下一计划蓝牙模块唤醒时间大体发生在下一计划无线模块唤醒时间。
2.如权利要求1所述的方法,所述判断下一蓝牙扫描频率改变是否被安排在下一计划无线模块唤醒时间之后发生的操作包括下列操作:
判断下一蓝牙扫描频率改变是否被安排在开始于下一计划蓝牙模块唤醒时间的蓝牙唤醒/扫描进程期间内发生。
3.如权利要求1所述的方法,所述操作还包括:
大体在下一计划蓝牙模块唤醒时间开始预定的蓝牙唤醒进程;
大体在下一计划无线模块唤醒时间开始预定的无线唤醒进程。
4.如权利要求1所述的方法,所述操作还包括:
如果下一计划无线模块唤醒时间比下一个计划蓝牙模块唤醒时间晚,则保持下一计划蓝牙模块唤醒时间不变。
5.如权利要求1所述的方法,所述操作还包括下列之一:
调整连续的计划蓝牙模块唤醒时间之间的延迟时间间隔为连续的无线模块唤醒时间之间的延迟时间间隔的整数倍;
调整连续的计划蓝牙模块唤醒时间之间的延迟时间间隔,使得连续的无线模块唤醒时间之间的延迟时间间隔为连续的蓝牙模块唤醒时间之间的延迟时间间隔的整数倍。
6.如权利要求1所述的方法,所述蓝牙模块包括一时钟,所述重新安排下一蓝牙扫描频率改变的操作包括提前所述时钟,使得预定的翻转事件大体发生在下一计划无线模块唤醒时间。
7.一方法,用于在双模式蓝牙/无线设备中,为蓝牙模块和无线模块同步空闲模式唤醒时间,所述方法包括下列操作:
判断是否下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间;
如果下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间,执行下列操作:
只有当蓝牙模块不处在与另一蓝牙设备通信的睡眠模式中并且下一蓝牙时钟翻转事件被安排在下一计划无线模块唤醒时间之后时,提前蓝牙时钟,使得翻转事件将大体发生在下一计划无线模块唤醒时间;
重新安排下一计划蓝牙模块唤醒时间大体发生在下一计划无线模块唤醒时间。
8.一种用于数字数据处理机的管理配置设备,当该设备耦合到所述数字数据处理机时执行在双模式蓝牙/无线设备中为蓝牙模块和无线模块同步空闲模式唤醒时间的操作,所述管理配置设备包括:
配置所述数字数据处理机以判断是否下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间的管理配置模块;
配置所述数字数据处理机,如果下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间,则执行下列各操作的管理配置模块:
判断下一蓝牙扫描频率改变是否被安排在下一计划无线模块唤醒时间之后发生,并且仅在这样的事件中,执行下列操作:重新安排下一蓝牙扫描频率改变大体发生在下一计划无线模块唤醒时间;
重新安排下一计划蓝牙模块唤醒时间大体发生在下一计划无线模块唤醒时间。
9.如权利要求8的管理配置设备,所述判断下一蓝牙扫描频率改变是否被安排在下一计划无线模块唤醒时间之后发生的操作包括下列操作:
判断下一蓝牙扫描频率改变是否被安排在开始于下一计划蓝牙模块唤醒时间的蓝牙唤醒/扫描进程期间内发生。
10.如权利要求8所述的管理配置设备,所述操作还包括:
大体在下一计划蓝牙模块唤醒时间开始预定的蓝牙唤醒进程;
大体在下一计划无线模块唤醒时间开始预定的无线唤醒进程。
11.如权利要求8所述的管理配置设备,所述配置执行各操作的管理配置模块还执行:
如果下一计划无线模块唤醒时间比下一个计划蓝牙模块唤醒时间晚,则保持下一计划蓝牙模块唤醒时间不变。
12.如权利要求8所述的管理配置设备,所述配置执行各操作的管理配置模块还执行下列之一:
调整连续的计划蓝牙模块唤醒时间之间的延迟时间间隔为连续的无线模块唤醒时间之间的延迟时间间隔的整数倍;
调整连续的计划蓝牙模块唤醒时间之间的延迟时间间隔,使得连续的无线模块唤醒时间之间的延迟时间间隔为连续的蓝牙模块唤醒时间之间的延迟时间间隔的整数倍。
13.如权利要求8所述的管理配置设备,所述蓝牙模块包括一时钟,所述重新安排下一蓝牙扫描频率改变的操作包括提前所述时钟,使得预定的翻转事件大体发生在下一计划无线模块唤醒时间。
14.一种用于数字数据处理机的管理配置设备,当该设备耦合到所述数字数据处理机时执行在双模式蓝牙/无线设备中为蓝牙模块和无线模块同步空闲模式唤醒时间的操作,所述管理配置设备包括:
配置所述数字数据处理机以判断是否下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间的管理配置模块;
配置所述数字数据处理机,如果下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间,则执行下列操作的管理配置模块:
只有当蓝牙模块不处在与另一蓝牙设备通信的睡眠模式中并且下一蓝牙时钟翻转事件被安排在下一计划无线模块唤醒时间之后时,提前蓝牙时钟,使得翻转事件将大体发生在下一计划无线模块唤醒时间;
重新安排下一计划蓝牙模块唤醒时间大体发生在下一计划无线模块唤醒时间。
15.一种包括多个以电子方式互连的传导元件的设备,被配置为执行用以在双模式蓝牙/无线设备中,为蓝牙模块和无线模块同步空闲模式唤醒时间的操作,所述设备包括:
用于判断是否下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间的装置;
用于如果下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间,则执行下列操作的装置:
判断下一蓝牙扫描频率改变是否被安排在下一计划无线模块唤醒时间之后发生,并且仅在这样的事件中,执行下列操作:重新安排下一蓝牙扫描频率改变大体发生在下一计划无线模块唤醒时间;
重新安排下一计划蓝牙模块唤醒时间大体发生在下一计划无线模块唤醒时间。
16.如权利要求15的设备,所述判断下一蓝牙扫描频率改变是否被安排在下一计划无线模块唤醒时间之后发生的操作包括下列操作:
判断下一蓝牙扫描频率改变是否被安排在开始于下一计划蓝牙模块唤醒时间的蓝牙唤醒/扫描进程期间内发生。
17.如权利要求15所述的设备,所述操作还包括:
大体在下一计划蓝牙模块唤醒时间开始预定的蓝牙唤醒进程;
大体在下一计划无线模块唤醒时间开始预定的无线唤醒进程。
18.如权利要求15所述的设备,所述配置执行各操作的装置还执行:
如果下一计划无线模块唤醒时间比下一个计划蓝牙模块唤醒时间晚,则保持下一计划蓝牙模块唤醒时间不变。
19.如权利要求15所述的设备,所述配置执行各操作的装置还执行下列之一:
调整连续的计划蓝牙模块唤醒时间之间的延迟时间间隔为连续的无线模块唤醒时间之间的延迟时间间隔的整数倍;
调整连续的计划蓝牙模块唤醒时间之间的延迟时间间隔,使得连续的无线模块唤醒时间之间的延迟时间间隔为连续的蓝牙模块唤醒时间之间的延迟时间间隔的整数倍。
20.如权利要求15所述的设备,所述蓝牙模块包括一时钟,所述重新安排下一蓝牙扫描频率改变的操作包括提前所述时钟,使得预定的翻转事件大体发生在下一计划无线模块唤醒时间。
21.一种包括多个以电子方式互连的传导元件的设备,被配置为执行用以在双模式蓝牙/无线设备中,为蓝牙模块和无线模块同步空闲模式唤醒时间的操作,所述设备包括:
用于判断是否下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间的装置;
用于如果下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间,则执行下列操作的装置:
只有当蓝牙模块不处在与另一蓝牙设备通信的睡眠模式中并且下一蓝牙时钟翻转事件被安排在下一计划无线模块唤醒时间之后时,提前蓝牙时钟,使得翻转事件将大体发生在下一计划无线模块唤醒时间;
重新安排下一计划蓝牙模块唤醒时间大体发生在下一计划无线模块唤醒时间。
22.一无线移动装置,包括:
一无线模块,配置为在预定的环境下进入空闲模式,在所述空闲模式期间无线模块在下一计划无线模块唤醒时间开始无线唤醒过程;
蓝牙模块,用于在预定的条件下进入睡眠模式,在所述睡眠模式期间,蓝牙模块在下一计划蓝牙模块唤醒时间开始空闲模式蓝牙唤醒过程;
处理电路,耦合到无线模块和蓝牙模块,配置为通过执行下列操作同步蓝牙模块和无线模块的唤醒时间:
判断是否下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间;
如果下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间,执行下列操作:
判断下一蓝牙扫描频率改变是否被安排在下一计划无线模块唤醒时间之后发生,并且仅在这样的事件中,执行下列操作:重新安排下一蓝牙扫描频率改变大体发生在下一计划无线模块唤醒时间;
重新安排下一计划蓝牙模块唤醒时间大体发生在下一计划无线模块唤醒时间。
23.一无线移动装置,包括:
无线模块,用于在预定的环境下进入空闲模式,以及在空闲模式期间在下一计划无线模块唤醒时间开始无线唤醒进程;
蓝牙模块,用于在预定的条件下进入睡眠模式,在所述睡眠模式期间,蓝牙模块在下一计划蓝牙模块唤醒时间开始蓝牙唤醒过程;
处理电路,耦合到无线模块和蓝牙模块,被配置为执行下列操作:将每一个下一计划蓝牙模块唤醒时间同步于安排在所述下一计划蓝牙模块唤醒时间之前的任何一个下一计划无线模块唤醒时间,判断下一蓝牙扫描频率改变是否被安排在下一计划无线模块唤醒时间之后发生,并且仅在这样的事件中,执行下列操作:重新安排下一蓝牙扫描频率改变大体发生在下一计划无线模块唤醒时间。
24.一无线移动装置,包括:
无线模块,用于在预定的环境下进入空闲模式,以及在空闲模式期间在下一计划无线模块唤醒时间开始无线唤醒进程;
蓝牙模块,用于在预定的条件下进入睡眠模式,在所述睡眠模式期间,蓝牙模块在下一计划蓝牙模块唤醒时间开始蓝牙唤醒过程;
蓝牙时钟,用于提供蓝牙时间的指示;
处理电路,耦合到无线模块和蓝牙模块,配置为执行下列操作:
将每一个下一计划蓝牙模块唤醒时间同步于安排在所述下一计划蓝牙模块唤醒时间之前的任何一个下一计划无线模块唤醒时间,
判断下列预定的条件是否存在:(1)下一计划无线模块唤醒时间早于下一计划蓝牙模块唤醒时间,(2)蓝牙模块不处于与另一蓝牙设备通信的睡眠模式中,以及(3)蓝牙时钟的下一翻转事件被安排在下一计划无线模块唤醒时间之后发生;
只有当预定的条件存在时,提前蓝牙时钟,使得翻转大体将发生在下一计划无线模块唤醒时间。
CNB02820249XA 2001-08-15 2002-08-13 双模式蓝牙/无线设备以及同步该设备的方法 Expired - Lifetime CN100380825C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/930,759 US6968219B2 (en) 2001-08-15 2001-08-15 Method for reducing power consumption in bluetooth and CDMA modes of operation
US09/930,759 2001-08-15
US10/077,123 US6741836B2 (en) 2001-08-15 2002-02-15 Dual mode bluetooth/wireless device with power conservation features
US10/077,123 2002-02-15

Publications (2)

Publication Number Publication Date
CN1568579A CN1568579A (zh) 2005-01-19
CN100380825C true CN100380825C (zh) 2008-04-09

Family

ID=26758904

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB02820249XA Expired - Lifetime CN100380825C (zh) 2001-08-15 2002-08-13 双模式蓝牙/无线设备以及同步该设备的方法

Country Status (9)

Country Link
US (1) US7079811B2 (zh)
EP (1) EP1417812B1 (zh)
JP (1) JP4236577B2 (zh)
CN (1) CN100380825C (zh)
AT (1) ATE320687T1 (zh)
AU (1) AU2002326632A1 (zh)
DE (1) DE60209922T2 (zh)
TW (1) TWI256221B (zh)
WO (1) WO2003017596A2 (zh)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6968219B2 (en) * 2001-08-15 2005-11-22 Qualcomm, Incorporated Method for reducing power consumption in bluetooth and CDMA modes of operation
KR100416263B1 (ko) * 2001-11-30 2004-01-31 삼성전자주식회사 비콘간격의 조절이 가능한 무선통신기기 및 그 방법
US7340266B2 (en) * 2002-12-20 2008-03-04 Motorola, Inc. Method and apparatus for communicating with multimode receiving device in non-synchronized wireless systems
US6980839B2 (en) * 2003-04-30 2005-12-27 Sony Corporation Apparatus, system and method for use in powering on a remote wireless device
US7729711B2 (en) * 2003-05-09 2010-06-01 Intel Corporation Reducing interference from closely proximate wireless units
US7089035B2 (en) 2003-10-28 2006-08-08 Omron Corporation Wireless operating system
US8385985B2 (en) 2003-11-25 2013-02-26 Qualcomm Incorporated Method for reducing power consumption in a multi-mode device
US8457552B1 (en) * 2004-01-20 2013-06-04 Qualcomm Incorporated Method and apparatus for reduced complexity short range wireless communication system
CN100397305C (zh) * 2004-06-24 2008-06-25 光宝科技股份有限公司 无线传输模块及其方法及应用该模块/方法的装置
US20060013160A1 (en) * 2004-07-19 2006-01-19 Haartsen Jacobus C Peer connectivity in ad-hoc communications systems
US8380125B2 (en) * 2004-09-01 2013-02-19 Kyocera Corporation Systems and methods for bluetooth resource conservation
WO2006080084A1 (ja) 2005-01-28 2006-08-03 Fujitsu Limited 移動機
US7463861B2 (en) 2005-03-07 2008-12-09 Broadcom Corporation Automatic data encryption and access control based on bluetooth device proximity
US7925212B2 (en) 2005-03-07 2011-04-12 Broadcom Corporation Automatic network and device configuration for handheld devices based on bluetooth device proximity
US7546149B2 (en) * 2005-03-08 2009-06-09 Motorola, Inc. Deep sleep mode for portable communication device
US7573865B2 (en) * 2005-09-20 2009-08-11 Freescale Semiconductor, Inc. Method of synchronizing a wireless device using an external clock
CN1953406B (zh) * 2005-10-19 2011-06-01 株式会社Ntt都科摩 接入混合网的方法和网关设备、无线终端以及通信系统
US8644192B2 (en) * 2005-10-21 2014-02-04 Honeywell International Inc. Wireless transmitter initiated communication methods
US8811231B2 (en) * 2005-10-21 2014-08-19 Honeywell International Inc. Wireless transmitter initiated communication systems
US8134977B2 (en) 2005-10-27 2012-03-13 Qualcomm Incorporated Tune-away protocols for wireless systems
US8068835B2 (en) * 2005-10-27 2011-11-29 Qualcomm Incorporated Tune-away and cross paging systems and methods
US8229433B2 (en) 2005-10-27 2012-07-24 Qualcomm Incorporated Inter-frequency handoff
US9247467B2 (en) 2005-10-27 2016-01-26 Qualcomm Incorporated Resource allocation during tune-away
EP1796293B1 (en) * 2005-12-07 2012-09-12 Broadcom Corporation System and method providing power-save operation in a multimode communication device
US20070142098A1 (en) * 2005-12-21 2007-06-21 Arya Behzad System and method providing power-save operation in a multimode communication device
US8094631B2 (en) 2005-12-09 2012-01-10 Marvell World Trade Ltd. Coexistence system and method for wireless network devices
US7643856B2 (en) * 2005-12-09 2010-01-05 Motorola, Inc. Method for reducing apparent latency in linking a call received at a mobile communication device to a remote audio processor
JP4976419B2 (ja) 2006-01-11 2012-07-18 クゥアルコム・インコーポレイテッド 無線ピア・ツー・ピアネットワークにおける無線装置発見
US8811369B2 (en) * 2006-01-11 2014-08-19 Qualcomm Incorporated Methods and apparatus for supporting multiple communications modes of operation
US7809399B2 (en) 2006-02-10 2010-10-05 Syntek International Holding Ltd. Method and device for providing multiple communication protocols with a single transceiver
KR100710343B1 (ko) * 2006-03-20 2007-04-23 엘지전자 주식회사 이동통신 단말기의 수신 서치 타이밍 동기화 방법
US8300565B2 (en) * 2006-05-08 2012-10-30 Nokia Corporation Multi mode host interface for and remote register and memory access of a wireless communication module
GB2439122A (en) 2006-06-09 2007-12-19 Symbian Software Ltd Reducing power consumption of a mobile device
FI20065454A0 (fi) * 2006-06-29 2006-06-29 Nokia Corp Kontrollimenetelmä, kontrolliväline, kommunikaatioväline, tietokoneohjelma, tietokoneohjelman jakeluväline ja tiedonkäsittelymenetelmä
US7885616B2 (en) * 2006-08-16 2011-02-08 Research In Motion Limited Method and system for coordinating necessary radio transmission events with unrelated opportunistic events to optimize battery life and network resources
DE602006002395D1 (de) * 2006-08-16 2008-10-02 Research In Motion Ltd Verfahren und System zur Koordinierung von notwendigen Funkübertragungsereignissen mit unzusammenhängenden opportunistischen Ereignissen zur Optimierung der Batterieausdauer und Netzwerkbetriebsmittel
JP4944593B2 (ja) * 2006-12-21 2012-06-06 キヤノン株式会社 画像形成装置及びその制御方法及びコンピュータプログラム
JP4339896B2 (ja) 2007-01-31 2009-10-07 株式会社日立製作所 無線通信システム及び無線通信端末
US7809012B2 (en) * 2007-02-16 2010-10-05 Nokia Corporation Managing low-power wireless mediums in multiradio devices
US7683851B2 (en) * 2007-03-19 2010-03-23 Broadcom Corporation Method and system for using a single transformer for FM transmit and FM receive functions
US8751841B2 (en) * 2007-05-29 2014-06-10 Freescale Semiconductor, Inc. Data processing system, method for processing data and computer program product
US8233470B2 (en) * 2007-06-28 2012-07-31 Intel Corporation Multi-radio wireless communication device method for synchronizing wireless network and bluetooth communications
US8369782B1 (en) 2007-08-13 2013-02-05 Marvell International Ltd. Bluetooth wideband scan mode
TWI466478B (zh) * 2007-09-14 2014-12-21 Koninkl Philips Electronics Nv 致能非同步無線裝置間的通信之裝置及方法
US8577305B1 (en) 2007-09-21 2013-11-05 Marvell International Ltd. Circuits and methods for generating oscillating signals
US20090086695A1 (en) * 2007-09-27 2009-04-02 Gilb James P K Mechanism for communication with multiple wireless video area networks
US8457554B2 (en) * 2007-11-13 2013-06-04 Broadcom Corporation Method and system for a continuing scan in a bluetooth wireless system
US8588705B1 (en) 2007-12-11 2013-11-19 Marvell International Ltd. System and method of determining Power over Ethernet impairment
CN101232686B (zh) * 2008-02-27 2011-01-19 中兴通讯股份有限公司 一种多模手机蓝牙免提语音切换的实现方法
US8149804B2 (en) * 2008-04-04 2012-04-03 Intel Corporation Multi-transceiver wireless communication device and methods for operating during device discovery and connection establishment
US8595501B2 (en) 2008-05-09 2013-11-26 Qualcomm Incorporated Network helper for authentication between a token and verifiers
US8971955B2 (en) * 2008-05-11 2015-03-03 Qualcomm Incorporated Systems and methods for multi-mode terminal operations in overlaid networks
US8315564B2 (en) * 2008-06-16 2012-11-20 Marvell World Trade Ltd. Short-range wireless communication
US8396014B2 (en) * 2008-06-25 2013-03-12 Intel Corporation Techniques for management of shared resources in wireless multi-communication devices
US8600324B1 (en) 2008-06-27 2013-12-03 Marvell International Ltd Circuit and method for adjusting a digitally controlled oscillator
US8472968B1 (en) 2008-08-11 2013-06-25 Marvell International Ltd. Location-based detection of interference in cellular communications systems
US9288764B1 (en) 2008-12-31 2016-03-15 Marvell International Ltd. Discovery-phase power conservation
US8265661B2 (en) * 2009-02-11 2012-09-11 Qualcomm Incorporated Methods and systems for idle mode operation in multi-mode mobile stations
JP4981078B2 (ja) * 2009-02-13 2012-07-18 株式会社日立製作所 無線通信システム及び無線通信端末
US8472427B1 (en) 2009-04-06 2013-06-25 Marvell International Ltd. Packet exchange arbitration for coexisting radios
US8532041B1 (en) 2009-04-24 2013-09-10 Marvell International Ltd. Method for transmitting information in a regulated spectrum and network configured to operate in the regulated spectrum
US20100279714A1 (en) * 2009-05-01 2010-11-04 Qualcomm Incorporated Methods and systems for cdma evdo paging interval alignment with an overlaid wimax network
US9313800B2 (en) * 2009-06-23 2016-04-12 Nokia Technologies Oy Method and apparatus for optimizing energy consumption for wireless connectivity
US20110021147A1 (en) * 2009-07-21 2011-01-27 Tout Walid R System and method for determining connectivity status of short range wireless devices
US9066369B1 (en) 2009-09-16 2015-06-23 Marvell International Ltd. Coexisting radio communication
US8767771B1 (en) 2010-05-11 2014-07-01 Marvell International Ltd. Wakeup beacons for mesh networks
US10721782B2 (en) * 2010-09-02 2020-07-21 Texas Instruments Incorporated Power efficient tunneled direct link setup apparatus, systems and methods
WO2012054210A1 (en) 2010-10-20 2012-04-26 Marvell World Trade Ltd. Pre-association discovery
US8615277B2 (en) * 2010-11-12 2013-12-24 Mediatek Inc. Electronic device having functional blocks individually controlled to selectively enter power-saving mode and related power control method thereof
US8750278B1 (en) 2011-05-26 2014-06-10 Marvell International Ltd. Method and apparatus for off-channel device invitation
US8983557B1 (en) 2011-06-30 2015-03-17 Marvell International Ltd. Reducing power consumption of a multi-antenna transceiver
TWI432058B (zh) * 2011-08-10 2014-03-21 Acer Inc 低耗能無線通訊方法
US8799697B2 (en) * 2011-09-26 2014-08-05 Qualcomm Incorporated Operating system synchronization in loosely coupled multiprocessor system and chips
US9125216B1 (en) 2011-09-28 2015-09-01 Marvell International Ltd. Method and apparatus for avoiding interference among multiple radios
US8995908B2 (en) * 2012-01-25 2015-03-31 Blackberry Limited Mobile communications system providing enhanced out of band (OOB) bluetooth pairing and related methods
WO2013119810A1 (en) 2012-02-07 2013-08-15 Marvell World Trade Ltd. Method and apparatus for multi-network communication
US20130201883A1 (en) * 2012-02-08 2013-08-08 Qualcomm Incorporated Multi-radio coexistence
US9450649B2 (en) 2012-07-02 2016-09-20 Marvell World Trade Ltd. Shaping near-field transmission signals
EP2733995B1 (en) 2012-08-31 2017-08-30 Huawei Device Co., Ltd. Control method and device for awaking intelligent terminal
US9037086B2 (en) * 2012-11-30 2015-05-19 Mediatek Inc. Method for controlling bluetooth device for power conservation
WO2015030783A1 (en) 2013-08-29 2015-03-05 Bodhi Technology Ventures Llc Multi-device wireless disable and enable
US9756606B2 (en) 2014-05-15 2017-09-05 Mitsubishi Electric Corporation Wireless communication device
KR20160026514A (ko) 2014-09-01 2016-03-09 삼성전자주식회사 스캔 기능 활성화 방법 및 장치
US9538468B2 (en) * 2014-12-23 2017-01-03 Fortinet, Inc. Power saving in Wi-Fi devices utilizing bluetooth
CN105877728B (zh) * 2016-05-24 2019-04-12 孙世宇 一种基于超低功耗蓝牙的无线心率计系统及其控制方法
US11558725B2 (en) 2016-07-27 2023-01-17 Texas Instruments Incorporated Event clustering for BLE-mesh devices
CN107947889B (zh) * 2017-12-18 2019-07-02 京信通信系统(中国)有限公司 一种时钟频偏校准的方法及设备
CN108377484B (zh) * 2018-02-01 2021-06-04 海信视像科技股份有限公司 一种蓝牙控制器功耗控制方法和装置
CN110572806A (zh) * 2019-09-12 2019-12-13 北京汇通天下物联科技有限公司 基于蓝牙的温控中继系统时间校对方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1247654A (zh) * 1996-12-23 2000-03-15 艾利森电话股份有限公司 信道跳变通信系统的访问技术
WO2000022858A1 (en) * 1998-10-09 2000-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Access technique of channel hopping communications system
EP1089578A2 (en) * 1999-09-29 2001-04-04 Kabushiki Kaisha Toshiba Mobile radio communication terminal that suppresses an increase in power consumption

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6473412B1 (en) * 1998-04-03 2002-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Uncoordinated frequency hopping cellular system
JP4116212B2 (ja) * 1999-12-28 2008-07-09 株式会社東芝 通信装置およびその制御方法
US6968219B2 (en) * 2001-08-15 2005-11-22 Qualcomm, Incorporated Method for reducing power consumption in bluetooth and CDMA modes of operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1247654A (zh) * 1996-12-23 2000-03-15 艾利森电话股份有限公司 信道跳变通信系统的访问技术
WO2000022858A1 (en) * 1998-10-09 2000-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Access technique of channel hopping communications system
EP1089578A2 (en) * 1999-09-29 2001-04-04 Kabushiki Kaisha Toshiba Mobile radio communication terminal that suppresses an increase in power consumption

Also Published As

Publication number Publication date
ATE320687T1 (de) 2006-04-15
WO2003017596A2 (en) 2003-02-27
CN1568579A (zh) 2005-01-19
EP1417812B1 (en) 2006-03-15
US7079811B2 (en) 2006-07-18
JP4236577B2 (ja) 2009-03-11
DE60209922D1 (de) 2006-05-11
DE60209922T2 (de) 2006-11-23
US20040185857A1 (en) 2004-09-23
WO2003017596A3 (en) 2003-11-13
JP2005500745A (ja) 2005-01-06
AU2002326632A1 (en) 2003-03-03
TWI256221B (en) 2006-06-01
EP1417812A2 (en) 2004-05-12

Similar Documents

Publication Publication Date Title
CN100380825C (zh) 双模式蓝牙/无线设备以及同步该设备的方法
US6741836B2 (en) Dual mode bluetooth/wireless device with power conservation features
EP1509822B1 (en) Synchronizing clock enablement in an electronic device
AU763753B2 (en) Technique for reduction of awake time in a wireless communication device utilizing slotted paging
US8385985B2 (en) Method for reducing power consumption in a multi-mode device
CN1247654A (zh) 信道跳变通信系统的访问技术

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1070487

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1070487

Country of ref document: HK

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080409