CN100356448C - 磁盘驱动器及其读出磁头 - Google Patents

磁盘驱动器及其读出磁头 Download PDF

Info

Publication number
CN100356448C
CN100356448C CNB2004100619338A CN200410061933A CN100356448C CN 100356448 C CN100356448 C CN 100356448C CN B2004100619338 A CNB2004100619338 A CN B2004100619338A CN 200410061933 A CN200410061933 A CN 200410061933A CN 100356448 C CN100356448 C CN 100356448C
Authority
CN
China
Prior art keywords
vacuum tube
tunnel
playback head
resistance
shunt resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100619338A
Other languages
English (en)
Other versions
CN1577497A (zh
Inventor
林宪
丹尼尔·莫里
尼尔·史密斯
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Publication of CN1577497A publication Critical patent/CN1577497A/zh
Application granted granted Critical
Publication of CN100356448C publication Critical patent/CN100356448C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Heads (AREA)

Abstract

一种供具有特性阻抗Z0的互连传输线使用的读出磁头,包括隧道真空管器件和与隧道真空管器件并联的分流电阻RS。隧道真空管器件具有对应于预先确定的电阻面积(RA)之积的器件电阻RT。分流电阻值是基于RT和RS的并联组合基本上等于互连传输线的特性阻抗Z0。预先确定的电阻面积(RA)之积大约等于至少大约10 Ohm·μm2。可选地,预先确定的电阻面积(RA)之积大约等于隧道真空管器件的“拐角”值RAC

Description

磁盘驱动器及其读出磁头
技术领域
本发明涉及存储设备。特别地,本发明涉及使有效器件电阻RD达到最小并改善器件信号噪声比(SNR)的磁盘驱动器的隧道真空管读出磁头。
背景技术
图1显示具有磁性读出/写入头(或记录浮动块)101的示例性的高RPM磁盘驱动器100,读出/写入磁头101包括,例如隧道真空管读出传感器,其使用例如两级伺服系统放置在磁盘102上的选定轨道之上,以读出存储在磁盘102上的数据。两级伺服系统包括用于粗定位读出/写入磁头悬臂105的音圈马达(VCM)104,并且可以包括用于将读出/写入磁头101精定位到选定轨道之上的微传动器或微动台。
与隧道真空管读出传感器相关的问题是,具有大的和/或最优隧道磁阻(TMR)值(即ΔR/R0)的隧道结的电阻面积(RA)之积的可达到值,对于达到小于0.1μm2器件面积AD时小于大约300Ohm的期望器件电阻RD来说太大了。较低器件电阻RD的动机主要是为了,在否则受下面描述的另外因素所限制的给定偏置电压Vbias下工作时,增加信号功率(∝(ΔR/R)2(Vbias)2/RD)并同时减小隧道真空管磁头的散粒噪声(∝RD)。第二考虑是为了,避免与互连到臂电子(AE)组件的传输线的特性阻抗Z0的过度器件阻抗失配,特性阻抗Z0典型地小于或等于100 Ohm。失配具有增加放大器噪声的效果。因此,约束RD=(RA)/AD小于300Ohm要求RA大于1-2Ohm·μm2
图2是显示典型隧道结的RA和ΔR/R0之间近似关系的曲线200,其中RA和ΔR/R0分别是曲线200的横坐标和纵坐标。当通过减小物理势垒厚度RA减小到“拐角”值RAc以下时,低电压TMR比值ΔR/R0开始随RA减小而近似线性地下降。隧道真空管势垒典型地表现出大约5-10Ohm·μm2的RAc值。因此,对于RA<1-2Ohm·μm2可达到的ΔR/R0将大大地低于对于相同势垒材料的更厚、更高RA势垒可获得的最大值ΔR/Rmax。通过减小势垒厚度来减小RA也导致势垒较小的物理鲁棒性以及对针孔和/或其他批次可变性更加敏感,这些可能产生跨越圆片和/或从圆片到圆片的ΔR/R0和RA值两者大的分布。当使用具有RA≥RAC的较厚隧道势垒时,这些变化不那么普遍得多。
另外,众所周知TMR比值并不独立于偏置电压,而是随Vbias变大而单调减小。图3是显示隧道势垒的典型ΔR/R作为Vbias的函数的曲线300。如图3中所示,ΔR/R随渐增的Vbias≤V50近似线性地减小,其中V50是TMR比值ΔR/R已下降到其低电压极限一半时Vbias的值。仅仅由于这个缘故,在大于Vbias偏置电压下操作隧道真空管读出传感器变得不能实施。但是,长期下降通常将实际势垒偏置电压Vbias限制于很好地低于V50值。依赖于势垒材料,对于较薄、较低的RA势垒,V50趋于下降,并且最多当RA≤RAc时大约不变。
所需要的是一种技术,其使隧道真空管读出磁头的有效器件电阻RD达到最小并且改善隧道真空管读出磁头的器件信号噪声比(SNR)。
发明内容
本发明使隧道真空管读出磁头的有效器件电阻RD达到最小,并且改善隧道真空管(tunnel valve)读出磁头的器件信号噪声比(SNR)。
本发明的优点由供具有特性阻抗Z0的互连传输线使用的读出磁头提供。读出磁头包括隧道真空管器件和分流电阻RS。隧道真空管器件具有对应于预先确定的电阻面积(RA)之积的器件电阻RT。分流电阻RS与隧道真空管器件并联。分流电阻值被选择,使得RT和RS的并联组合基本上等于预先确定的选定电阻值,例如互连传输线的特性阻抗Z0。根据本发明一个方面,预先确定的电阻面积(RA)之积大约等于至少大约10Ohm·μm2。根据本发明另一个方面,预先确定的电阻面积(RA)之积大约等于这样的电阻面积(RA)之积的值,其中对于电阻面积(RA)之积的值进一步增加,隧道真空管器件的隧道磁阻(TMR)比值ΔR/R0基本上不增加。
附图说明
本发明在附图中作为例子而不是限制来阐明,在附图中相似的参考数字指示相似元素,并且其中:
图1显示具有磁性读出/写入头的示例性的高RPM磁盘驱动器;
图2是显示隧道结的RA和ΔR/R0之间近似关系的曲线;
图3是显示隧道势垒的典型ΔR/R作为Vbias的函数的曲线;
图4显示MTJ传感器真空管,磁头AE互连传输线以及AE前置放大器的等效电路示意图;以及
图5是显示对于几个Vbias值,SNR2:SNR1之比作为RD的函数的曲线。
具体实施方式
本发明使隧道真空管读出磁头的有效器件电阻RD达到最小,并且改善隧道真空管读出磁头的器件信号噪声比(SNR)。分流电阻RS优选地使用标准沉积或光刻技术直接制作在衬底/浮动块上,虽然分流电阻也可能作为AE组件的一部分而从外部提供。隧道真空管磁头可以如下设计:对于给定的目标器件面积AD和电阻RD使用本发明的分流电阻RS,并同时将隧道真空管势垒制作成具有大得多的物理鲁棒(robust)厚度,其中RA≈RAC,而不管本征隧道传感器电阻RT=RAC/AD可能大大地超过RD。本发明使隧道真空管磁头的有效器件电阻RD达到最小,而不过分损害信号/噪声比(SNR)以及与器件产量、圆片可变性和长期可靠性有关的器件鲁棒性(robustness)。
图4显示MTJ传感器真空管401,磁头AE互连传输线402以及AE前置放大器403的等效电路示意图400。MTJ传感器真空管401包括隧道真空管传感器电阻RT和分流电阻RS。如图4中所示,MTJ传感器真空管401做成包括信号电压ST和/或噪声源NT。分流电阻RS做成包括噪声源NS。前置放大器403做成包括rms电压噪声源VA和电流噪声源IA。另外,前置放大器403的输入阻抗假设等于互连传输线402的特性阻抗Z0,使得MTJ传感器真空管401的rms信号电压ST和rms噪声电压NT两者都没有反射地传送到前置放大器403。
MTJ传感器真空管的预期电压信号功率SD 2为,
S D 2 = ( Z / R T ) 2 V bias 2 ( ΔR / R ) 0 2 ( 1 - 1 2 | V bias / V 50 ) 2 - - - ( 1 )
其中,
Z=RD‖Z0    (2)
RD=RT‖RS    (3)
前置放大器403输入处的噪声功率ND 2为,
N D 2 = | Z R T | 2 4 kT R T { V bias V tj coth ( V bias V th ) } + | Z R S | 2 4 kTR S - - - ( 4 )
其中,
Vth=2kT/e≈60mV    (5)
SD 2和ND 2两者的表达式包括本发明的分流电阻RS以及前置放大器输入阻抗Z0两者的分流作用。除分流电阻RS的热激噪声之外,噪声功率ND 2的表达式包括隧道真空管的散粒噪声加上热激噪声。(为了简单起见,该表达式不包括依赖于传输线和读出传感器之间阻抗失配界面处反射的放大器电流及电压噪声引起的噪声。)对于期望在100-200mV的偏置电压,隧道真空管的散粒噪声功率基本上大于隧道真空管器件的热激噪声4kTRT,以及可比拟的分流电阻的热激噪声4kTRS,并且随Vbias基本上线性地变化。信号功率SD 2的表达式显式地包括图3中所示的ΔR/R(Vbias)相关性,但仅隐式地包括图2中所示的ΔR/R0对隧道势垒RA之积的相关性。ΔR/R0对隧道势垒RA之积的相关性具有关键重要性,因为信号功率与(ΔR/R0)2成正比。
为了强调ΔR/R0对隧道势垒RA之积相关性的重要性,信号和噪声表达式用来计算信号/噪声比SNR,
SNR = S D 2 N D 2 - - - ( 6 )
对于常规隧道真空管磁头和对于设计目标器件电阻RD和设计目标器件面积AD具有根据本发明的分流电阻RS的隧道真空管磁头。对于常规隧道真空管磁头设计,没有分流电阻器(即RS趋向无穷大),并且隧道势垒厚度被选择,使得势垒的RA之积为
RA1=RDAD    (7)
对于具有根据本发明的分流电阻RS的隧道真空管磁头设计,隧道势垒厚度增加,使得
RA2=RAC    (8)
也就是图2中所示的ΔR/R0对RA曲线的“拐角”值。则隧道真空管的磁头电阻为
R T = RA C A D - - - ( 9 )
然后分流电阻RS被选择,使得RT和RS的并联组合(RT‖RS)等于目标器件电阻RD。也就是,
RS=RTRD/(RT-RD)    (10)
自然地假设RD≤RT,因为,否则分流电阻RS变得多余。
为了比较,将假设下面的参数值:AD=0.005μm2,V50=400mV,RAC=10Ohm·μm2,以及Z0=75Ohm。在该情况下,RA=RAC时厚势垒的本征传感器电阻将非常大RT=RAC/AD=2000Ohm。特性“热电压”Vth=2kT/e(在室温下50mV)取为60mV。
图5是显示对于几个Vbias值,SNR2∶SNR1之比作为设计目标器件电阻RD的函数的曲线。在图5中,SNR1是常规隧道真空管磁头的SNR,而SNR2是具有根据本发明的分流电阻RS的隧道真空管磁头的SNR。如图5中所示,SNR2∶SNR1之比随RD减小而增加。两种设计当RD=2kOhm时是等效的。在更期望的设计目标电阻RD=300Ohm的情况下,明显更大的本征传感器信号/噪声比(即3-4dB不包括放大器噪声)可以由本发明通过使用物理鲁棒的RA=10Ohm·μm2的势垒结合分流电阻RS=350Ohm来达到。相反地,常规隧道真空管磁头设计对于相同的设计目标电阻RD=300Ohm要求薄的隧道势垒制作成具有非常低的值RA=1.5,并且具有预期的85%TMR损耗ΔR/R0=(RA/RAC=0.15)ΔR/Rmax。本发明的相对SNR优点随目标器件电阻RD进一步减小和/或偏置电压Vbias增加而增加。
一般地,本发明的优点与图2中所示的ΔR/R0对RA的相关性有关。假设RA≤RAC,ΔR/R0与RA近似成正比,而对于固定的AD,RT与RA成正比。因此,ΔR/R0与RT近似成正比。对于图4电路的典型参数值,其中Z0<<RT,RS,使得Z≈Z0,SD 2变得粗略地与RT无关,而ND 2与1/RD+1/RT*[Vbias/Vthcoth(Vbias/Vth)-1]成正比。因此,对于固定的目标RD,通过增加本征RT,噪声功率减小而SNR增加。当Vbias增加时,特别是当Vbias>>Vth时,这期望是实际情况,噪声功率进一步减小而SNR进一步增加。在接近Z0的非常低的RD,这在无分流(常规)情况RD=RT,SD 2另外地开始随RT减小而减小,而本发明的分流电阻的SNR优点加速,该趋势在图5中也很明显。最后,当使用由本发明提供的更高RT,物理上更厚和更鲁棒的隧道势垒时,由本发明提供的本征传感器SNR的优点并不基于V50和/或安全及稳定的最大工作偏置电压的电势增加的任何额外好处。
虽然上述发明为了清楚理解的目的已相当详细地描述,很明显地,可以在附加权利要求书的范围内实施某些改变和修改。因此,本实施方案应当认为是说明性的而不是限制性的,从而本发明并不局限于这里所给出的细节,而是可以在附加权利要求书的范围和等价内修改。

Claims (12)

1.一种供具有特性阻抗Z0的互连传输线使用的读出磁头,该读出磁头包括:
隧道真空管器件,隧道真空管器件具有对应于预先确定的电阻面积(RA)之积的器件电阻RT;以及
与隧道真空管器件并联的分流电阻RS,分流电阻值是基于RT和RS的并联组合等于预先确定的选定电阻值。
2.根据权利要求1的读出磁头,其中预先确定的选定电阻值等于互联传输线的特性阻抗Z0
3.根据权利要求1的读出磁头,其中预先确定的电阻面积(RA)之积等于至少10Ohm·μm2
4.根据权利要求1的读出磁头,其中预先确定的电阻面积(RA)之积等于这样的电阻面积(RA)之积的值,其中对于电阻面积(RA)之积的值的进一步增加,隧道真空管器件的隧道磁阻(TMR)比值ΔR/R0不增加。
5.根据权利要求1的读出磁头,其中分流电阻RS放置在读出磁头的衬底/浮动块上。
6.根据权利要求1的读出磁头,其中分流电阻RS放置在与读出磁头相关联的臂电子组件上。
7.一种磁盘驱动器,包括:
具有特性阻抗Z0的互连传输线;以及
具有隧道真空管器件和分流电阻RS的读出磁头,隧道真空管器件具有对应于预先确定的电阻面积(RA)之积的器件电阻RT;分流电阻RS与隧道真空管器件并联,并且分流电阻值基于RT和RS的并联组合等于预先确定的选定电阻值。
8.根据权利要求7的磁盘驱动器,其中预先确定的选定电阻值等于互连传输线的特性阻抗Z0
9.根据权利要求7的磁盘驱动器,其中预先确定的电阻面积(RA)之积等于至少10Ohm·μm2
10.根据权利要求7的磁盘驱动器,其中预先确定的电阻面积(RA)之积等于这样的电阻面积(RA)之积的值,其中对于电阻面积(RA)之积的值的进一步增加,隧道真空管器件的隧道磁阻(TMR)比值ΔR/R0不增加。
11.根据权利要求7的磁盘驱动器,其中分流电阻RS放置在读出磁头的衬底/浮动块上。
12.根据权利要求7的磁盘驱动器,其中分流电阻RS放置在与读出磁头相关联的臂电子组件上。
CNB2004100619338A 2003-06-30 2004-06-29 磁盘驱动器及其读出磁头 Expired - Fee Related CN100356448C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/611,590 US7054085B2 (en) 2003-06-30 2003-06-30 Use of shunt resistor with large RA product tunnel barriers
US10/611,590 2003-06-30

Publications (2)

Publication Number Publication Date
CN1577497A CN1577497A (zh) 2005-02-09
CN100356448C true CN100356448C (zh) 2007-12-19

Family

ID=33541343

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100619338A Expired - Fee Related CN100356448C (zh) 2003-06-30 2004-06-29 磁盘驱动器及其读出磁头

Country Status (3)

Country Link
US (1) US7054085B2 (zh)
CN (1) CN100356448C (zh)
SG (1) SG118277A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234755A (ja) * 2003-01-30 2004-08-19 Tdk Corp トンネル磁気抵抗効果素子を備えた薄膜磁気ヘッド
US7706109B2 (en) * 2005-10-18 2010-04-27 Seagate Technology Llc Low thermal coefficient of resistivity on-slider tunneling magneto-resistive shunt resistor
US7389577B1 (en) 2007-06-26 2008-06-24 Western Digital (Fremont), Llc Method to fabricate an ESD resistant tunneling magnetoresistive read transducer
US8081399B2 (en) * 2009-11-09 2011-12-20 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording write head with enhancement capacitor on slider body for write current overshoot at write current switching
US9570096B2 (en) 2010-08-06 2017-02-14 HGST Netherlands B.V. Read path compensation for SNR and signal transfer
US9041391B2 (en) 2011-07-29 2015-05-26 Seagate Technology Llc Partial magnetic biasing of magnetoresistive sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100607A1 (en) * 1999-01-13 2002-08-01 Girard Mark T. Electrical component and a shuntable/shunted electrical component and method for shunting and deshunting
US20020154435A1 (en) * 2001-03-01 2002-10-24 Agere Systems Guardian Corp. Negative feedback impedance matched preamplifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552950A (en) * 1994-11-30 1996-09-03 International Business Machines Corporation Direct access storage device with magneto-resistive transducing head apparatus and a common read return signal line
US6359289B1 (en) * 2000-04-19 2002-03-19 International Business Machines Corporation Magnetic tunnel junction device with improved insulating tunnel barrier
KR100407907B1 (ko) * 2001-05-15 2003-12-03 한국과학기술연구원 자기 터널 접합 소자의 열처리 방법과 그 방법으로 제조된자기 터널 접합 소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100607A1 (en) * 1999-01-13 2002-08-01 Girard Mark T. Electrical component and a shuntable/shunted electrical component and method for shunting and deshunting
US20020154435A1 (en) * 2001-03-01 2002-10-24 Agere Systems Guardian Corp. Negative feedback impedance matched preamplifier

Also Published As

Publication number Publication date
SG118277A1 (en) 2006-01-27
US7054085B2 (en) 2006-05-30
US20040264067A1 (en) 2004-12-30
CN1577497A (zh) 2005-02-09

Similar Documents

Publication Publication Date Title
JP3330527B2 (ja) スピン・バルブ・センサ及び磁気記憶システム
US6633464B2 (en) Synthetic antiferromagnetic pinned layer with Fe/FeSi/Fe system
US6381105B1 (en) Hybrid dual spin valve sensor and method for making same
KR100336733B1 (ko) 자기 터널 접합 센서용 저 모멘트/고 보자력 고정층
US4829476A (en) Differential magnetoresistive memory sensing
EP1494295B1 (en) Magnetoresistance effect element and magnetic memory device
US6496317B2 (en) Accurate adjustable current overshoot circuit
US20080158737A1 (en) Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
US7706109B2 (en) Low thermal coefficient of resistivity on-slider tunneling magneto-resistive shunt resistor
JPH07201005A (ja) 読取りヘッド・バイアス電流を制御する方法及び磁気ディスク・データ記憶装置
JPH11316917A (ja) 電流による磁化固定型スピンバルブセンサ、スピンバルブセンサのピン層磁化固定方法、磁気ディスク装置、及び読出し/書込みヘッドアセンブリ
US5737157A (en) Disk drive with a thermal asperity reduction circuitry using a magnetoresistive sensor
US5726838A (en) Magnetic disc apparatus with head having magneto-resistance effect
CN100356448C (zh) 磁盘驱动器及其读出磁头
US5523898A (en) Partial MR sensor bias current during write
US7835097B1 (en) Preamplifier arranged in proximity of disk drive head
US6194896B1 (en) Method of controlling magnetic characteristics of magnetoresistive effect element and of magnetic head with the element, magnetic head device with magnetoresistive effect element, and magnetic disk unit with the device
US6014281A (en) Using a read element and a read/write coupling path to detect write-safe conditions
US6724560B2 (en) Head assembly employing microactuator in recording medium drive
US7035027B2 (en) Circuits to achieve high data rate writing on thin film transducer
US7006314B2 (en) Magnetic head driver circuit and magnetic storage device
US6292321B1 (en) Drive circuits for a magnetic recording device
US6349007B1 (en) Magneto-resistive head open and short fault detection independent of head bias for voltage bias preamplifier
US6172548B1 (en) Input stage with reduced transient time for use in multiplexing transducers that require a switched DC bias
US5712739A (en) Magnetic disk drive system with a composite head unit including a magnetoresistive read only head and an inductive write only head

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071219

Termination date: 20130629