CN100355054C - Reliability screening method of infrared focus planardetector - Google Patents

Reliability screening method of infrared focus planardetector Download PDF

Info

Publication number
CN100355054C
CN100355054C CNB2005100307947A CN200510030794A CN100355054C CN 100355054 C CN100355054 C CN 100355054C CN B2005100307947 A CNB2005100307947 A CN B2005100307947A CN 200510030794 A CN200510030794 A CN 200510030794A CN 100355054 C CN100355054 C CN 100355054C
Authority
CN
China
Prior art keywords
salient point
connection resistance
array chip
reading circuit
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100307947A
Other languages
Chinese (zh)
Other versions
CN1794438A (en
Inventor
叶振华
胡晓宁
廖清君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CNB2005100307947A priority Critical patent/CN100355054C/en
Publication of CN1794438A publication Critical patent/CN1794438A/en
Application granted granted Critical
Publication of CN100355054C publication Critical patent/CN100355054C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The present invention discloses a reliability screening method for infrared focal plane detectors, particularly a reliability screening method for electrically connecting In salient points of devices. The method adds a plurality of In salient points which are electrically connected with each other on the periphery of a photosensitive array chip, and meanwhile, a plurality of In salient points which are electrically connected with each other are arranged on the periphery of a reading circuit. After the photosensitive array chip and the reading circuit are mutually connected into a focal plane detector in a flip-chip bonding method, the additional In salient points are formed into a plurality of resistor which are communicated singly, common communication bonding points of the photosensitive array chip and the reading circuit can be used as common communication resistors, the single resistors and N common communication bonding points are connected in parallel to be formed into a test loop, measurement is carried out by a resistance tester, and the present invention can be used for the reliability screening of infrared focal plane detectors by judging measured resistance values. The present invention has the advantages of simple measurement, high testing speed, small data volume and easy realization of real-time reliability tests.

Description

The reliability screening method of infrared focal plane detector
Technical field
The present invention relates to the detection technique of infrared focal plane detector, specifically be meant the photaesthesia array chip of focus planardetector and the screening technique of the electricity soldering reliability between the reading circuit.
Background technology
Answer the active demand of infra-red thermal imaging system to detector, infrared focal plane detector obtained fast development at nearly two, 30 years.At present, infrared focal plane detector has developed into big face battle array, miniaturization, multicolor and the integrated third generation that turns to principal character.Infrared focal plane detector is made up of the responsive array chip of infrared light and its corresponding reading circuit two parts, and all realizes based on the flip-chip solder technology of indium metal (In) salient point.This welding on vertically not only will have enough mechanical strengths guaranteeing the mechanically stable between photaesthesia array chip and the reading circuit, and will guarantee that good electricity connectivity is arranged between them.
In addition, infrared focal plane detector at room temperature prepares, and its work is under the low temperature of 80-90K, so device will experience hundreds and thousands of times cold cycling.And all there is bigger thermal expansion mismatch between the silicon materials of photaesthesia detection array chip material and reading circuit usually, this can cause the fatigue damage of indium salient point under cold cycling, causes the infrared focal plane detector performance failure until not guaranteeing machinery between them and electricity to be communicated with.
Because the soldering reliability between photaesthesia array chip and the reading circuit is the key factor of restriction infrared focal plane detector rate of finished products and infrared focal plane detector reliability, so, by detecting the soldering reliability between them, just can finish the reliability screening of infrared focal plane detector.
But photaesthesia array chip and reading circuit are in case after the welding, just can not judge that directly the machinery of In salient point welding is communicated with situation by means such as metallomicroscope, scanning electron microscopy, the single electricity that can not directly measure each In salient point welding is communicated with resistance.And destructive thrust is tested, section plane test, and the focus planardetector performance test, and is not only inconvenient, and can not obtain the change information of welding performance in the failtests process in real time.
Through long-term experimental study, we find that the machinery and the electricity connectivity of welding between photaesthesia array chip and the reading circuit normally can be guaranteed.But, when infrared focus planardetector scale and area become very big, and the evenness of its photaesthesia array chip and reading circuit, or the uniformity of In bump height is poor again, and the welding performance that some position will occur does not reach requirement.These relatively poor welding performances mainly concentrate on the locational In salient point electricity connectedness all around of photaesthesia array chip and reading circuit, and it shows as excessive connection resistance.
And the thermal mismatch stress because of existing bigger thermal expansion mismatch to cause between the silicon materials of photaesthesia array chip material and reading circuit under cold cycling, its maximum are to concentrate on the welding In salient point of position around the infrared focal plane detector.So these regional In salient point fatigue damages are the main causes that cause welding performance to lose efficacy.And the notable feature that this welding performance lost efficacy is exactly, and the unexpected change of single connection resistance of In salient point welding is big.
So, as long as the single resistance that is communicated with of locational In salient point welding around directly and in real time between the responsive array chip of measuring light and the reading circuit, just can judge the welding performance situation between photaesthesia array chip and the reading circuit, to carry out the reliability screening of infrared focal plane detector.
Summary of the invention
Purpose of the present invention is exactly to provide a kind of single size that is communicated with resistance by locational In salient point welding around between the responsive array chip of measuring light and the reading circuit to judge the In salient point welding reliability screening technique of infrared focal plane detector.
To achieve these goals, reliability screening method of the present invention is as follows:
At first respectively add the In salient point of an electricity interlinkage at four angles of photaesthesia array chip, perhaps equidistantly add the In salient point of several electricity interlinkages again at each periphery, on reading circuit, also add the In salient point of the electricity interlinkage corresponding simultaneously with the photaesthesia array chip, the In salient point of these interpolations can be made when preparation photaesthesia array chip and reading circuit in passing, can not increase device preparation technology step and complexity.
Behind photaesthesia array chip and focus planardetector of reading circuit inverse bonding interconnection formation, after the corresponding one by one interconnection of the In salient point that adds between photaesthesia array chip and the reading circuit, just constitute several single connection resistance, and the public connection pad of photaesthesia array chip and reading circuit can be seen public connection resistance as, again with several single connection resistance and test loop of N public connection pad formation in parallel, measure with resistance meter, utilize equation:
R C = R 1 + R 2 N ≈ R 1 , N ≥ 100
Carry out the judgement of In salient point electricity connectedness, work as R CSuddenly increase, illustrate that the In salient point electricity of device is communicated with problem, performance is unreliable.In the formula, R CBe the single connection resistance that the approximate In salient point that records welds, R 1Be the single connection resistance of real In salient point welding, R 2Be public connection resistance, N is the number of public connection resistance.When the number N of public connection welding was enough big, following formula is establishment just, i.e. R CBe approximately equal to R 1
Usually the number of the public connection welding of infrared focal plane detector can both satisfy above-mentioned requirements.So,, just can be used for the screening of infrared focal plane detector reliability as long as test the single connection resistance of focus planardetector In salient point welding all around one by one.
Advantage of the present invention is:
1. the In salient point of the present invention's interpolation is to make in passing in the device preparation process, can not bring any difficulty to preparation technology.
2. the present invention just can make things convenient for, carry out reliably the screening of infrared focal plane detector reliability by measuring the infrared focal plane detector single connection resistance of the In salient point welding of position all around.
3. owing to be that the single welding of position is communicated with resistance around the direct measuring element,, improved the accuracy of screening so can avoid the interference of focus planardetector photaesthesia signal in testing process.
4. the present invention only need be concerned about the In salient point of position around the infrared focal plane detector, the single connection resistance information of four locational In salient point welding in angle particularly, so the speed that detects is very fast, data volume is also less, is easy to realize that reliability detects in real time.
Description of drawings
Fig. 1 is the structural representation of photaesthesia array chip of the present invention and reading circuit;
Fig. 2 is an electrical testing loop structure schematic diagram of the present invention;
The single connection resistance situation that Fig. 3 records for present embodiment is (a) for just having prepared the connection resistance value that device records, (b) for impact the connection resistance value that records after 100 times through liquid nitrogen.
Embodiment
Below in conjunction with accompanying drawing, the specific embodiment of the present invention is elaborated:
The present invention is embodiment with the HgCdTe infrared focal plane detector, and the area of the infrared photosensitive first array chip 4 of the HgCdTe of GaAs substrate is 4 * 6mm 2, the pedestal area of Si base reading circuit 5 is 6 * 9mm 2When the design device, 40 In salient points around photosensitive first array chip, have equidistantly been added, simultaneously also correspondingly around Si base reading circuit 40 In salient points have been added, the In salient point of these interpolations can be made when preparation photaesthesia array chip and reading circuit in passing, can not increase device preparing process step and complexity.After photaesthesia array chip and reading circuit inverse bonding interconnection, just constitute 40 single connection resistance 2 at its In salient point that adds all around, public connection pad directly adopts the public connection electrode 3 of device to obtain, and has the In salient point pad of 200 parallel connections.Therefore, it can utilize equation:
R C = R 1 + R 2 N ≈ R 1 , N ≥ 100 ,
Measure, in the formula, R CBe the single connection resistance that the approximate In salient point that records welds, R 1Be the single connection resistance that the real In salient point that adds welds, R 2Public connection electrode by device obtains, and N is the number of public connection resistance.
The measurement of single connection resistance is to finish on the I-V test macro 1 of Keithley (Keithley company) 4200 types.During measurement, adopt the I-V test in small voltage source, voltage range be-0.5V is to+0.5V, and sweep spacing is 0.005V, and direct read test resistance partly.
See Fig. 3, test result shows that the single connection resistance of In salient point welding is about several ohms, and size is more even, and it is little to impact 100 variations later at liquid nitrogen.Simultaneously, carry out the test of focus planardetector performance, find that they do not have significant change in 100 front and back of liquid nitrogen impact yet.The technical scheme that this explanation adopts the single connection resistance information around the focus planardetector to detect in real time, it is rational, feasible carrying out focus planardetector reliability screening.

Claims (2)

1. the reliability screening method of an infrared focal plane detector is characterized in that concrete steps are as follows:
A. at first respectively add the In salient point of an electricity interlinkage, on reading circuit, also add the In salient point of the electricity interlinkage corresponding simultaneously with the photaesthesia array chip at four angles of photaesthesia array chip;
B. behind photaesthesia array chip and focus planardetector of reading circuit inverse bonding interconnection formation, after the corresponding one by one interconnection of the In salient point that adds between photaesthesia array chip and the reading circuit, just constitute four single connection resistance, and the public connection pad of photaesthesia array chip and reading circuit can be seen public connection resistance as, again with four single connection resistance and test loop of N public connection pad formation in parallel, carry out single connection resistance measurement with resistance meter, utilize equation:
R C = R 1 + R 2 N ≈ R 1 , N≥100
Carry out the judgement of In salient point electricity connectedness, work as R CSuddenly increase, illustrate that the In salient point electricity of device is communicated with problem, performance is unreliable;
In the following formula, R CBe the single connection resistance that the approximate In salient point that records welds, R 1Be the single connection resistance of real In salient point welding, R 2Be public connection resistance, N is the number of public connection resistance.
2. the reliability screening method of an infrared focal plane detector is characterized in that concrete steps are as follows:
A. at first add the In salient point of an electricity interlinkage at four angles of photaesthesia array chip, equidistantly add the In salient point of several electricity interlinkages again at each periphery, on reading circuit, also add the In salient point of the electricity interlinkage corresponding simultaneously with the photaesthesia array chip;
B. behind photaesthesia array chip and focus planardetector of reading circuit inverse bonding interconnection formation, after the corresponding one by one interconnection of the In salient point that adds between photaesthesia array chip and the reading circuit, just constitute several single connection resistance, and the public connection pad of photaesthesia array chip and reading circuit can be seen public connection resistance as, again with several single connection resistance and test loop of N public connection pad formation in parallel, carry out single connection resistance measurement with resistance meter, utilize equation:
R C = R 1 + R 2 N ≈ R 1 , N≥100
Carry out the judgement of In salient point electricity connectedness, work as R CSuddenly increase, illustrate that the In salient point electricity of device is communicated with problem, performance is unreliable;
In the following formula, R CBe the single connection resistance that the approximate In salient point that records welds, R 1Be the single connection resistance of real In salient point welding, R 2Be public connection resistance, N is the number of public connection resistance.
CNB2005100307947A 2005-10-27 2005-10-27 Reliability screening method of infrared focus planardetector Expired - Fee Related CN100355054C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100307947A CN100355054C (en) 2005-10-27 2005-10-27 Reliability screening method of infrared focus planardetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100307947A CN100355054C (en) 2005-10-27 2005-10-27 Reliability screening method of infrared focus planardetector

Publications (2)

Publication Number Publication Date
CN1794438A CN1794438A (en) 2006-06-28
CN100355054C true CN100355054C (en) 2007-12-12

Family

ID=36805799

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100307947A Expired - Fee Related CN100355054C (en) 2005-10-27 2005-10-27 Reliability screening method of infrared focus planardetector

Country Status (1)

Country Link
CN (1) CN100355054C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807429A (en) * 2018-05-14 2018-11-13 武汉高芯科技有限公司 The focal plane arrays (FPA) and preparation method thereof of electric resistance structure is corrected containing pixel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135022B (en) * 2011-11-23 2016-01-20 上海华虹宏力半导体制造有限公司 The method of automatic detector probe card contact performance in test program
CN103310108B (en) * 2013-06-21 2016-02-17 中国科学院上海技术物理研究所 A kind of infrared focal plane detector blind element screening technique
CN108020723B (en) * 2017-10-30 2020-12-04 北方广微科技有限公司 Ultra-high impedance measuring device for capacitive uncooled focal plane readout circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188615A1 (en) * 2003-03-28 2004-09-30 Deflumere Michael Thermoelectric bridge IR detector
CN1587958A (en) * 2004-07-27 2005-03-02 中国科学院上海技术物理研究所 Indium pole pelletizing method of infrared focal plane detector
CN1617357A (en) * 2004-10-26 2005-05-18 中国科学院上海技术物理研究所 Tellurium-cadmium-mercury infrared double color focus plane detector array chip
US20050116260A1 (en) * 2003-01-21 2005-06-02 Manijeh Razeghi Focal plane arrays in type II-superlattices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050116260A1 (en) * 2003-01-21 2005-06-02 Manijeh Razeghi Focal plane arrays in type II-superlattices
US20040188615A1 (en) * 2003-03-28 2004-09-30 Deflumere Michael Thermoelectric bridge IR detector
CN1587958A (en) * 2004-07-27 2005-03-02 中国科学院上海技术物理研究所 Indium pole pelletizing method of infrared focal plane detector
CN1617357A (en) * 2004-10-26 2005-05-18 中国科学院上海技术物理研究所 Tellurium-cadmium-mercury infrared double color focus plane detector array chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807429A (en) * 2018-05-14 2018-11-13 武汉高芯科技有限公司 The focal plane arrays (FPA) and preparation method thereof of electric resistance structure is corrected containing pixel
CN108807429B (en) * 2018-05-14 2020-12-29 武汉高德红外股份有限公司 Focal plane array containing pixel point correction resistor structure and preparation method thereof

Also Published As

Publication number Publication date
CN1794438A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
CN105510794B (en) High electron mobility transistor PHEMT thermo-resistance measurement methods
US9671457B2 (en) 3D IC testing apparatus
CN106920795B (en) Memory construction and preparation method thereof, the test method of memory
CN102313870B (en) Integrated circuit parallel testing method, device and system
CN100355054C (en) Reliability screening method of infrared focus planardetector
CN100358122C (en) Apparatus and method for testing conductive bumps
CN103151337A (en) Test probing structure
TW200816339A (en) Bump test units and apparatus, and methods for testing bumps
TW200914858A (en) Connection testing apparatus and method and chip using the same
CN106482829B (en) The dynamic of single-photon detector and static combined test system and its test method
US7478345B2 (en) Apparatus and method for measuring characteristics of dynamic electrical signals in integrated circuits
CN101501510A (en) Apparatus and method of testing singulated dies
CN101821634B (en) Multi-site probe
US20100164526A1 (en) mems probe for probe cards for integrated circuits
CN205720446U (en) The test structure of contact resistance and the test structure of device resistance
GB2246662A (en) Testing photodetector devices
CN201707425U (en) Detection device for integrated circuit testing
CN208384043U (en) Device is quantitatively evaluated in a kind of Flip Chip Bond Technique yield and parasitic parameter
TW200839245A (en) Tester and structure of probe thereof
CN104764909A (en) Convenient and fast chip testing base capable of being used for extremely-low temperature measuring
US9989572B1 (en) Method and apparatus for testing interposer dies prior to assembly
US6084267A (en) Design propagation delay measurement device
Glowacki et al. Characterization of thermoelectric devices in ICs as stimulated by a scanning laser beam
CN111323694A (en) Silicon through hole open circuit fault test structure based on bridge structure
TW200300847A (en) Impedance standard substrate and correction method for vector network analyzer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071212

Termination date: 20101027