CN100350647C - Battery vent - Google Patents

Battery vent Download PDF

Info

Publication number
CN100350647C
CN100350647C CNB018204112A CN01820411A CN100350647C CN 100350647 C CN100350647 C CN 100350647C CN B018204112 A CNB018204112 A CN B018204112A CN 01820411 A CN01820411 A CN 01820411A CN 100350647 C CN100350647 C CN 100350647C
Authority
CN
China
Prior art keywords
electrochemical cell
hydrogen
anode
battery
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018204112A
Other languages
Chinese (zh)
Other versions
CN1568555A (en
Inventor
W·L·鲍登
D·L·帕普帕斯
J·特里格
G·魏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gillette Co LLC
Original Assignee
Gillette Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gillette Co LLC filed Critical Gillette Co LLC
Publication of CN1568555A publication Critical patent/CN1568555A/en
Application granted granted Critical
Publication of CN100350647C publication Critical patent/CN100350647C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

An electrochamical cell (1) includes a hydrogen selectively permeable membrane (6) associated with an outlet (8) of the housing (10). The hydrogen selectively permeable membrane (6) includes a substrate layer (90) and a hydrogen transportation layer (100), such as a metal-based hydrogen transportation layer, and exhibits a selective permeability of hydrogen (H2) relative to carbon dioxide (CO2) and water (H2O).

Description

Battery vent
The present invention relates to battery.
Usually adopt battery as the energy, for example alkaline battery and metal-air battery.
In general, alkaline battery comprises negative electrode, anode, dividing plate and electrolyte.Negative electrode for example can comprise the manganese dioxide particle as active material, the carbon granule and the adhesive of raising cathodic conductivity.Anode for example can be the gel that comprises as the zinc particle of active material.Dividing plate is arranged between negative electrode and the anode.Electrolyte for example can be the hydroxide solution that is dispersed in the entire cell.
When battery during as the electric energy in the device, for example be used in hearing aids, photoflash lamp or the portable phone, allow device contact with cathodic electricity, electronics is flowed through device with anode, and allow separately oxidation and reduction reaction to take place, electric energy is provided thus.The electrolyte that contacts with negative electrode with anode contains ion, and the dividing plate that ion is passed between the electrode flows, thereby remains on the charge balance of entire cell in the discharge process.
In metal-air cell, oxygen is in cathodic reduction, and metal (for example zinc) is in anodic oxidation.Oxygen is fed to negative electrode by the air intake in battery case from the atmosphere of outside batteries.Metal oxide (for example zinc oxide or zincate) forms in anode.Like this, the total electrochemical reaction in zinc-air electrochemical cell makes the zinc burning become zinc ion, become hydroxide ion from the hydrogen reduction of air.When these chemical reactions took place, electronics was transferred to negative electrode from anode, thereby provides energy to device.
Zinc can also directly react with electrolyte, and this has caused the consumption of zinc and the generation of hydrogen.Often for example lead and cadmium join in the anode to reduce the hydrogen amount that is produced surfactant, mercury and other metal.
Generally speaking, the hydrogen that the present invention relates to be used for electrochemical cell can see through film.Hydrogen in battery can see through film and allow hydrogen to leave battery.As a result, comprise that the membrane-permeable electrochemical cell of hydrogen has pressure and lower leakage in the lower hydrogen usually.
In a kind of scheme, the present invention is characterised in that a kind of electrochemical cell, and for example alkaline battery or metal-air battery comprise: negative electrode; Anode; Dividing plate; Comprise negative electrode, anode and dividing plate and limit the container that exports; And the hydrogen selective membrane that links to each other with outlet of container.For example, by with this film setting and be fixed in the container outlet or approach container outlet, hydrogen selective membrane and battery outlet port are coupled together.The hydrogen selectivity can see through film and comprise hypothallus and hydrogen transport layer, for example metal_based material.The hydrogen selective membrane demonstrates with respect to carbon dioxide (CO 2), water (H 2O) and oxygen (O 2) to hydrogen (H 2) the selection permeability.Preferably, this film is for H 2The selection permeability be for CO 210 times of permeability, be more preferably 100 times, most preferably be 1000 times.This film is for H 2The selection permeability be for H 210 times of the permeability of O, be more preferably 100 times, most preferably be 1000 times.
In another kind of scheme, the present invention is characterised in that a kind of electrochemical cell, and for example metal-air cell comprises: negative electrode; Cathodic coating; Anode; Dividing plate; Contain negative electrode, cathodic coating, anode and dividing plate and limit the container that exports; And the film that links to each other with outlet.The H of this film 2Permeability compares H 2Permeability little about 10 by cathodic coating is to about 10,000 times.This film can be hydrogen selective membrane or non-selective membrane, for example microporous polyethylene.
Embodiments of the present invention have one or more following advantages.The battery that comprises the hydrogen selective membrane is not changing H in the electrochemical cell 2O and CO 2Allow hydrogen leave container under the condition of level.This film has also reduced the possibility that negative electrode is damaged by the interior pressure that reduces battery.This film has reduced the internal cell pressure of hydrogen and because hydrogen and positive electrode react the loss of voltage in the caused battery.In addition, reduced or eliminated electrolyte leakage.As the low result of internal drop, can also reduce the machinery restriction of container, for example the pressure of breaking that between the anode of container and cathode portion, seals.At H by the exhaust membrana oralis 2Permeability and by the difference between the permeability of cathodic coating make do not allow electrochemical cell become dry or the condition of humidification under discharge hydrogen.
The invention provides following technical scheme:
(1) a kind of electrochemical cell comprises:
Negative electrode;
Anode;
Dividing plate;
Hold negative electrode, anode and dividing plate and limit the container that exports; And
With the hydrogen selective membrane that outlet links to each other, wherein said hydrogen selective membrane comprises hypothallus, leveling material and hydrogen transport layer, with respect to CO 2Optionally see through H 2, described hydrogen selective membrane comprises metal and the protective gas that is arranged on the hydrogen transport layer can see through coating, and wherein said hypothallus has the aperture between 10  and 2,000 .
(2) according to the electrochemical cell of above-mentioned (1), wherein hypothallus is polytetrafluoroethylene, polyimides, polyamide, styrene-butadiene or styrene polyisoprene blocks copolymer, polypropylene, polysulfones, dimethyl silicone polymer or poly-trimethyl silyl propine.
(3) according to the electrochemical cell of above-mentioned (1), wherein the hydrogen transport layer comprises Pt, Pd, Ta, Nb, Rh, V, Zr, Ag, AB 5Mischmetal(l), AB 2Mischmetal(l) and alloy thereof.
(4) according to each electrochemical cell in above-mentioned (1)-(3), wherein hypothallus has the thickness between 25 microns and 300 microns.
(5) according to the electrochemical cell of above-mentioned (3), wherein the hydrogen transport layer has the thickness that is lower than 1000 .
(6) according to the electrochemical cell of above-mentioned (3), wherein the hydrogen transport layer has the thickness between 50  and 10,000 .
(7) according to the electrochemical cell of above-mentioned (1)-(3), wherein said leveling material comprises the leveling polymer that is arranged between hypothallus and the hydrogen transport layer.
(8) according to the electrochemical cell of above-mentioned (7), wherein flattening polymer is silicone, polyurethane or acrylate copolymer.
(9), wherein flatten polymer and have and be lower than 10 microns thickness according to the electrochemical cell of above-mentioned (8).
(10) according to each electrochemical cell in above-mentioned (1)-(3), wherein the hydrogen selective membrane has speed greater than 1 * 10 -5Cm 3/ (cm 2.sec.cmHg) H 2Permeability.
(11) according to each electrochemical cell in above-mentioned (1)-(3), wherein the outlet that is limited by container is positioned at the anode-side of electrochemical cell.
(12) according to each electrochemical cell in above-mentioned (1)-(3), wherein electrochemical cell is an alkaline battery.
(13) according to each electrochemical cell in above-mentioned (1)-(3), wherein battery is the prismatic battery with the thickness that is lower than 10mm.
(14) according to each electrochemical cell in above-mentioned (1)-(13), wherein electrochemical cell is a metal-air battery.
(15) according to each electrochemical cell in above-mentioned (1)-(3), wherein said film has speed ratio H 2The H that permeability by cathodic coating is low 10 to 10,000 times 2Permeability.
(16) according to the electrochemical cell of above-mentioned (15), wherein this film is a microporous polyethylene.
In accompanying drawing and following description, listed the detailed content of the one or more embodiment of the present invention.According to specification, accompanying drawing, claim, other characteristics of the present invention, purpose and advantage are apparent.
Fig. 1 is the sectional view of electrochemical cell; And
Fig. 2 is the sectional view of the section A of Fig. 1.
With reference to figure 1, metal-air button cell 1 comprises anode 2 and negative electrode 4.Anode 2 comprises anode case 10 and anode gel 60.Hydrogen can see through film 6 and link to each other with the outlet 8 of anode case 10 by adhesive 7.Negative electrode 4 comprises cathode casing 20 and cathode construction 40.Insulating part 30 is between anode case 10 and cathode casing 20.Dividing plate 70 prevents electrically contacting between these two kinds of assemblies between cathode construction 40 and anode gel 60.The air intake 80 that is arranged in cathode casing 20 allows air exchange to advance battery and exchange out outside the battery.Air diffuser part 50 is between air intake 80 and cathode construction 40.
Anode case 10 and cathode casing 20 are crimped onto together, form the battery case with internal capacity or battery volume.The inner surface 82 and the dividing plate 70 of anode case 10 form anode volume 84 together.Anode volume 84 contains anode gel 60.The remainder of anode volume 84 is void volumes 90.Anode gel 60, dividing plate 70 and cathode construction 40 have filled up the battery volume in conjunction with void volume 90.Void volume 90 can change, and for example changes between 5-20%.The voidage that increases helps to reduce the leakage of electrolyte (for example aqueous solution of KOH) from battery, and has reduced owing to gas in the anode chamber produces caused pressure increase.
Can be used for hydrogen can see through film 6 connect in the outlet to or the proper adhesive that approaches to export comprises and the electrochemical cell material-be anode and cathode material and electrolyte-chemically compatible and material that can between this film and battery case, form hermetic seal.Example comprises polyamide, bituminous cement and wax, but is not limited thereto.For example, can obtain suitable bonding-adhesive J-43 from Jingxin adhesive company.Can also for example channel nut and O type ring or welding packing ring can see through symphysis with hydrogen and receive in the outlet or approach outlet by mechanical device.This nut to O type ring, forms the gas tight seal with this mould between container and this film.
Outlet 8 diameters that for example have between about 0.1mm and about 1mm.Have an outlet and the membrane-permeable situation of hydrogen though show, shell 10 can comprise a plurality of outlets and film.
With reference to figure 2, the example that hydrogen can see through film 6 comprises the hydrogen transport layer 100 that is clipped between supporting layer 90 and the protective layer 110.Supporting layer 90 provides the support structure for hydrogen transport layer 100, and comprises supporting member 92 and leveling (planarizing) member 94, and this leveling member 94 is filled and led up the out-of-flatness in the surface 93 of supporting member 92.Preferably, can see through the permeability of hydrogen of film transmission greater than about 1 * 10 by hydrogen -5Cm 3/ (cm 2.sec cmHg).Hydrogen can see through film with respect to CO 2And H 2O shows H 2The selection permeability.Preferably, this film is for H 2The selection permeability be for CO 210 times of permeability, be more preferably 100 times, most preferably be 1000 times.This film can also be with respect to O 2To H 2Alternative sees through.Though the protective layer that illustrates is adjacent to anode case; if but the layer that is exposed to inside battery and the material of electrochemical cell are (promptly; anode and cathode material) chemical compatible; hydrogen can just can utilize any side of this film to be connected in the outlet of anode case through film so, and protective layer or supporting layer are near anode case.
Hydrogen transport layer 100 typical cases are metal films.Suitable metal film for example comprises Pt, Pd, Ta, Nb, Rh, V, Zr, Ag, AB 5Mischmetal(l), AB 2Mischmetal(l) and alloy thereof.Metal film can comprise the alloy of Pd and Ag atom, Pd: the ratio of Ag is for example between about 100: 1 and about 1: 1, between about 10: 1 and about 1: 1, perhaps between about 5: 1 and about 2: 1.Transport layer can also with rare earth metal yittrium alloyization for example.The thickness adjusted of layer 100 to the metal film that does not have defective or pin hole is provided, is reduced for example CO, CO thus 2, O 2And H 2O is by the membrane-permeable permeability of described hydrogen.The quality that depends on regulating course for the membrane-permeable accurate thickness of surperficial needed described hydrogen of free of pinholes or defective.Typically, for example, the thickness of layer 100 is between about 50  and about 10,000 .The thickness of preferred hydrogen transport layer is less than about 1,000 .
The suitable material that is used for supporting member 92 comprises polytetrafluoroethylene, polyimides, polyamide, styrene-butadiene and styrene polyisoprene blocks copolymer and polyolefin for example polypropylene, polysulfones, dimethyl silicone polymer and poly-trimethyl silyl propine, but is not limited thereto.The thickness of supporting layer for example about 25 and about 300 μ m between.Aperture in the supporting layer can be between about 10  and about 2,000 .The polypropylene supporting layer is Celgard for example TMCan be from Hoechet Celanese Corporation, in Charlotte, N.C. buys.
The leveling material comprises amorphous polymer.Example comprises silicone, polyurethane, acrylate copolymer, polyimides, polytetrafluoroethylene, dimethyl silicone polymer and poly-trimethyl silyl propine.The leveling material can adopt by being positioned at Menlo Park, the Membrane Technologies and Research of CA, Inc., production.With the thickness adjusted of leveling material to surface-supported out-of-flatness place is flattened, the flat surface that provides the hydrogen transport layer to be applied thereto thus.Preferably, the thickness of leveling material is lower than about 10,000 .
Protective layer for example can be the polymer coating of any gas permeable.Example comprises polyimides, polyamide, styrene-butadiene or styrene polyisoprene blocks copolymer and dimethyl silicone polymer, but is not limited thereto.
Hydrogen can see through film and can the combination of regulating course, hydrogen transport layer and the multinomial technology of protective layer sequential deposit on supporting layer be formed by being used for.For example, can provide regulating course, provide metal level by the vacuum sputtering deposit by rotary coating.At Journal of Membrane Science, can find example among " the Metal Composite Membranes For Hydrogen Separation " that delivers by people such as Athayde in 94299 (1994), in conjunction with its full content as a reference at this by vacuum sputtering deposit system film.
Anode case can comprise three multiple layer or two plied timbers.Two plied timbers can be the stainless steels with copper inner surface.Three plied timbers are made of the stainless steel that has the copper layer at inner surface, has a nickel dam at the outer surface of shell.Anode case also can comprise for example tin of metal coating on inner surface.Preferably, tin coating is positioned at the inner surface of anode case, contacts with electrolyte with zinc anode.Tin coating can be the layer on the shell inner surface.The tin layer can be the coating of thickness between about 1-12 micron, preferably at about 2-7 micron, and more preferably from about 4 microns.Tin coating can be plated in advance on the metal tape or after be plated on the anode case.For example, can pass through immersion plating deposit tin coating (for example, adopting the plating bath that obtains from Atotech).Coating can have glossy surface or matt surface.In low mercury metal-air electrochemical cell, the low porosity layer shows steaming still less.Coating can comprise silver or gold compound.
Cathode casing is made of the cold-rolled steel of the ectonexine with nickel.Insulator for example insulation spacer is pressed together between anode case and the cathode casing.Pad can be thin to increase the capacity of battery.
It is that vertical straight wall design constitutes that anode case can adopt sidewall wherein, perhaps adopts the foldover design in thinner wall-forming shell (for example, about 4 mil thick).In foldover design, the inside of battery is left in edge (Clip-off edge) bending of clipping of the anode case that forms in the punching course of shell.Foldover design is by reducing anode material and clip the possibility that stainless steel that edge exposes contacts in anode case, thereby reduced the generation of potential gas.Straight wall design can combine employing with L-or J-shape insulator, preferably combines employing with J-shape insulator, and the insulator of this shape can will be clipped edge embedded insulator foot.When adopting foldover design, insulator can be a L-shape.
The preferred anodes material is a zinc.As other selection, anode material can be a kirsite, and wherein alloy element can comprise In, Pb, Bi or its mixture, but is not limited thereto.Anode gel for example can comprise zinc and electrolytical mixture.Zinc and electrolytical mixture can comprise gelling agent, absorbability polyacrylate for example, and gelling agent can prevent that electrolyte from leaking from battery, help to make the zinc particle suspending in anode.For example, the gelling agent that is suitable for has been described in United States Patent (USP) 4541871, United States Patent (USP) 4590227 or United States Patent (USP) 4507438.But cathode construction comprises the material (for example, manganese compound) of the reduction of carbon and Catalytic Oxygen, and described oxygen enters in the battery as constituent of atomsphere through the inlet in the cathode casing bottom.Total electrochemical reaction causes the zinc burning to become and contains zinc ion, is hydroxide ion from airborne hydrogen reduction in battery.Finally, zinc oxide or zincate are formed in the anode.When these chemical reactions took place, electronics was transferred to negative electrode from anode, provides energy to device.Zinc material can be air blown or be spun into thread zinc (spun zinc).For example, among the U.S.S.N 08/905254 that the U.S.S.N of on September 18th, 1998 application apply at August 1 in 09/156915,1997 and the U.S.S.N 09/115867 of application on July 15th, 1998 suitable zinc particle has been described, the full content of these documents is incorporated by reference.Zinc can be powder.The zinc particle can be spherical or aspheric.For example, the zinc particle can be needle-like (has be at least 2 length-width ratio).
Cathode construction has towards a side of anode gel with towards a side of air intake.Cathode construction side towards anode gel is covered by dividing plate.Dividing plate can be porous, electric insulating copolymer, polypropylene for example, and this allows electrolyte to contact with air cathode.Typically cover towards the cathode construction side of air intake by the polytetrafluoroethylene (PTFE) film, this film help to prevent anode gel from becoming dry and electrolyte from the leakage of battery.Battery also can be included in air distributor or the imbibition material between PTFE film and the air intake.Air distributor is porous or fibrous material, helps to keep between PTFE film and cathode casing the air dispersion space.
Cathode construction comprises collector, woven wire for example, deposition cathode mixture on collector.Woven wire and cathode casing electrically contact.Cathode mix comprises the catalyst that is used for oxygen reduction, for example manganese compound.Catalyst mixture is made of the mixture of adhesive (for example, PTFE particle), carbon granule and manganese compound.Catalyst mixture for example can prepare by following manner: heating manganese nitrate or reduction potassium permanganate are to generate manganese oxide, for example Mn 2O 3, Mn 3O 4And MnO 2
In depositing process, air intake is generally by the Chued sheet covers of so-called diaphragm seal, this can remove bottom that thin slice is arranged on cathode casing covering air intake, thereby is limited in the air flows of button cell between inside and outside.The user peels diaphragm seal off from cathode casing before use, allows the inside that enters into button cell from airborne oxygen from external environment condition.
Other embodiment in the claims.For example, hydrogen can see through the outside that film can be attached to anode case.In addition, can also thereby can being seen through film, hydrogen be integral on the anode case by outlet is arrived in membrane material deposit (for example chemical deposition).In certain embodiments, the hydrogen transport layer can be the carbon back molecular sieve, and this molecular sieve preferentially sees through hydrogen with respect to other gas.For example, in New Technology Japan April 1998, can find the example of carbon back molecular sieve.
In other optional embodiment, metal-air button cell comprises anode film and cathodic coating, H 2Transmission rate by anode film is lower than H 2Speed by cathode transport.Typically, select anode film to make it with than H 2Hang down about 10 to about 10,000 times speed rates H by the speed that cathodic coating transmits 2Anode film can be that the aforesaid hydrogen that has the selection permeability of hydrogen can see through film, it perhaps also can be any non-selective film, microporous polymer for example, as long as the material (being anode and cathode material, electrolyte) of these membrane materials and electrochemical cell chemistry is compatible.As a rule, non-selective film for example microporous polyethylene and PTFE to be similar to the speed rates hydrogen of this film transmission water.As a result, can adopt the permeability of hydrogen to weigh the permeability of steam.For example, with the speed of transmitting by cathodic coating than hydrogen low about 10 to about 10, the non-selective anode film of 000 times speed rates hydrogen hangs down about 10 to about 10,000 times speed rates steam with the speed of transmitting by negative electrode than steam equally.
In electrochemical cell, too much gathering of hydrogen makes that crossing anode film has formed about 0.1 to 2 atmospheric pressure differential, and this makes anode film to transmit hydrogen than the higher speed of speed of its transmission water from battery.By selecting the anode film that has lower hydrogen permeability with respect to cathodic coating, electrochemical cell is become dry or wet excessively condition under, anode film can be than cathodic coating permeate water steam still less, and can discharge more hydrogen.Standard P TFE cathodic coating has about 1 * 10 -2To about 1 * 10 -4Cm 3/ (cm 2Sec cmHg) the permeability between to hydrogen and water.Non-selective anode film for example originates from Tonen, and the microporous polyethylene film of Inc (Japan) has about 1 * 10 -3To about 1 * 10 -6Cm 3/ (cm 2Sec cmHg) the permeability between to hydrogen and water.
In addition, hydrogen can see through anode film and can be used in the alkali electrochemical battery, for example AA, AAA, AAAA, C or D alkaline battery.For example, the example of alkaline battery has been described in United States Patent (USP) 5283139 and 5856040, the full content of each document is incorporated by reference.In cylindrical alkaline battery, hydrogen can see through film and can link to each other with the outlet that forms in negative metal-back.In alkaline coin shape battery, this film can link to each other with the outlet that forms in anode case.This film can also be used for prismatic electrochemical cell, and this battery has the thickness that is lower than 10mm, preferably is lower than 4mm.Described the example of prismatic electrochemical cell in United States Patent (USP) 5958088 and 6001504, the full content of each document is hereby incorporated by reference.
In addition, though shown in the anode case, outlet also can be formed on any part in the battery case.Hydrogen can see through film and can link to each other with any outlet.For example, hydrogen can link to each other with the outlet that forms in the cathode side of battery case through film.

Claims (15)

1. electrochemical cell comprises:
Negative electrode;
Anode;
Dividing plate;
Hold negative electrode, anode and dividing plate and limit the container that exports; And
With the hydrogen selective membrane that outlet links to each other, it is with respect to CO 2Optionally see through H 2Wherein said hydrogen selective membrane comprises supporting layer, hydrogen transport layer with supporting member and leveling member and the protective finish that is arranged on the gas permeable on the hydrogen transport layer; wherein said supporting layer has in 10  and 2; aperture between 000 , and wherein the hydrogen transport layer comprises Pt, Pd, Ta, Nb, Rh, V, Zr, Ag, AB 5Mischmetal(l), AB 2Mischmetal(l) and their alloy.
2. according to the electrochemical cell of claim 1, wherein said supporting member is polytetrafluoroethylene, polyimides, polyamide, styrene-butadiene or styrene polyisoprene blocks copolymer, polypropylene, polysulfones, dimethyl silicone polymer or poly-trimethyl silyl propine.
3. according to the electrochemical cell of claim 1, wherein said supporting layer has the thickness between 25 microns and 300 microns.
4. according to the electrochemical cell of claim 1, wherein the hydrogen transport layer has the thickness that is lower than 1000 .
5. according to the electrochemical cell of claim 1, wherein the hydrogen transport layer has the thickness between 50  and 10,000 .
6. according to the electrochemical cell of claim 1, wherein said leveling member comprises the leveling polymer that is arranged between supporting member and the hydrogen transport layer.
7. according to the electrochemical cell of claim 6, wherein said leveling polymer is silicone, polyurethane or acrylate copolymer.
8. according to the electrochemical cell of claim 7, wherein said leveling polymer has and is lower than 1 micron thickness.
9. according to each electrochemical cell among the 1-3 in the claim, wherein the hydrogen selective membrane has speed greater than 1 * 10 -5Cm 3/ (cm 2.sec.cmHg) H 2Permeability.
10. according to each electrochemical cell among the claim 1-3, wherein the outlet that is limited by container is positioned at the anode-side of electrochemical cell.
11. according to each electrochemical cell among the claim 1-3, wherein electrochemical cell is an alkaline battery.
12. according to each electrochemical cell among the claim 1-3, wherein battery is the prismatic battery with the thickness that is lower than 10mm.
13. according to each electrochemical cell among the claim 1-3, wherein electrochemical cell is a metal-air battery.
14. according to each electrochemical cell among the claim 1-3, wherein said battery has cathodic coating and anode film, and described anode film has speed ratio H 2The H that permeability by cathodic coating is low 10 to 10,000 times 2Permeability.
15. according to the electrochemical cell of claim 14, wherein this anode film is a microporous polyethylene.
CNB018204112A 2000-11-21 2001-11-16 Battery vent Expired - Fee Related CN100350647C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71771400A 2000-11-21 2000-11-21
US09/717,714 2000-11-21

Publications (2)

Publication Number Publication Date
CN1568555A CN1568555A (en) 2005-01-19
CN100350647C true CN100350647C (en) 2007-11-21

Family

ID=24883160

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018204112A Expired - Fee Related CN100350647C (en) 2000-11-21 2001-11-16 Battery vent

Country Status (5)

Country Link
EP (1) EP1479115A2 (en)
JP (1) JP2005502158A (en)
CN (1) CN100350647C (en)
AR (1) AR031475A1 (en)
WO (1) WO2002059990A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887618B2 (en) * 2002-08-09 2005-05-03 The Gillette Company Electrochemical cell with flat casing and vent
EP1798788B1 (en) * 2004-07-02 2015-03-18 Toyota Jidosha Kabushiki Kaisha Nickel-metal hydride storage battery
US20070148533A1 (en) * 2005-12-23 2007-06-28 Anglin David L Batteries
JP5127258B2 (en) * 2007-02-08 2013-01-23 株式会社オプトニクス精密 Gas permeable safety valve and electrochemical element
CN101682010B (en) * 2007-06-22 2014-03-05 如碧空株式会社 Electronic parts pressure regulating valve, and electronic parts using valve
FR2927729B1 (en) * 2008-02-14 2013-06-14 Batscap Sa ANTI-PRESSURE DEVICE FOR A SUPERCONDENSER
CN104870080A (en) * 2012-12-17 2015-08-26 日东电工株式会社 Hydrogen-releasing film
JP2015053475A (en) * 2013-08-06 2015-03-19 日東電工株式会社 Hydrogen discharge membrane
US10886548B2 (en) 2014-05-07 2021-01-05 L3 Open Water Power, Inc. Hydrogen management in electrochemical systems
EP3157024A4 (en) * 2014-06-16 2018-02-21 Nitto Denko Corporation Hydrogen release film
KR20170018029A (en) * 2014-06-16 2017-02-15 닛토덴코 가부시키가이샤 Hydrogen release film
US20170133647A1 (en) * 2014-06-16 2017-05-11 Nitto Denko Corporation Hydrogen-relaeasing film
JP7034577B2 (en) * 2015-03-06 2022-03-14 日東電工株式会社 Hydrogen discharge membrane
WO2017098930A1 (en) * 2015-12-11 2017-06-15 日東電工株式会社 Hydrogen discharge membrane
WO2017104569A1 (en) * 2015-12-14 2017-06-22 日東電工株式会社 Support for forming hydrogen discharge film, and laminated hydrogen discharge film
WO2017104570A1 (en) * 2015-12-14 2017-06-22 日東電工株式会社 Support for forming hydrogen discharge film, and laminated hydrogen discharge film
DE102016004648A1 (en) * 2016-04-16 2017-10-19 Daimler Ag Pressure relief device for a battery case, battery case with the pressure relief device, battery and method for depressurizing a battery
US10673042B2 (en) * 2017-04-10 2020-06-02 Imprint Energy, Inc. Protective films for printed electrochemical cells and methods of packaging electrochemical cells
DE102017128556A1 (en) * 2017-12-01 2019-06-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Lithium-ion cell
DE102021121286A1 (en) 2021-08-17 2023-02-23 FRÖTEK Vermögensverwaltung GmbH Sealing plug of an accumulator with flame protection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1208323A (en) * 1967-02-28 1970-10-14 Texas Instruments Inc Improvements in or relating to nickel-zinc batteries
US3909302A (en) * 1973-06-21 1975-09-30 Tyco Laboratories Inc Vent cap for batteries
US5173376A (en) * 1991-10-28 1992-12-22 Globe-Union Inc. Metal oxide hydrogen battery having sealed cell modules with electrolyte containment and hydrogen venting
WO1994006542A1 (en) * 1990-06-22 1994-03-31 Buxbaum Robert E Composite metal membrane for hydrogen extraction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717394A (en) * 1986-10-27 1988-01-05 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
IL96391A (en) * 1989-11-24 1995-05-26 Energy Conversion Devices Inc Catalytic hydrogen storage electrode materials for use in electrochemical cells
US5916704A (en) * 1997-10-10 1999-06-29 Ultralife Batteries Low pressure battery vent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1208323A (en) * 1967-02-28 1970-10-14 Texas Instruments Inc Improvements in or relating to nickel-zinc batteries
US3909302A (en) * 1973-06-21 1975-09-30 Tyco Laboratories Inc Vent cap for batteries
WO1994006542A1 (en) * 1990-06-22 1994-03-31 Buxbaum Robert E Composite metal membrane for hydrogen extraction
US5173376A (en) * 1991-10-28 1992-12-22 Globe-Union Inc. Metal oxide hydrogen battery having sealed cell modules with electrolyte containment and hydrogen venting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Metal composite membranes for hydrogen separation. A.L.Athayde,R.W.Baker,P.Nguyen.Journal of Membrane Science,Vol.94(1994). 1994 *

Also Published As

Publication number Publication date
JP2005502158A (en) 2005-01-20
AR031475A1 (en) 2003-09-24
CN1568555A (en) 2005-01-19
WO2002059990A2 (en) 2002-08-01
EP1479115A2 (en) 2004-11-24
WO2002059990A3 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
CN100350647C (en) Battery vent
Chakkaravarthy et al. Zinc—air alkaline batteries—A review
US4957826A (en) Rechargeable metal-air battery
CN1211874C (en) Catalytic air cathode for air-metal batteries
US6060196A (en) Storage-stable zinc anode based electrochemical cell
US20090078568A1 (en) On-demand hydrogen gas generation device having gas management system
US6248476B1 (en) Metal air cathode and electrochemical cells made therewith
US20090081501A1 (en) On-demand hydrogen gas generation device
US8541135B2 (en) Current collector for catalytic electrode
US4483694A (en) Oxygen gas permselective membrane
US20130295472A1 (en) Metal-air battery
US20090042072A1 (en) On-demand hydrogen gas generation device with pressure-regulating switch
WO2003105251A2 (en) Layered electrochemical cell and manufacturing method therefor
JP2007509480A (en) Electrode, its manufacturing method, metal / air fuel cell and metal hydride cell
JPH10509554A (en) Rechargeable electrochemical cell with vent hole for internal recombination of hydrogen and oxygen and its battery container
US20090081497A1 (en) On-demand high energy density hydrogen gas generation device
US6787008B2 (en) Hydrogen generating cell with cathode
WO2015119041A1 (en) Air electrode and metal air battery
JP2007207679A (en) Hollow platinum catalyst particle for fuel cell, membrane electrode assembly, manufacturing method of them, and fuel cell
WO1984002429A1 (en) Chemo-electric cell with at least one gas electrode
EP0126143A1 (en) Sealed nickel-zinc cell
JPH08264186A (en) Cylindrical air zinc battery
US10991951B2 (en) Cathode, metal-air battery including the cathode, and method of manufacturing the cathode
JP2023028015A (en) zinc secondary battery
JP2673337B2 (en) Air-metal hydride secondary battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071121

Termination date: 20101116