JP5127258B2 - Gas permeable safety valve and electrochemical element - Google Patents

Gas permeable safety valve and electrochemical element Download PDF

Info

Publication number
JP5127258B2
JP5127258B2 JP2007029679A JP2007029679A JP5127258B2 JP 5127258 B2 JP5127258 B2 JP 5127258B2 JP 2007029679 A JP2007029679 A JP 2007029679A JP 2007029679 A JP2007029679 A JP 2007029679A JP 5127258 B2 JP5127258 B2 JP 5127258B2
Authority
JP
Japan
Prior art keywords
gas
safety valve
electrochemical
function
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007029679A
Other languages
Japanese (ja)
Other versions
JP2008198664A (en
Inventor
精鎮 絹田
西野  敦
Original Assignee
株式会社オプトニクス精密
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプトニクス精密 filed Critical 株式会社オプトニクス精密
Priority to JP2007029679A priority Critical patent/JP5127258B2/en
Publication of JP2008198664A publication Critical patent/JP2008198664A/en
Application granted granted Critical
Publication of JP5127258B2 publication Critical patent/JP5127258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas penetration safety valve that can improve efficiency during regular time, safety at abnormality, reliability and has a high industrial value. <P>SOLUTION: The gas penetration pressure adjusting unit is provided with an electrolyte injecting part, a gas selection penetrating part 25 and an instantaneous breaking part 22 that is instantly broken at abnormalities. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、リチウム二次電池、ニッケル水素二次電池のような電池、アルミ電解コンデンサ、電気二重層キャパシタのようなコンデンサおよび電気量記憶素子のようなセンサ等の電気化学素子の使用時に発生する種々のガスを電解液を容器内に残し、副製ガスのみを常時容器外に逸散させる調圧機能と電気化学素子内に異常に発生する過大ガスを瞬時にガス透過性安全弁の壊裂孔を壊裂させ、壊裂孔から瞬時に異常発生ガスを逸散させ、電気化学素子の爆発を防止することの可能な機能を有する薄膜の材料、構成および設置方法に関するものである。   The present invention occurs when an electrochemical element such as a battery such as a lithium secondary battery or a nickel hydride secondary battery, a capacitor such as an aluminum electrolytic capacitor or an electric double layer capacitor, or a sensor such as an electric quantity memory element is used. Pressure control function that leaves various gases in the container and only the by-product gas is always dissipated outside the container, and excessive gas that is abnormally generated in the electrochemical element is instantaneously provided as a rupture hole in the gas permeable safety valve. The present invention relates to a thin film material, a structure, and an installation method having a function capable of causing explosion and instantaneously dissipating an abnormally generated gas from a fracture hole and preventing explosion of an electrochemical element.
従来の技術は、主に、電池やコンデンサに防爆安全弁が用いられていた。その代表的な構造は、アルミ電解コンデンサや電気二重層キャパシタの場合には、アルミニュウム金属ケースの底面に十字の段押し加工を施し、他の部分よりもケース厚みを薄くして、安全限界に達すると段押し部分が破壊する安全弁が主なものである。
また、従来の電池用防爆安全装置は、電池の容器の内部圧力が加熱や過電流によて異常に高くなったときに、電池の爆発による事故を防ぐ目的で所定の圧力で破損し、ガス抜きをする安全弁が取り付けられている。その他の電池の場合には、特開昭59−79965号公報にステンレス鋼板を用いるもの、特開平10−172529号公報には、ニッケルの箔板を用いるものが述べられている。
また、大型の据え置き型密閉鉛蓄電池には、電池周辺部の酸霧による腐食を防止するため触媒栓を用いて、充放電時に発生する水素ガスと酸素ガスを触媒を用いて水に戻し、電池内部のガス圧の上昇を防止しているが触媒栓だけで小型電池以上に体積を要する。
また、特開平5−159765号公報では、フッ素樹脂(PTFE)のフイルムを延伸して製造した連続気泡を有する多孔質膜が用いられているが多孔度の均一化が困難で液が流失したり、歩留まりが悪く、H2O不透過機能が不完全であったりする等実用化の上で課題が多い。
また、特開2004−221129号公報は、常時の調圧機能を有するが異常時の瞬時対策機能が設けられていない。
In the prior art, explosion-proof safety valves are mainly used for batteries and capacitors. In the case of aluminum electrolytic capacitors and electric double layer capacitors, the typical structure is that a cross-step pressing process is applied to the bottom of the aluminum metal case to make the case thinner than other parts, reaching the safety limit. Then, the safety valve that breaks the stepped part is the main one.
Further, the conventional battery explosion爆安whole apparatus, when the internal pressure of the container of the battery becomes abnormally high in Tsu by the heating and overcurrent, broken at a predetermined pressure in order to prevent accidents caused by the explosion of the battery, A safety valve for venting is installed. In the case of other batteries, one using a stainless steel plate is disclosed in Japanese Patent Application Laid-Open No. 59-79965, and one using a nickel foil plate is described in Japanese Patent Application Laid-Open No. 10-172529.
For large stationary sealed lead-acid batteries, a catalyst plug is used to prevent corrosion due to acid mist around the battery, and the hydrogen gas and oxygen gas generated during charging and discharging are returned to water using the catalyst. Although the internal gas pressure is prevented from increasing, it requires more volume than a small battery with just a catalyst plug.
In Japanese Patent Laid-Open No. 5-159765, a porous membrane having open cells produced by stretching a fluororesin (PTFE) film is used. However, it is difficult to make the porosity uniform, and the liquid is lost. , the yield is poor, such as H 2 O opaque features you or incomplete Tsu der, there are many problems on practical use.
Japanese Patent Application Laid-Open No. 2004-221129 has a constant pressure adjusting function, but does not have an instantaneous countermeasure function in case of abnormality.
前記のアルミ金属ケースに段押し部を設ける方法は、低コストであるが破壊時の圧力にバラツキが大きく、信頼性が悪い。
特開昭59−79965号公報や特開平10−172529号公報のような金属の箔帯を用いる安全弁は、安全弁が作動すると爆発は防止されるが電池、コンデンサのような電気化学素子は完全に使用不可の状態となってしまい、以後使用できない。
また、触媒栓は、安全であるが、高価で、形状が大きく、小型の電気化学素子に応用することが不可能である。また、フッ素樹脂の多孔質フイルムは、機械的強度、信頼性、歩留まりに課題を有し、実用時にガスだけでなく、ガスの逸散時に電解液が同時に噴出する課題を有していた。
また、近年、携帯電話、パソコン、PDA等の電子機器が小型化され、これらの電気化学素子が超小型化され、さらに、製造時のハンダリフロー時の耐熱特性や携帯機器の使用環境条件が厳しくなり、これらに使用される電気化学素子のガス発生問題が深刻化しつつある。
また、HEV車(ハイブリッドカー)の実用化に伴い、HEV車が寒冷地で使用されるようになり、HEV車の低温対策として、ニッケル水素電池と併用に大容量の電気二重層キャパシタが実用化され、+60〜−30℃の温度サイクル試験が要請され、これらの電気化学素子のガス発生対策が急務である。この対策として、公知の安全弁だけの機能では、実用上で問題になってきた。
近年、電気二重層キャパシタがBreak by wireの用途からエンジンや触媒アシストに電気二重層キャパシタを実用化してきた。また、業務用高速複写機に大形電気二重層キャパシタを実用化してきた。このような大形で、大電流用途には、異常時に瞬時に壊裂し、設定圧以上では、ガス透過性を有するガス透過性安全弁の製品化が必要である。
The method of providing the stepped portion on the aluminum metal case is low in cost, but has a large variation in pressure at the time of breakage and is not reliable.
Safety valves using metal foil strips as disclosed in Japanese Patent Application Laid-Open Nos. 59-79965 and 10-172529 prevent explosion when the safety valve is activated, but are completely compatible with electrochemical devices such as batteries and capacitors. It becomes unusable and can no longer be used.
In addition, the catalyst plug is safe, but expensive, large in shape, and cannot be applied to a small electrochemical device. In addition, the fluororesin porous film has problems in mechanical strength, reliability, and yield, and has a problem that not only the gas in practical use but also the electrolytic solution is ejected simultaneously when the gas diffuses.
In recent years, electronic devices such as mobile phones, personal computers and PDAs have been miniaturized, and these electrochemical elements have been miniaturized. Furthermore, the heat resistance characteristics during solder reflow during manufacturing and the environmental conditions for using portable devices have become severe. Therefore, the gas generation problem of the electrochemical elements used for these is becoming serious.
In addition, with the commercialization of HEV vehicles (hybrid cars), HEV vehicles are used in cold regions, and large capacity electric double layer capacitors are put into practical use as a countermeasure against low temperatures in HEV vehicles. Therefore, a temperature cycle test of +60 to −30 ° C. is required, and countermeasures for gas generation of these electrochemical elements are urgently needed. As a countermeasure, the function of only a known safety valve has become a practical problem.
In recent years, electric double layer capacitors have been put into practical use for applications such as engine and catalyst assistance from the application of Break by wire. In addition, large electric double layer capacitors have been put into practical use for commercial high-speed copying machines. For such a large-sized and high-current application, it is necessary to commercialize a gas-permeable safety valve that instantaneously ruptures at the time of abnormality and has gas permeability above a set pressure.
本発明は、これらの従来の課題を解決し、以下の特性改善を目標とし、1)電気化学素子の使用時に設定圧以上では、常時、ガスのみを容器外に逸散させる。2)超小型から大型電気化学素子にも応用可能。3)電気化学素子の実用電圧を素子当たり、100mV以上に上昇させる。4)極めて信頼性が高い。5)瞬時、異常な過大電流の流入による異常ガス圧の上昇に瞬時に壊裂孔を壊裂させ、電気化学素子の爆発を防止する。6)壊裂機能とガス透過機能を収納した調圧ガス透過カートリッジを瞬時に封口板に設置可能な構造を有する。等を目的としている。
本発明の課題解決の手段は、電気化学素子の内部に発生するガスを常に容器外に定常的に逸散させる方法として、1)パラジューム−銀(Pd-Ag)からなる箔帯を用いて、触媒的に、電気化学的に内部のガスを容器外に逸散させる。2)ニッケル、またはニッケル基合金の2〜60μの箔帯に50μ以下の微細孔を設け、ガスのみを容器外に逸散させる。3)1〜150μの有機フイルムの箔帯がプラスチックアロイの機能および2種以上のプラスチックフィルムを重ね合わせて各機能を有し、選択的に目的ガスのみを容器外に逸散させ、外気からのH2Oは不透過機能を有する。4)ガス透過機能と異常時壊裂機能を有する複合機能膜をカートリッジ形状に収納し、電気化学素子に電解液を注入後にワンタッチで前記カートリッジを電気化学素子に設置可能な構造を有する。
The present invention solves these conventional problems, and aims to improve the following characteristics: 1) When the electrochemical device is used, only the gas is always dissipated out of the container above the set pressure. 2) Applicable to ultra small to large electrochemical devices. 3) The practical voltage of the electrochemical device is increased to 100 mV or more per device. 4) Extremely reliable. 5) Instantaneously, when the abnormal gas pressure rises due to an abnormal excessive current flow, the rupture hole is instantaneously ruptured to prevent the electrochemical element from exploding. 6) It has a structure in which a pressure-regulating gas permeable cartridge containing a rupture function and a gas permeable function can be instantaneously installed on the sealing plate. The purpose is.
Means for solving the problems of the present invention are as follows. 1) Using a foil strip made of Palladium-Silver (Pd-Ag) as a method of constantly dissipating the gas generated inside the electrochemical element constantly outside the container, Catalytically and electrochemically dissipates the internal gas out of the container. 2) A fine hole of 50 μm or less is provided in a 2-60 μm foil strip of nickel or a nickel-based alloy, and only the gas is diffused out of the container. 3) An organic film foil strip of 1 to 150 μm has the function of a plastic alloy and two or more types of plastic films superimposed to selectively dissipate only the target gas out of the container. H 2 O has an impermeable function. 4) A composite functional membrane having a gas permeation function and an abnormal rupture function is housed in a cartridge shape, and has a structure in which the cartridge can be installed in the electrochemical element with a single touch after injecting the electrolyte into the electrochemical element.
(電気二重層キャパシタの場合)
近年、これまでのブレーキの安全性での実用化に加え、アイドリング ストップ時の触媒加熱やエンジンアシストに電気二重層キャパシタを実用化してきた。電気二重層キャパシタを回生制動用に応用する場合に、瞬時に大電流の充放電がなされることになる。
瞬時の大電流の充放電は、ガス発生を伴うため本発明のガス透過性調圧安全弁は、電気二重層キャパシタの内部ガス発生による膨れ、漏液を解決させ、−ΔCを減少させ、長期に、信頼性を保証する重要な部材である。
(ニッケル水素電池の場合)
これまでのNi−mH電池は、安全弁が不完全であったため、山や険しい坂道を連続走行すると電池が発熱し、H2ガスを発生し、内部圧力が急上昇し、ガス分極による充放電効率が低下していた。
本発明のガス透過性安全弁は、常時の効率性と異常時の安全性、信頼性を改善させることが可能になり、工業的価値大なるものである。
(Electric double layer capacitor)
In recent years, electric double layer capacitors have been put into practical use for catalyst heating and engine assist when idling is stopped, in addition to the practical application of brake safety. When an electric double layer capacitor is applied for regenerative braking, a large current is charged and discharged instantly.
Instantaneous charging / discharging of a large current involves gas generation, so the gas permeable pressure regulating safety valve of the present invention solves blistering and leakage due to internal gas generation of the electric double layer capacitor, reduces -ΔC, It is an important member that guarantees reliability.
(For nickel metal hydride batteries)
Ni-mH batteries so far have incomplete safety valves, so if you run continuously on a mountain or steep slope, the battery generates heat, generates H 2 gas, the internal pressure rises rapidly, and the charge and discharge efficiency by gas polarization is high. It was falling.
The gas permeable safety valve of the present invention can improve the efficiency at normal times, the safety and reliability at the time of abnormality, and has a great industrial value.
以下、本発明の実施例を図1〜9を用い、図10、11に実施例の条件とその結果を表示する。   Examples of the present invention will be described below with reference to FIGS. 1 to 9, and the conditions and results of the examples are shown in FIGS.
(実施例1)
本発明に用いる電気化学素子の内圧力調整箔帯の基本構成を図1〜4で説明する。図1は、本発明の調圧壊裂機能を有する調圧ユニット3(ガス透過調圧ユニット)を有する電気二重層キャパシタの構造断面図である。アルミ缶外装ケース1の内部には、電気化学素子2を収納し、封口板を介して、陽極5と陰極6が電極端子として設けられている。
電気化学素子の容器は、ニッケル水素電池の場合は、ニッケルメッキ鋼板を用い、アルミ電解コンデンサ、電気二重層キャパシタ、リチウム電池の場合は、アルミ材または、アルミ/ステンレスクラッドメタルを用いる。調圧壊裂機能を有する調圧ユニット3は、図2で詳述する。図2で、内圧力を調整し、異常時に壊裂する機能を有するガス透過壊裂弁本体20、ガス選択透過膜23(ガス選択透過機能部)、電解液結露防止膜24、気密リング26および圧着リング27からなる諸機能膜がカートリッジ28に収納される構成である。
図3は、電気二重層キャパシタ用ガス透過性安全弁の構成断面図である。この調圧ユニット4(ガス透過調圧ユニット)の構成は、電気化学素子の封口板32に調圧ユニット受けジグ31がシール剤26で接合され、ガス透過調圧カートリッジ28は、ガス逸散用貫通孔31を有する上蓋30で、瞬時にワンタッチで設置可能に構成されている。
封口板32は、通常、耐電解液性とガス不透過性を有するブチルゴム34とフェノール樹脂33で、成型加工されている。
本発明の常時調圧機能を有し、異常時に瞬時に壊裂機能を有するガス透過調圧カートリッジの構成と組立方法を図2−aで説明する。
ガス透過壊裂弁本体20は、有機物からなるガス選択透過膜23と電解液結露防止膜24と薄膜状で一体化され、気密Oリング26と上下の圧着リング27を用いて、ガス透過調圧カートリッジに収納される構成である。
図2−b−1は、ガス透過弁本体の断面図で、図2−b−2は、ガス透過弁本体の平面面図である。電気化学素子の内部圧が設定圧以上になると内部発生ガスはガス選択透過膜を通過し、0.1〜50μmからなる無数の微細孔を有するガス透過壊裂本体20のガス透過調圧部21を通過する。
また、電気化学素子の充放電時に異常過大電流が流れた場合は、大量のガスが瞬時に発生し、内圧が急上昇し、ガス透過壊裂弁本体20に設けられた過大圧壊裂部22が瞬時に壊裂し、電気化学素子を爆発させることなく、過大ガスを瞬時に外部に逸散させる構造に成っている。微細孔の貫通孔は中央部と周辺部で貫通孔径を変化させることも可能である。また、図2−b−1の過大圧壊裂部22のx、y、zの大きさは電気二重層キャパシタの大きさ、充放電率、壊裂限界圧力で決められる。自動車用、エレベータ用、クレーン用などで、限界圧力は異なるが、自動車用では、常時は、100〜400Aで、時間は0.1〜0.8secで、異常時の限界電流は、1000Aである。このような過大電流が流れれば内部のガス圧が増大し、壊裂弁が瞬時に壊裂する。
Example 1
The basic structure of the internal pressure adjusting foil strip of the electrochemical element used in the present invention will be described with reference to FIGS. FIG. 1 is a structural cross-sectional view of an electric double layer capacitor having a pressure regulating unit 3 (gas permeable pressure regulating unit) having a pressure regulating burst function according to the present invention. Inside the aluminum can outer case 1, an electrochemical element 2 is accommodated, and an anode 5 and a cathode 6 are provided as electrode terminals via a sealing plate.
As the container for the electrochemical element, a nickel-plated steel plate is used for a nickel metal hydride battery, and an aluminum material or an aluminum / stainless clad metal is used for an aluminum electrolytic capacitor, an electric double layer capacitor, or a lithium battery. The pressure regulating unit 3 having the pressure breaking function will be described in detail with reference to FIG. In FIG. 2, a gas permeable rupture valve main body 20 having a function of adjusting internal pressure and rupturing in the event of an abnormality, a gas selective permeable membrane 23 (gas selective permeable functional portion) , an electrolyte dew condensation preventing membrane 24, an airtight ring 26, and Various functional films made of the pressure-bonding ring 27 are accommodated in the cartridge 28.
FIG. 3 is a structural cross-sectional view of a gas permeable safety valve for an electric double layer capacitor. The pressure regulating unit 4 (gas permeable pressure regulating unit) has a configuration in which a pressure regulating unit receiving jig 31 is joined to a sealing plate 32 of an electrochemical element with a sealant 26, and a gas permeable pressure regulating cartridge 28 is used for gas dissipation. The upper lid 30 having the through hole 31 is configured so that it can be instantly installed with one touch.
The sealing plate 32 is usually molded by a butyl rubber 34 and a phenol resin 33 having resistance to electrolyte and gas impermeability.
The structure and assembly method of the gas permeation pressure regulation cartridge having the constant pressure regulation function of the present invention and having the instantaneous destruction function at the time of abnormality will be described with reference to FIG.
The gas permeable rupture valve main body 20 is integrated with a gas selective permeable membrane 23 made of an organic material and an electrolyte dew condensation prevention membrane 24 in a thin film shape, and a gas permeable pressure regulation using an airtight O-ring 26 and upper and lower pressure-bonding rings 27. It is the structure accommodated in a cartridge.
FIG. 2-b-1 is a sectional view of the gas permeable valve body, and FIG. 2-b-2 is a plan view of the gas permeable valve body. When the internal pressure of the electrochemical element is equal to or higher than the set pressure, the internally generated gas passes through the gas permselective membrane, and the gas permeation regulating part of the gas permeation rupture valve body 20 having innumerable fine holes of 0.1 to 50 μm. Pass through 21.
In addition, when an abnormal excessive current flows during charging / discharging of the electrochemical element, a large amount of gas is instantaneously generated, the internal pressure rapidly increases, and the excessive pressure rupture portion 22 provided in the gas permeation rupture valve body 20 is instantaneously generated. It has a structure that allows excessive gas to dissipate to the outside instantly without bursting and exploding the electrochemical element. The through hole diameter of the fine hole can be changed between the central part and the peripheral part. Also, the size of x, y, z of the overpressure rupture portion 22 in FIG. 2-b-1 is determined by the size of the electric double layer capacitor, the charge / discharge rate, and the rupture limit pressure. The limit pressure differs for automobiles, elevators, cranes, etc., but for automobiles, the limit current is normally 100 to 400 A, the time is 0.1 to 0.8 sec, and the limit current at the time of abnormality is 1000 A. . When such an excessive current flows, the internal gas pressure increases and the rupture valve instantaneously ruptures.
(実施例2)
電気二重層キャパシタでの応用例を図3で説明する。図3で、封口板32と調圧ユニット受けジグ31は、前述した。電気二重層キャパシタ用のガス透過調圧カートリッジ28の内部構成が異なる。ガス選択透過膜23の必要条件は、CO、CO2、H2ガスの透過機能とH2O不透過機能を有することである。電解液結露防止膜24は、自動車寒冷地走行モードで走行中に温度変化を伴うとガス選択透過膜23の下部に結露による電解液の液滴や液膜が生じて、ガス拡散を妨げるため、この対策に電解液結露防止膜24が必要になる。
電解液結露防止膜24は、耐薬品性、耐候性、機械的強度を有する多孔質不織布や脱アルカリ硝子繊維と有機繊維から成る多孔質混抄紙を用いる。これらの材料は、撥水処理を施して使用する。不織布の繊維材料は、ポリエチレン、ポリプロピレンからなる分割繊維が耐薬品性、耐候性に優れている。
図3で、ガス選択透過膜ユニット25は、ガス透過壊裂弁本体20、ガス選択透過膜23、電解液結露防止膜24で構成されている。この機能性のガス選択透過膜ユニットは、上下の圧着リング27を用いて、気密Oリング26を介在させ、ガス透過調圧カートリッジ28に収納されている。
電気二重層キャパシタを製造する時は、電気二重層キャパシタに所定の電解液を注入後にガス透過調圧カートリッジ28を調圧ユニット受けジグ31に挿入し、ガス逸散孔31を有する調圧ユニット上蓋30をワンタッチで収納する。
このワンタッチで収納する構造は、ホックボタン形式、二山ネジ方式、三山ネジ方式、鳩目方式等が本発明に応用できる。
(Example 2)
An application example of an electric double layer capacitor will be described with reference to FIG. In FIG. 3, the sealing plate 32 and the pressure adjusting unit receiving jig 31 have been described above. The internal configuration of the gas permeation pressure adjusting cartridge 28 for the electric double layer capacitor is different. Requirements of the gas permselective membrane 23 is to have a CO, CO 2, transmission function of the H 2 gas and H 2 O opaque feature. The electrolyte condensation prevention film 24 prevents gas diffusion by causing electrolyte droplets or a liquid film due to condensation to form below the gas selective permeable membrane 23 when the automobile is accompanied by a temperature change while the vehicle is running in the cold district running mode. Therefore, the electrolyte dew condensation prevention film 24 is necessary for this measure.
The electrolyte condensation prevention film 24 uses a porous nonwoven fabric having chemical resistance, weather resistance, and mechanical strength, or a porous mixed paper made of dealkalized glass fibers and organic fibers. These materials are used after being subjected to water repellent treatment. As the nonwoven fiber material, split fibers made of polyethylene and polypropylene are excellent in chemical resistance and weather resistance.
In FIG. 3, the gas selective permeable membrane unit 25 includes a gas permeable rupture valve main body 20, a gas selective permeable membrane 23, and an electrolyte dew condensation prevention membrane 24. This functional gas permselective membrane unit is housed in a gas permeation pressure adjusting cartridge 28 with an airtight O-ring 26 interposed between upper and lower pressure-bonding rings 27.
When an electric double layer capacitor is manufactured, a predetermined electrolyte is injected into the electric double layer capacitor, and then the gas permeable pressure adjusting cartridge 28 is inserted into the pressure adjusting unit receiving jig 31 , and the pressure adjusting unit upper cover having the gas diffusion hole 31 is inserted. 30 is stored with one touch.
The one-touch storage structure can be applied to the present invention in the form of a hook button, a double screw method, a triple screw method, an eyelet method, or the like.
(実施例3)
実施例3で、本発明で使用する機能性ガス透過膜について詳述する。
ガスバリヤー性機能性フイルム
水蒸気ガス不透過フイルムは、PTFE、PVDFのようなフッ素系フイルムが本発明に最適である。また、商品名エバール(クラレ製)は、ポリエチレンとポリビニルアルコールで構成され、ガスバリヤーフイルムとして、食品、建材、機能材料と廣く用いられている。本発明では、このフイルムも効果的であった。
ガス透過性機能性フイルム
シリコン樹脂、ポリアセタール樹脂などからなる薄膜材料は、CO2、CO、H2のようなガスを選択的にガス透過が可能である。シリコン樹脂フイルムは、CO2透過が可能であるが、H2Oも透過するためH2O不透過にするための特殊加工が必要である。
機能性ガス透過膜の構成
本発明では、上記の機能性フイルムをシート状で複合化させ薄膜シート状の構成のものと量産性を配慮して、このような機能性の樹脂をプラスチックアロイ方式で、ブチルゴムのような柔軟性と弾力性のある樹脂を母体に機能性樹脂をアロイ式に混合、混練し、延伸または押出成型で、薄膜フイルム状に加工する、また、透過性の高いシリコン樹脂やゴムなどの表面にポリビニルアルコール溶液をコーティング乾燥して水蒸気のみの通過を阻止し、他のガスを通過させるための加工をする。
本発明では、試験レベルは、フイルム方式で、量産では、プラスティクスアロイ方式、二層コート方式で生産したが、ほぼ、同様の結果を得た。
(Example 3)
In Example 3, the functional gas permeable membrane used in the present invention will be described in detail.
Gas barrier functional film As the water vapor gas impervious film, a fluorine-based film such as PTFE or PVDF is most suitable for the present invention. The product name EVAL (manufactured by Kuraray) is composed of polyethylene and polyvinyl alcohol, and is widely used as a gas barrier film for foods, building materials, and functional materials. In the present invention, this film is also effective.
Gas-permeable functional film
A thin film material made of silicon resin, polyacetal resin, or the like can selectively permeate gases such as CO 2 , CO, and H 2 . The silicon resin film is capable of CO 2 permeation, but H 2 O also permeates, so special processing for making H 2 O impervious is necessary.
Structure of functional gas permeable membrane In the present invention, the above functional film is composited in a sheet form, and in consideration of mass production and a thin film sheet structure, such a functional resin is formed by a plastic alloy system. In addition, a functional resin is mixed and kneaded with a flexible and elastic resin such as butyl rubber in an alloy type, and processed into a thin film by stretching or extrusion molding. The surface of rubber or the like is coated with a polyvinyl alcohol solution and dried to prevent the passage of only water vapor and to allow other gases to pass through.
In the present invention, the test level was the film method, and the mass production was performed by the plastics alloy method and the two-layer coating method, but almost the same results were obtained.
(実施例4)
Ni−mH電池への応用
図4は、本発明をニッケル−水素二次電池に応用した場合である。基本構造は、上記の実施例2で示した構造である。
ニッケル−水素二次電池の大きな相違点は、水素ガス不透過膜40が電気二重層キャパシタの応用例と異なる。ニッケル−水素二次電池では、水素ガスが逸散すると効率低下をきたすため原則的には、水素、炭酸ガスおよびH2Oの不透過機能が必要であるが、電池内の水素ガス圧が設定圧力以上になると電池内部で、ガス分極をきたすためガスを逸散させる必要と内部短絡や異常加熱時に壊裂機構作動させる必要がある。
図4での水素ガス不透過膜40は、フッ素系樹脂をブチルゴムに分散した構造のプラスチックスアロイ型の機能性フイルムを用いて実用化している。
Example 4
Application to Ni-mH Battery FIG. 4 shows a case where the present invention is applied to a nickel-hydrogen secondary battery. The basic structure is the structure shown in Example 2 above.
The major difference between the nickel-hydrogen secondary batteries is that the hydrogen gas impermeable film 40 is different from the application example of the electric double layer capacitor. Nickel-hydrogen rechargeable batteries require a function of impervious to hydrogen, carbon dioxide, and H 2 O in principle because the efficiency decreases when hydrogen gas escapes, but the hydrogen gas pressure in the battery is set. When the pressure is exceeded, gas polarization is caused inside the battery, so that it is necessary to dissipate the gas, and it is necessary to activate the rupture mechanism during an internal short circuit or abnormal heating.
The hydrogen gas impermeable film 40 in FIG. 4 is put into practical use by using a plastic alloy type functional film having a structure in which a fluorine-based resin is dispersed in butyl rubber.
(実施例5)
電析ニッケル多孔質箔体
本発明で使用する電析ニッケルの多孔箔体と壊裂溝は電析(デポジト法)法で調製した。エッチング法では、10μm以上の孔の場合、製作が可能である。そのときの材料はニッケル、ニッケル以外でもよい。しかし、高精度の10μm以下の孔の場合は電析のニッケルで良好なものができる。細孔密度は、箔帯の厚みに依存し、箔帯の加工コストにも関係する。単3形電池からコイン型電池の電気化学素子では約20μmが好ましく、単1型の大きさでは40〜50μmが好ましい。また、角形電池、500〜4000Fの電気二重層キャパシタ、500〜5000μFのアルミ電解コンデンサでは100〜150μmの箔帯を用いることが好ましい。1μmΦの細孔密度は50〜100個/cm2が好ましく、本発明では80個/cm2の細孔密度を用いた。なお、細孔径の直径をXとして、箔帯の厚みをYとして、Y/Xの比をアスペクト比と呼び、本発明では、アスペクト比は、15以上が好ましく、150以上は、製造コストが高くつく。1μmΦの細孔径を用いた理由は、1μmΦ以上では、電気化学素子の内圧が上昇するとガスと同時に電解液が噴出し、漏液現象を招き、1μmΦ以下の細孔径は、加工が困難で、信頼性が低下するためである。また、1μmΦの細孔径は、メタルスクリーンの量産などで、産業的実績が有り、コスト的に有利である。
以下に、本発明のガス透過弁性調圧ユニットを電気化学素子に装備する方法を実施例で詳述する。
(Example 5)
Electrodeposited nickel porous foil body The electrodeposited nickel porous foil body and the fracture groove used in the present invention were prepared by an electrodeposition (deposit method). In the etching method, in the case of a hole of 10 μm or more, it can be manufactured. The material at that time may be other than nickel or nickel. However, in the case of holes with a precision of 10 μm or less, good nickel deposits can be obtained. The pore density depends on the thickness of the foil strip and is also related to the processing cost of the foil strip. About 20 μm is preferable for an AA battery to a coin-type battery electrochemical element, and 40 to 50 μm is preferable for an AA size. Moreover, it is preferable to use a foil strip of 100 to 150 μm in a square battery, an electric double layer capacitor of 500 to 4000 F, and an aluminum electrolytic capacitor of 500 to 5000 μF. The pore density of 1 μmΦ is preferably 50 to 100 / cm 2. In the present invention, a pore density of 80 / cm 2 was used. Note that the diameter of the pore diameter is X, the thickness of the foil strip is Y, and the ratio of Y / X is referred to as the aspect ratio. In the present invention, the aspect ratio is preferably 15 or more, and 150 or more has a high production cost. I will. The reason for using a pore diameter of 1 μmΦ is that when the internal pressure of the electrochemical element increases when the electrochemical element rises above 1 μmΦ, an electrolyte is ejected at the same time as the gas, leading to a liquid leakage phenomenon. This is because the property decreases. In addition, a pore diameter of 1 μmΦ has an industrial track record in mass production of metal screens and is advantageous in terms of cost.
Hereinafter, a method for mounting the gas permeation valve pressure regulating unit of the present invention on an electrochemical element will be described in detail in Examples.
(実施例6)
アルミ箔ラミネート型外装電気化学素子への応用
近年、携帯型パソコン、PDA、携帯電話などが小型化、軽量化の傾向がさらに加速し、これまでの金属アルミやステンレスのような金属外装ケースからアルミ箔にポリエチレン、ポリプロピレンのような有機フイルムをラミネートした柔軟性に富むシート型電気化学素子(リチウム二次電池、電気二重層キャパシタなど)が研究段階から実用化段階、量産段階を迎えている。このようなシート型外装ケースの耐圧構造は、金属ケースよりも構造的に脆弱である。現実に携帯電話での事故が発生し、その対策が要請されている現状である。
本発明者等は、図5、図6に示すシート型電気化学素子に適したガス透過性安全弁を開発した。図5で、シート型電気化学素子202、陰極陽極203は、アルミ箔ラミネート型外装ケース204に収納され、ガス透過性と壊裂機能を有する安全弁201が装着されている。
図6は、シート型外装構造の電気化学素子に装着する本発明のガス透過性安全弁の構造断面図である。アルミ箔ラミネート型外装ケース204にガス逸散用ガス通過孔208が設けられ、本発明のガス透過機能と壊裂機能を有するガス透過性安全弁(図4b構造型)205が耐水性、ガスバリヤー性の優れた接着剤207で、外装シートと安全弁外装カバー206とが強固に接合されている断面構造を有している。なお、この接合は、構造により、高周波溶着や熱溶着も可能であるが、コスト、量産性を考慮すると変成オレフイン系バインダーで接着することが有利である。
(Example 6)
Application to Aluminum Foil Laminated Exterior Electrochemical Elements In recent years, mobile personal computers, PDAs, mobile phones, etc. have been further reduced in size and weight, and so far from metal exterior cases such as metal aluminum and stainless steel to aluminum Flexible sheet-type electrochemical elements (lithium secondary batteries, electric double layer capacitors, etc.) with foil laminated with an organic film such as polyethylene or polypropylene have entered the stage of practical use and mass production from the research stage. Such a pressure-resistant structure of the sheet-type outer case is structurally more fragile than the metal case. In reality, mobile phone accidents have occurred and countermeasures have been requested.
The present inventors have developed a gas permeable safety valve suitable for the sheet-type electrochemical element shown in FIGS. In FIG. 5, the sheet-type electrochemical element 202 and the cathode anode 203 are housed in an aluminum foil laminate type outer case 204, and a safety valve 201 having gas permeability and a rupturing function is mounted.
FIG. 6 is a structural cross-sectional view of the gas permeable safety valve of the present invention attached to an electrochemical element having a sheet type exterior structure. A gas passage hole 208 for gas dissipation is provided in the aluminum foil laminate outer case 204, and the gas permeable safety valve 205 (structure type in FIG. 4b) having gas permeation function and rupture function of the present invention is water resistant and gas barrier property. With the excellent adhesive 207, the exterior sheet and the safety valve exterior cover 206 are firmly joined to each other. Depending on the structure, high-frequency welding or heat welding is possible for this bonding. However, in consideration of cost and mass productivity, it is advantageous to bond with a modified olefin binder.
(実施例7)
シート型電気化学素子のガス膨張試験
シート型電気化学素子の実用試験として、DoCoMo携帯電話P2008i型の電池サイズ:35*60*3mmの形状のシート型のリチウム二次電池と同サイズの電気二重層キャパシタを製作し、図10の各種条件で、強制劣化耐久試験を実施した。リチウム電池は、50℃で、4.2Vで200時間、電気二重層キャパシタでは、70℃で、2.3Vで200時間、充電状態で電気化学素子のガス膨張試験を実施した。
この結果、図10のようにガス透過性安全弁を有するものは、ガス膨張は0で、ガス透過性安全弁の無装備のものは、従来通り15〜20%の形状変化が観られ、本発明方法の優れた効果が確認された。
(Example 7)
Gas expansion test of sheet-type electrochemical element As a practical test of sheet-type electrochemical element, battery size of DoCoMo mobile phone P2008i type: electric double layer of the same size as a sheet-type lithium secondary battery with a shape of 35 * 60 * 3 mm A capacitor was manufactured, and a forced deterioration durability test was performed under various conditions shown in FIG. The lithium battery was subjected to a gas expansion test of the electrochemical device in a charged state at 4.2 ° C. for 200 hours at 4.2 ° C., and the electric double layer capacitor was charged at 70 ° C. for 2.3 hours at 2.3V.
As a result, as shown in FIG. 10, the gas permeable safety valve has a gas expansion of 0, and the one without the gas permeable safety valve has a shape change of 15 to 20% as usual. The excellent effect was confirmed.
(実施例8)
金属外装ケースへのガス透過性安全弁の装着方法1
自動車用のような大型電気化学素子は、エネルギー密度、パワー密度ともに相対的に大きくなるため2〜5mm程度の肉厚の金属ケースが通常採用されている。特に、試験量産段階は、外形寸法が絶えず変化し、金型を起こすことが出来ない状態のガス透過性安全弁の装着方法は、特に、重要である。
図7は、肉厚の金属ケースへの本発明の安全弁の装着構造である。ガス透過性安全弁の外装ケース210の材質は、アルミニュームのような弁作用金属が好ましく、また、これらの合金も使用可能である。外装ケース210を鋳造、鍛造、切削などで外形を整え、ガス導入孔216、ガス逸散孔212を設け、金属外装ケースへのネジ溝218と上蓋用ネジ溝211を設ける。ガス透過性調圧カートリッジ205のガスシール用パッキング215と安全弁の上蓋213には、ネジ溝211を設ける。
ガス透過性調圧カートリッジ205は、本発明の実施例図2の断面構造を有するものを用いる。
ガス透過性調圧カートリッジ205は、安全弁の受け台219の上に、ガスおよび電解液シール用パッキング材215を介して設置する。このパッキン材は、NBR、SBR、ブチルゴム、フッ素系、シリコン系エラストマーからなる弾力性、耐久性、気密性に優れる材料を用いる。
(Example 8)
Attaching a gas permeable safety valve to a metal outer case 1
A large-sized electrochemical device for automobiles has a relatively large energy density and power density, and therefore a metal case with a thickness of about 2 to 5 mm is usually employed. In particular, in the test and mass production stage, the mounting method of the gas permeable safety valve in which the outer dimensions are constantly changing and the mold cannot be raised is particularly important.
FIG. 7 shows a structure for mounting the safety valve of the present invention on a thick metal case. The material of the outer case 210 of the gas permeable safety valve is preferably a valve metal such as aluminum, and these alloys can also be used. The exterior case 210 is trimmed by casting, forging, cutting, or the like, provided with a gas introduction hole 216 and a gas diffusion hole 212, and provided with a screw groove 218 and a top cover screw groove 211 for the metal exterior case. A screw groove 211 is provided in the gas seal packing 215 and the upper cover 213 of the safety valve of the gas permeable pressure adjusting cartridge 205.
As the gas permeable pressure adjusting cartridge 205, a cartridge having the cross-sectional structure shown in FIG.
The gas permeable pressure adjusting cartridge 205 is installed on a safety valve cradle 219 via a gas and electrolyte seal packing material 215. The packing material is made of NBR, SBR, butyl rubber, fluorine-based, or silicon- based elastomer, which is excellent in elasticity, durability, and airtightness.
(実施例9)
金属ケースへの挿入方法
図8は、電気化学素子の金属ケース232にガス透過性安全弁ユニット230をネジ込挿入する場合の構造断面図を示している。安全弁230の内部構造は、前記図1、図2に示した構造のものを用いる。
図8で、安全弁230は、挿入部231にネジ溝235を設け、金属ケース232のガス逸散孔233に設けられた受けネジ溝234に挿入する。この場合、ネジ部235には、耐薬品性のシールボンドを塗布し、ロックする構造を有する。
Example 9
Method for Inserting into Metal Case FIG. 8 shows a sectional view of the structure when the gas permeable safety valve unit 230 is screwed into the metal case 232 of the electrochemical element. As the internal structure of the safety valve 230, the structure shown in FIGS. 1 and 2 is used.
In FIG. 8, the safety valve 230 is provided with a screw groove 235 in the insertion portion 231 and is inserted into a receiving screw groove 234 provided in the gas diffusion hole 233 of the metal case 232. In this case, the screw portion 235 has a structure in which a chemical-resistant seal bond is applied and locked.
(実施例10)
金属ケースへの圧入方法
図9は、安全弁ユニット230を電気化学素子の外装ケース232に圧入し、装着する実施例の構造断面図である。
金属製外装ケース232にガス逸散孔233には、弾力性を有する材料からなるネジ受け具236を圧入し、金属ケースの開孔部に挿入装着し、この開孔部に安全弁ユニット230の挿入部231に設けられたネジ部237を圧入する。このネジ表面237には、シールボンドを予め塗布する。
(Example 10)
FIG. 9 is a structural cross-sectional view of an embodiment in which the safety valve unit 230 is press-fitted into the outer case 232 of the electrochemical element and attached.
A screw receiver 236 made of an elastic material is press-fitted into the gas diffusion hole 233 in the metal outer case 232 and is inserted into and attached to the opening of the metal case, and the safety valve unit 230 is inserted into the opening. The screw part 237 provided in the part 231 is press-fitted. A seal bond is applied in advance to the screw surface 237.
(実施例11)
ガス透過性安全弁のアルミ電解コンデンサへの応用とインバータ回路への応用
PEV車、HEV車、動力用ロボット、エレベータなどの大出力用インバータには、2000〜5000μFの大型アルミ電解コンデンサが4〜6個使用されている。これらのインバータは、1分以内の電流電圧変化が極めて大きく、アルミ電解コンデンサの内部発熱が大きく、アルミ電解コンデンサ用電解液が気化し、このガス発生による内部圧力が増加し、内部に蓄積されたガスがガスケットを経て、金属ケース内部の高圧ガスが外部に逸散する時に電解液が同時に爆発的に外部に流出し、アルミ電解コンデンサの電解液が減少し、アルミ電解コンデンサの容量が低下し、インバータ機能が低下し、インバータ用アルミ電解コンデンサを屡々交換する必要が生じている現状である。
この対策として、HV車のインバータ用アルミ電解コンデンサ3000μFにガス透過性安全弁の有無で、図11に示す強制劣化耐久試験を実施した。条件は、70℃で、2分間に0〜200Aの大電流を変化させ、10万回の充電放電を繰り返した。インバータ回路用アルミ電解コンデンサを4〜6個/台に変化させ、10万回サイクル後のアルミ電解コンデンサの容量変化率を初期値に対して、−ΔCで表示した。
図11から明らかなように、本発明のガス透過性安全弁を装備したものは、従来例の安全弁無しのものと比較して、高温耐久試験での−ΔCが著しく少なく、且つ、大型のアルミ電解コンデンサ使用数の減少化の可能性が得られ、車体重量の軽量化、省スペース化、低コスト化、長期高信頼性保証の可能性が得られた。
(Example 11)
Application of gas permeable safety valve to aluminum electrolytic capacitor and inverter circuit For large output inverters such as PEV cars, HEV cars, power robots, elevators, etc., 4-6 large aluminum electrolytic capacitors of 2000-5000μF It is used. In these inverters , the current voltage change within 1 minute is extremely large, the internal heat generation of the aluminum electrolytic capacitor is large, the electrolytic solution for the aluminum electrolytic capacitor is vaporized, the internal pressure due to this gas generation increases, and it is accumulated inside When the gas passes through the gasket and the high-pressure gas inside the metal case dissipates to the outside, the electrolyte explodes at the same time, and the electrolytic solution of the aluminum electrolytic capacitor decreases, the capacity of the aluminum electrolytic capacitor decreases, The current situation is that the inverter function is lowered and the aluminum electrolytic capacitor for the inverter needs to be replaced frequently.
As a countermeasure, the inverter for aluminum electrolytic capacitors 3000μF of H E V vehicles, with or without a gas-permeable safety valve, was carried out accelerated aging durability test shown in FIG. 11. The conditions were 70 ° C., a large current of 0 to 200 A was changed for 2 minutes, and 100,000 times of charging and discharging were repeated. The number of aluminum electrolytic capacitors for the inverter circuit was changed to 4 to 6 / unit, and the capacity change rate of the aluminum electrolytic capacitor after 100,000 cycles was indicated by −ΔC with respect to the initial value.
As is apparent from FIG. 11, the device equipped with the gas permeable safety valve of the present invention has a significantly lower −ΔC in the high temperature endurance test and the large-sized aluminum electrolysis than the conventional one without the safety valve. The possibility of reducing the number of capacitors used was obtained, and the possibility of reducing the weight of the vehicle body, saving space, reducing costs, and ensuring long-term high reliability was obtained.
本発明の実施例のガス調圧壊裂機能を有する安全弁の主要構成図。The main block diagram of the safety valve which has the gas pressure bursting function of the Example of this invention. 本発明のガス透過調圧壊裂機能カートリッジの構成断面図。The structure sectional view of the gas permeation pressure regulation bursting function cartridge of the present invention. 本発明の電気二重層キャパシタ用ガス透過性安全弁の構成断面図。1 is a cross-sectional view of a configuration of a gas permeable safety valve for an electric double layer capacitor according to the present invention. 本発明のニッケル−水素電池用ガス透過性安全弁の構成断面図。1 is a cross-sectional view of a configuration of a gas-permeable safety valve for nickel-hydrogen batteries of the present invention. 本発明の調圧ユニットを装着したシート型電気化学素子の断面図。Sectional drawing of the sheet type electrochemical element equipped with the pressure regulation unit of this invention. 本発明の調圧ユニットの構成断面図。The structure sectional view of the pressure regulation unit of the present invention. 本発明の金属ケース用の安全弁の構造断面図。The structure sectional view of the safety valve for metal cases of the present invention. 本発明の金属ケースへのガス透過安全弁の挿入方法の参考図。The reference drawing of the insertion method of the gas permeation safety valve to the metal case of the present invention. 本発明の金属ケースへのガス透過安全弁の挿入方法の参考図。The reference drawing of the insertion method of the gas permeation safety valve to the metal case of the present invention. 強制劣化耐久試験条件および結果を示す図。The figure which shows a forced deterioration durability test condition and a result. 3000μFアルミ電解コンデンサ耐久試験の結果を示す図。The figure which shows the result of a 3000 micro F aluminum electrolytic capacitor endurance test.
符号の説明Explanation of symbols
20 ガス透過壊裂弁本体
21 ガス透過調整部
22 過大圧壊裂部
23 ガス選択透過膜
24 電解結露防止膜
25 ガス選択透過膜ユニット
26 気密Oリング
27 圧着リング
28 ガス透過調圧カートリッジ
20 Gas permeability壊裂valve body 21 gas transmission control unit 22 excessive crushing cleft 23 gas permselective membrane 24 electrolyte condensation prevention film 25 gas selective permeable membrane unit 26 airtight O-ring 27 crimped ring 28 gas permeable pressure regulating cartridge

Claims (10)

  1. ガス透過調圧ユニットが、CO2ガス透過及びH2O不透過機能を有するガス選択透過機能部と、該ガス選択透過機能部の下に位置する多孔質の電解液結露防止膜と、ガス選択透過機能部の上に位置し異常時に瞬時に壊裂する瞬時壊裂機能部とを有することを特徴とするガス透過性安全弁。 A gas permeation pressure adjusting unit includes a gas selective permeation function unit having a CO 2 gas permeation function and an H 2 O non-permeation function, a porous electrolyte dew condensation prevention film positioned under the gas selective permeation function unit, and a gas selection A gas permeable safety valve having an instantaneous rupture function portion that is located on the permeable function portion and instantaneously ruptures when an abnormality occurs.
  2. ガス透過調圧ユニットがユニットの上部と下部にガス透過用の貫通孔を有するカートリッジ部に収納されていることを特徴とする請求項1に記載のガス透過性安全弁。   2. The gas permeable safety valve according to claim 1, wherein the gas permeable pressure regulating unit is housed in a cartridge part having gas permeable through holes in an upper part and a lower part of the unit.
  3. ガス透過機能を有するカートリッジ部が電気化学素子に電解液を注入後に容易に電気化学素子の封口板部にワンタッチで装着可能な装着構造を有することを特徴とする請求項に記載のガス透過性安全弁。 The gas permeable property according to claim 2 , wherein the cartridge part having a gas permeation function has a mounting structure that can be easily mounted on the sealing plate part of the electrochemical element after one injection of the electrolyte into the electrochemical element. safety valve.
  4. 電気化学素子の外装ケースが有機材料、有機フイルム、アルミ、アルミ合金、ステンレス、アルミラミネートクラッドメタルで構成されることを特徴とする請求項1から請求項の何れか1項に記載のガス透過性安全弁。 The gas permeation according to any one of claims 1 to 3 , wherein the outer casing of the electrochemical element is made of an organic material, an organic film, aluminum, an aluminum alloy, stainless steel, or an aluminum laminate clad metal. Safety valve.
  5. ガス選択透過膜が、更にH2透過機能を有することを特徴とする請求項1から請求項の何れか1項に記載のガス透過性安全弁。 The gas permeable safety valve according to any one of claims 1 to 4 , wherein the gas selective permeable membrane further has an H 2 permeable function.
  6. 瞬時の過大な異常ガス発生時に壊裂し、安全にガスを電気化学素子から異常発生ガスを瞬時に逸散させる機能を有することを特徴とする請求項1から請求項の何れか1項に記載のガス透過性安全弁。 6. The method according to any one of claims 1 to 5 , which has a function of rupturing when an excessively large abnormal gas is generated and safely dissipating the gas from the electrochemical element instantaneously. The gas permeable safety valve as described.
  7. 異常時に壊裂する機能をニッケル基合金で構成することを特徴とする請求項に記載のガス透過性安全弁。 7. The gas permeable safety valve according to claim 6 , wherein the function of breaking at an abnormal time is constituted by a nickel base alloy.
  8. 請求項1から請求項の何れか1項に記載のガス透過性安全弁を、接着又は溶着により装着することを特徴とするアルミ箔ラミネート型シート状電気化学素子。 An aluminum foil laminated sheet-like electrochemical element, wherein the gas permeable safety valve according to any one of claims 1 to 7 is attached by adhesion or welding.
  9. 請求項1から請求項の何れか1項に記載のガス透過性安全弁を、金属外装ケースにねじ込み又は圧入によりワンタッチで、装着することを特徴とする電気化学素子。 An electrochemical element comprising the gas permeable safety valve according to any one of claims 1 to 7 attached to a metal outer case by one-touch by screwing or press-fitting.
  10. 請求項1から請求項の何れか1項に記載のガス透過性安全弁を、アルミ電解コンデンサに装備してインバータ回路、動力用電源回路に応用することを特徴とする電気化学素子。 An electrochemical device comprising the gas permeable safety valve according to any one of claims 1 to 7 in an aluminum electrolytic capacitor and applied to an inverter circuit and a power supply circuit for power.
JP2007029679A 2007-02-08 2007-02-08 Gas permeable safety valve and electrochemical element Active JP5127258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007029679A JP5127258B2 (en) 2007-02-08 2007-02-08 Gas permeable safety valve and electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007029679A JP5127258B2 (en) 2007-02-08 2007-02-08 Gas permeable safety valve and electrochemical element

Publications (2)

Publication Number Publication Date
JP2008198664A JP2008198664A (en) 2008-08-28
JP5127258B2 true JP5127258B2 (en) 2013-01-23

Family

ID=39757366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007029679A Active JP5127258B2 (en) 2007-02-08 2007-02-08 Gas permeable safety valve and electrochemical element

Country Status (1)

Country Link
JP (1) JP5127258B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202308124U (en) * 2011-10-28 2012-07-04 比亚迪股份有限公司 Battery explosion-proof device and battery pack thereof
CN102403541A (en) * 2011-11-30 2012-04-04 江苏双登集团有限公司 Process valve for chemical reaction in lead-acid battery
US9397325B2 (en) 2012-03-28 2016-07-19 Optnics Precision Co., Ltd Safety vent and electrochemical device
JP5969368B2 (en) * 2012-11-30 2016-08-17 昭和電工パッケージング株式会社 Exterior body for electrochemical element
JP6225499B2 (en) * 2013-05-28 2017-11-08 睦月電機株式会社 Explosion-proof device for sealed electrochemical devices
JP6340214B2 (en) * 2013-07-09 2018-06-06 日東電工株式会社 Ventilation member, method for producing ventilation member, and breathable container
JP2015053475A (en) * 2013-08-06 2015-03-19 日東電工株式会社 Hydrogen discharge membrane
JP2015176776A (en) * 2014-03-16 2015-10-05 日東電工株式会社 Method for manufacturing lithium ion secondary battery
CN107293801B (en) * 2015-07-12 2019-05-07 深圳安正检测技术有限公司 The explosion-proof method for early warning of lithium battery
JP6660700B2 (en) * 2015-09-30 2020-03-11 ニチコン株式会社 Sealing body and electrolytic capacitor
WO2019226764A1 (en) * 2018-05-22 2019-11-28 Johnson Controls Technology Company Vent for a battery module
JP2019207780A (en) * 2018-05-28 2019-12-05 大日本印刷株式会社 Cell, heat seal device, and manufacturing method of cell
JP2019207779A (en) * 2018-05-28 2019-12-05 大日本印刷株式会社 Cell
JP2019207781A (en) * 2018-05-28 2019-12-05 大日本印刷株式会社 Cell

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502158A (en) * 2000-11-21 2005-01-20 ザ ジレット カンパニー Battery vent
JP2003037028A (en) * 2001-07-26 2003-02-07 Shizuki Electric Co Inc Capacitor
JP4280014B2 (en) * 2002-01-22 2009-06-17 株式会社オプトニクス精密 Electrochemical device equipped with a pressure control film
JP4104363B2 (en) * 2002-03-29 2008-06-18 三洋電機株式会社 Sealed battery
JP4195306B2 (en) * 2003-01-09 2008-12-10 株式会社オプトニクス精密 Electrochemical element
JP2004228019A (en) * 2003-01-27 2004-08-12 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2004281061A (en) * 2003-03-12 2004-10-07 Nishihara Metal Stamping Mfg Inc Explosion-proof valve for battery and the battery equipped with it
JP2006156868A (en) * 2004-12-01 2006-06-15 Nok Corp Pressure release valve
JP2006313715A (en) * 2005-01-31 2006-11-16 Nok Corp Pressure release valve

Also Published As

Publication number Publication date
JP2008198664A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
US20180233722A1 (en) Systems and methods for improving safety features in electrochemical cells
KR101698258B1 (en) Hermetic secondary battery
EP2648242B1 (en) Battery pack
US7687189B2 (en) Housing for a sealed electrochemical battery cell
EP2036145B1 (en) Vent closure seal assembly and method for sealing an electrochemical cell
EP1793436B1 (en) Film-enclosed electric device and production method therefor
CN100544069C (en) Enclosed secondary battery
US20140370374A1 (en) Variable volume containment for energy storage devices
KR100879893B1 (en) Secondary Battery Having Safety-improved Sealing Portion
US8057933B2 (en) Safety mechanism for laminate battery
JP5128789B2 (en) Fuel cell stack
Venugopal et al. Characterization of microporous separators for lithium-ion batteries
US3219488A (en) Reinforced combination safety blow-out and gas permeable membrane for alkaline galvanic cells
KR100959090B1 (en) Pouch type secondary battery with enhanced stability
KR20080078846A (en) Ultracapacitor pressure control system
KR101577883B1 (en) Safety vent and electrochemical device
US4992910A (en) Electrical component package
JP4615215B2 (en) Electrochemical battery end cap assembly
JP4596289B2 (en) Sealed battery
KR100560158B1 (en) Lithium secondary battery with high safety and manufacturing method thereof
JP2010503150A (en) Secondary battery including one-way exhaust valve
EP2808938B1 (en) Battery pack
KR20090064041A (en) Secondary battery having sealing portion of novel structure
EP0226876B1 (en) Sealed lead storage battery
JPWO2006098242A1 (en) Film-covered electric device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100426

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110117

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5127258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250