WO2015119041A1 - Air electrode and metal air battery - Google Patents

Air electrode and metal air battery Download PDF

Info

Publication number
WO2015119041A1
WO2015119041A1 PCT/JP2015/052551 JP2015052551W WO2015119041A1 WO 2015119041 A1 WO2015119041 A1 WO 2015119041A1 JP 2015052551 W JP2015052551 W JP 2015052551W WO 2015119041 A1 WO2015119041 A1 WO 2015119041A1
Authority
WO
WIPO (PCT)
Prior art keywords
air electrode
air
metal
electrode
electrolytic solution
Prior art date
Application number
PCT/JP2015/052551
Other languages
French (fr)
Japanese (ja)
Inventor
将史 村岡
忍 竹中
吉田 章人
宏隆 水畑
友春 新井
俊輔 佐多
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015119041A1 publication Critical patent/WO2015119041A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an air electrode and a metal-air battery.
  • metal-air batteries Since metal-air batteries have high energy density, they are attracting attention as next-generation batteries.
  • the metal-air battery is discharged by using a metal electrode containing an electrode active material and disposed in an electrolyte as an anode and an air electrode as a cathode.
  • a zinc-air battery using metal zinc as an electrode active material can be mentioned.
  • an electrode reaction of the following chemical formula 1 proceeds at the cathode.
  • an electrode reaction dissolution reaction of metallic zinc
  • an electrode reaction dissolution reaction of metallic zinc
  • H 2 O required for the cathode reaction at the air electrode is mainly supplied from the electrolyte, so that the electrolyte in the electrolyte tank leaks to the outside of the battery through the pores of the air electrode.
  • alkaline aqueous solution etc. are used for electrolyte solution, if electrolyte solution leaks out of a battery, the safety of a metal air battery will fall.
  • a zinc-air battery in which a solidifying agent is incorporated in advance in an electrolytic solution tank before injection of the electrolytic solution is known (for example, see Patent Document 2).
  • JP 2005-509262 A Japanese Patent Publication No.58-55625 JP-A-8-7935 JP-A-6-338355
  • the metal-air battery of the present invention forms an electrolytic solution tank that contains an electrolytic solution, a metal electrode that is provided in the electrolytic solution tank and includes at least an electrode active material, and a part of the wall of the electrolytic solution tank.
  • a metal-air battery including an air electrode wherein the air electrode includes a current collector and an air electrode catalyst layer including at least an air electrode catalyst, and the first electrode of the air electrode facing the electrolyte solution.
  • One main surface side or the air electrode catalyst layer includes a gelling agent.
  • the metal-air battery of the present invention includes an electrolytic bath that contains an electrolytic solution, a metal electrode that is provided in the electrolytic bath, and includes at least an electrode active material, and a part of the wall of the electrolytic bath.
  • a metal-air battery including an air electrode to be formed, the air electrode including a current collector and an air electrode catalyst layer including at least an air electrode catalyst, and the air facing the electrolyte solution
  • a gel layer containing at least a gelling agent and water is provided between the first main surface of the pole.
  • the air electrode of the present invention is an air electrode having a current collector and an air electrode catalyst layer containing at least an air electrode catalyst, wherein the air electrode catalyst layer is part of the surface side of the air electrode or the air electrode catalyst layer. It contains an agent.
  • an anode tank is allowed to advance in the metal electrode since the electrolyte tank containing the electrolyte, the metal electrode including at least the electrode active material, and the air electrode are provided in the electrolyte tank.
  • the cathode reaction can proceed at the air electrode.
  • an electromotive force can be generated between the metal electrode and the air electrode, and a discharge current can flow.
  • the gelling agent is included in the first main surface side of the air electrode facing the electrolytic solution stored in the electrolytic solution tank, or the air electrode catalyst layer in the air electrode, the electrolysis that has penetrated into the air electrode. Since the liquid and the gelling agent form a gel and suppress the permeation of the electrolytic solution in the air electrode, leakage of the electrolytic solution to the outside can be suppressed. Moreover, according to the present invention, the gel layer containing the gelling agent and the water contained in the electrolyte is formed on the first main surface side of the air electrode facing the electrolyte contained in the electrolyte bath, It is possible to suppress leakage of the electrolytic solution to the outside.
  • the electrolyte solution contained in the electrolyte bath can be prevented from flowing directly into the pores of the air electrode, Leakage of the electrolyte solution to the outside through the pores of the air electrode can be suppressed. Thereby, the safety and reliability of the metal-air battery can be improved. Moreover, since the rate at which the electrolytic solution permeates the gel layer is slow, an appropriate amount of water can be supplied to the air electrode. Moreover, by forming a gel layer, it is possible to prevent deposits generated from the electrode active material from adhering to the air electrode and hydrogen gas generated by self-corrosion of the metal electrode from flowing into the air electrode. . Thereby, it is possible to suppress a decrease in battery characteristics and output stability.
  • FIG. 2 is a schematic sectional view of the metal-air battery taken along a broken line AA in FIG.
  • A is a schematic sectional drawing of the metal air battery of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the porous body contained in the metal air battery shown to (a).
  • A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the porous body contained in the metal air battery shown to (a).
  • (A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention
  • (b) is a schematic sectional drawing of the air electrode catalyst layer contained in the metal air battery shown to (a). It is a schematic sectional drawing of the metal air battery of one Embodiment of this invention. It is a schematic sectional drawing of the metal air battery of one Embodiment of this invention. It is a schematic sectional drawing of the metal air battery of one Embodiment of this invention. It is a schematic sectional drawing of the metal air battery of one Embodiment of this invention.
  • the metal-air battery of the present invention includes an electrolyte bath that contains an electrolyte, a metal electrode that is provided in the electrolyte bath and includes at least an electrode active material, and an air electrode that forms a part of the wall of the electrolyte bath.
  • the air electrode has a current collector and at least an air electrode catalyst layer, and includes a gelling agent in the first main surface side of the air electrode facing the electrolyte solution or in the air electrode catalyst layer.
  • the metal-air battery of the present invention forms an electrolytic solution tank that contains an electrolytic solution, a metal electrode that is provided in the electrolytic solution tank and includes at least an electrode active material, and a part of the wall of the electrolytic solution tank.
  • a metal-air battery including an air electrode, the air electrode including a current collector and an air electrode catalyst layer including at least an air electrode catalyst, an electrolyte, and a first main electrode of the air electrode facing each other.
  • a gel layer containing at least a gelling agent and water is provided between the surface and the surface.
  • the air electrode of the present invention is an air electrode having a current collector and an air electrode catalyst layer containing at least an air electrode catalyst, wherein a part of the surface side of the air electrode or the air electrode catalyst layer is a gelling agent. It is characterized by including.
  • the gelling agent is preferably a water-absorbing polymer
  • the gel layer is preferably a polymer hydrogel layer containing a gelling agent and an aqueous dispersion medium. According to such a configuration, it is possible to suppress an increase in the ion conduction resistance between the anode and the cathode, and it is possible to improve the discharge characteristics of the metal-air battery while preventing external leakage of the electrolytic solution.
  • the gel layer is preferably provided so as to cover the air electrode. According to such a configuration, the electrolyte contained in the electrolyte bath can be prevented from flowing directly into the pores of the air electrode, and leakage of the electrolyte to the outside through the pores of the air electrode can be prevented. Can be suppressed.
  • the first main surface between the air electrode and the electrolytic solution is formed of a porous body, and the gelling agent is provided in the porous body. According to such a structure, it can suppress that the shape of a gel layer deform
  • FIGS. 1, 3A, 4A, 5A, 6, 7, and 8 are schematic cross-sectional views of the metal-air battery of this embodiment.
  • FIG. 2 is a schematic cross-sectional view of the metal-air battery taken along broken line AA in FIG. 3B and 4B are schematic cross-sectional views of the porous body 32, respectively, and
  • FIG. 5B is a schematic cross-sectional view of the air electrode catalyst layer.
  • the metal-air battery 30 of the present embodiment includes an electrolytic solution tank 2 that contains the electrolytic solution 3, a metal electrode 5 that is provided in the electrolytic solution tank 2 and includes at least an electrode active material, and a part of the electrolytic solution tank 2.
  • a metal-air battery including an air electrode 9 that forms a wall, and the air electrode 9 includes a current collector 10 and an air electrode catalyst layer 7 including at least an air electrode catalyst, and the electrolytic solution 3
  • a gelling agent is included in the first main surface side of the air electrode 9 or the air electrode catalyst layer 7 opposed to the air electrode 9.
  • the metal-air battery 30 of the present embodiment is a battery in which the metal electrode 5 containing a metal serving as an electrode active material is a negative electrode (anode) and the air electrode 9 is a positive electrode (cathode).
  • the metal-air battery 30 of the present embodiment may be a primary battery or a secondary battery.
  • the metal-air battery 30 of the present embodiment may be a battery that can be repeatedly discharged by replacing the metal electrode 5.
  • the metal-air battery 30 has a metal-air battery body composed of the electrolytic solution tank 2, the air electrode 9 and the like, and a structure that can be attached to and detached from the metal-air battery body, and is composed of a metal electrode 5, a metal electrode terminal 41, and the like. You may comprise from an electrode holder.
  • the cell 4 is a structural unit of the metal-air battery 30 and has an electrode pair that is provided in the electrolyte bath 2 (electrolyte chamber) and includes a metal electrode 5 serving as an anode and an air electrode 9 serving as a cathode. .
  • the cell 4 may have, for example, an electrode pair in which one air electrode 9 and one metal electrode 5 are provided so as to sandwich the electrolytic solution 3, and like the metal-air battery 30 shown in FIG.
  • the two air electrodes 9 may have an electrode pair provided so as to sandwich one metal electrode 5.
  • the cell 4 may include an electrolytic solution tank 2 or an electrolytic solution chamber, a metal electrode 5 provided in the electrolytic solution tank 2 or the electrolytic solution chamber and serving as an anode, and an air electrode 9 serving as a cathode. .
  • the cell assembly has a stack structure in which a plurality of cells 4 are stacked.
  • a plurality of cells 4 may be provided in one electrolytic solution tank 2, and each cell 4 may have the electrolytic solution tank 2 or the electrolytic solution chamber.
  • the number of cells constituting the cell assembly is not particularly limited, and the number of cells may be determined according to the required power generation capacity.
  • the metal-air battery 30 shown in FIG. 1 has four cells 4a to 4d.
  • the electrolytic solution tank 2 included in each cell 4 may be provided in the common housing 1, and each cell 4 is disposed in the housing. 1, and the electrolytic solution tank 2 may be provided in the housing 1.
  • two or three cells 4 may be provided in one casing 1 and a plurality of such casings 1 may be combined to form a cell aggregate.
  • the electrode pairs of the plurality of cells 4 included in the cell assembly may be connected in series or in parallel. For example, in the metal-air battery 30 shown in FIG. 1, electrode pairs included in four cells 4a to 4d are connected in series.
  • Electrolytic Solution is a liquid having ionic conductivity by dissolving an electrolyte in a solvent.
  • the electrolytic solution 3 is stored in the electrolytic solution tank 2 or circulates in the electrolytic solution tank 2.
  • the type of the electrolytic solution 3 is different depending on the type of the electrode active material contained in the metal electrode 5, but may be an electrolytic solution (aqueous electrolyte solution) using a water solvent.
  • an electrolytic solution aqueous electrolyte solution
  • an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution can be used as the electrolytic solution.
  • An aqueous sodium chloride solution can be used.
  • the gel layer 13 is preferably provided between the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the air electrode 9 facing the gel layer 13.
  • the gel layer 13 is a layer made of a polymer hydrogel containing an aqueous dispersion medium. Moreover, the gel layer 13 contains a gelling agent as a dispersoid. Examples of the aqueous dispersion medium include an aqueous electrolyte solution and water using a water solvent.
  • the gel layer 13 may be in the form of a film or a liquid having a high viscosity.
  • the gel layer 13 when the gel layer 13 is a layer made of a polymer hydrogel containing an aqueous dispersion medium containing an aqueous electrolyte solution, the gel layer 13 can contain the same type of electrolyte as the electrolytic solution 3 accommodated in the electrolytic solution tank 2.
  • the gel layer 13 can have ionic conductivity, and hydroxide ions moving between the anode and the cathode can conduct the ionic conduction in the gel layer 13.
  • the conductivity of hydroxide ions is as high as that of the non-gelled electrolyte solution 3, and a high output can be obtained.
  • the gelling agent may be contained in the first main surface side of the air electrode 9 facing the electrolytic solution 3 accommodated in the electrolytic solution tank 2 or in the air electrode catalyst layer.
  • the gel layer 13 may be disposed on the liquid surface of the electrolytic solution 3 in the precipitation tank 18 and the electrolytic tank 20 provided so that the electrolytic solution in the electrolytic solution tank 2 flows in.
  • the gel layer 13 can be formed, for example, by adding a gelling agent to the electrolytic solution 3 or water. Since the electrolyte solution 3 and water are taken into the three-dimensional network structure by the gelling agent, the gel layer 13 has high water retention.
  • the presence of the gel layer 13 stabilizes the concentration of the electrolytic solution 3 in the electrolytic solution tank 2 and improves the output stability of the metal-air battery 30. Further, the vapor of the electrolytic solution 3 becomes alkaline vapor or sodium chloride-containing vapor and may cause corrosion of other components such as electrical contacts. However, the gel layer 13 prevents other components from evaporating. Corrosion of can be suppressed. Furthermore, since the transpiration of the electrolytic solution 3 can be kept low, the frequency of replenishment of the electrolytic solution 3 can be reduced, and maintenance is easy.
  • the gelling agent a conventionally known water-absorbing polymer can be used, and a material excellent in alkali resistance is preferably used.
  • the water-absorbing polymer include cross-linked polyacrylate and 2-acrylamido-2-methylpropanesulfonic acid having a sulfo group as a hydrophilic group.
  • the kind of polyacrylate is not specifically limited, For example, polyacrylic acid sodium, polyacrylic acid potassium, polyacrylic acid calcium, and polyacrylic acid magnesium can be mentioned.
  • water-absorbing polymer examples include starch-based acrylonitrile graft copolymers, acrylic acid graft copolymers, acrylamide graft copolymers, cellulose-based acrylonitrile graft copolymers, carboxymethyl cellulose crosslinked products, Sugar-based hyaluronic acid, polyvinyl alcohol-based polyvinyl alcohol cross-linked product, polyvinyl alcohol water-absorbing gel freeze / thaw elastomer, acrylic acid-based acrylic acid / sodium vinyl alcohol copolymer, cross-linked sodium polyacrylate, acrylamide-based N-substituted acrylamide cross-linked products can be used.
  • water-absorbing polymers can reduce the amount of water absorption by increasing the crosslinking density, and can be adjusted as appropriate.
  • a crosslinking agent, a polymerization initiator, or the like may be used to adjust the crosslinking density.
  • the crosslinking agent include N, N 'methylene bisacrylamide and ethylene glycol dimethacrylate
  • the polymerization initiator is azobisisobutyronitrile (AIBN), benzoyl peroxide, and persulfate represented by potassium peroxodisulfate.
  • AIBN azobisisobutyronitrile
  • benzoyl peroxide benzoyl peroxide
  • persulfate represented by potassium peroxodisulfate.
  • a salt can be illustrated.
  • hydrogen bonds, ionic bonds, and coordinate bonds between the water-absorbing polymers may be used. For example, if a calcium chloride solution having multivalent ions is used, the carboxyl group of the water-absorbing polymer can be ionically
  • crosslinking-type potassium polyacrylate it takes in the electrolyte solution from several hundred to about 1000 times the own weight, and gelatinizes. Further, as will be described later, the gel layer 13 can be formed thin or formed into a film, so that the amount of potassium polyacrylate can be small, and the cost can be reduced. Moreover, when using alkaline aqueous solution for the electrolyte solution 3, since the polyacrylic acid potassium is excellent in alkali resistance, material deterioration is so small that it can be disregarded, and even if the gel layer 13 needs to be replaced, the frequency can be reduced. .
  • a gelling agent is added to the electrolytic solution 3 or water stored in the external container, the electrolytic solution 3 or water in the external container is gelled to form a gel layer 13, and the formed gel layer 13 is used as a solution of the electrolytic solution 3. It can arrange
  • water is not limited to pure water, and may include an evaporation inhibitor and the like, and is not particularly limited as long as it does not react with the electrolytic solution.
  • the gel layer 13 may be formed by applying a gelling agent on the air electrode 9 or the like, and spraying an electrolytic solution or water thereon by spraying or the like. By doing in this way, the gel layer 13 can be formed thinly or can be made into a film form. Further, for example, after adding a gelling agent to the electrolytic solution stored in the external container, the gelled electrolytic solution is applied on the porous body 32 or the air electrode 9, and the lower side of the porous body 32 or the air electrode 9. The applied gelled electrolytic solution can be moved into the porous body 32 or the air electrode 9 by being sucked from. Thus, the gel layer 13 can be disposed in the porous body 32 or the air electrode 9.
  • the bubbles in the gel layer 13 may be removed by performing a defoaming process by a vacuum process or the like. This is because if the bubbles remain, the resistance increases due to an increase in the conduction distance of hydroxide ions conducted between the anode and the cathode. Further, after the gel layer 13 is placed on the air electrode 9 or the like, the laminate may be pressed. Since the gel layer 13 has adhesiveness, the air electrode 9 and the like can be entangled well, and peeling of the gel layer 13 can be suppressed.
  • the gel layer 13 is entangled with the air electrode 9, the contact area between the air electrode 9 and the air electrode catalyst is increased, and the ion conduction path is easily connected, so that high output is easily obtained. Further, since the integrated product of the gel layer 13 and the air electrode 9 is obtained, the number of parts is reduced, and the cost can be reduced.
  • the electrolytic solution tank 2 is an electrolytic cell that stores or distributes the electrolytic solution 3 and has corrosion resistance to the electrolytic solution. Moreover, the electrolytic solution tank 2 can have an electrolytic solution chamber. The electrolytic solution tank 2 or the electrolytic solution chamber has a structure in which the metal electrode 5 can be installed so that it can be taken out. The electrolyte bath 2 can be provided in the metal-air battery main body. Moreover, the electrolytic solution tank 2 may have a plurality of electrolytic solution chambers.
  • the metal-air battery 30 may have a mechanism for causing the electrolytic solution 3 in the electrolytic solution tank 2 to flow.
  • the electrolytic solution 3 may be circulated using the pump 25 and the electrolytic solution flow channel 26 to cause the electrolytic solution 3 in the electrolytic solution tank 2 to flow.
  • the fresh electrolyte 3 can be supplied around the metal electrode 5, so that the battery characteristics can be improved and the discharge capacity can be increased.
  • the metal air battery 30 may be provided with a movable part that can physically move the electrolyte 3 in the electrolyte bath 2 such as a stirrer and a vibrator.
  • the electrolyte 3 to be fluidized is not gelled and has high fluidity, even when a porous electrode (for example, an electrode prepared by sintering metal powder) is used as the metal electrode 5, the electrolyte 3 Can penetrate into the pores of the porous electrode. For this reason, it becomes possible to discharge immediately after inserting the metal electrode 5 into the electrolytic solution tank 2. Moreover, since the electrolyte 3 to be flowed has a low viscosity, it is possible to prevent a part of the metal electrode 5 from dropping off when the metal electrode 5 is inserted into or extracted from the electrolyte bath 2.
  • a porous electrode for example, an electrode prepared by sintering metal powder
  • the electrolytic solution 3 in the precipitation tank 18 is supplied to the cells 4a to 4d by the pump 25, and discharged from the discharge ports 15a to 15d of the cells 4a to 4d.
  • An electrolyte channel 26, a precipitation tank 18, and a pump 25 are provided so that 3 flows into the precipitation tank 18.
  • the electrolyte solution 3 communicates between the cells 4a to 4d via the discharge ports 15a to 15d, but the method of circulating the electrolyte solution 3 is not limited to this.
  • a liquid distributor may be provided above the cells 4a to 4d, and the electrolytic solution 3 may be supplied to each cell 4 so that the liquid droplets are dropped from the liquid distributor.
  • the electrolytic solution 3 supplied to each cell 4 is caused to flow into the sedimentation tank 18 so as to drips, and the electrolytic solution is circulated by sending the electrolytic solution 3 to the liquid distributor using the pump 25. May be performed.
  • the electrolyte solution 3 by supplying the electrolyte solution 3 to each cell 4 from a liquid distribution part, since the liquid junction (short circuit by electrolyte solution) of each cell 4 can be prevented, an output can be improved.
  • the gel layer 13e may be disposed on the liquid surface of the electrolytic solution 3 in the precipitation tank 18. As a result, transpiration and moisture absorption of the electrolytic solution 3 and deterioration due to reaction with carbon dioxide can be suppressed, and changes in the electrolyte concentration of the electrolytic solution 3 can be suppressed.
  • the metal-air battery 30 may be provided so that the electrolyte 3 in the electrolyte bath 2 flows into a means for reducing the metal-containing ion concentration.
  • Means for reducing the concentration of the metal-containing ion is, for example, the electrolytic cell 20 or the precipitation promoting part.
  • the electrolytic cell 20 can have an electrode pair of electrodes for electrolysis 21 like the metal-air battery 30 shown in FIG. When a voltage is applied to the electrode pair, a precipitation reaction of a metal, a metal compound, or the like can be caused electrochemically, and the metal-containing ion concentration of the electrolytic solution can be reduced.
  • the precipitation promoting portion is a portion having crystal nucleus particles made of the same kind of material as the precipitate 17, for example.
  • the precipitate 17 can be crystal-grown on the surface of the crystal nucleus particles, and the metal-containing ion concentration of the electrolytic solution 3 can be reduced.
  • the concentration of the metal-containing ions it is possible to repeatedly discharge the metal-air battery 30 without replacing the electrolytic solution 3.
  • the material of the housing 1 constituting the electrolytic solution tank 2 is not particularly limited as long as the material has corrosion resistance to the electrolytic solution.
  • the material of the housing 1 constituting the electrolytic solution tank 2 is not particularly limited as long as the material has corrosion resistance to the electrolytic solution.
  • polyvinyl chloride (PVC) polyvinyl alcohol (PVA), polyvinyl acetate, ABS resin, vinylidene chloride, polyacetal, polyethylene, polypropylene, polyisobutylene, fluorine resin, epoxy resin, etc.
  • Air electrode The air electrode 9 is an electrode which has the air electrode catalyst layer 7 containing an air electrode catalyst, and serves as a cathode. Further, the air electrode 9 may include a porous gas diffusion layer 8 and a porous air electrode catalyst layer 7 provided on the gas diffusion layer 8. Further, the gel layer 13 may be disposed by including a gelling agent in the pores of the air electrode 9.
  • the air electrode 9 is provided so that oxygen gas contained in the atmosphere can diffuse into the air electrode 9.
  • the air electrode 9 can be provided so that at least a part of the surface of the air electrode 9 is exposed to the atmosphere.
  • a plurality of air flow paths 12 are provided in the housing 1, and oxygen gas contained in the atmosphere can diffuse into the air electrode 9 through the air flow paths 12.
  • water may be supplied to the air electrode 9 through the air flow path 12.
  • the air electrode 9 has a sheet shape, and the first main surface of the air electrode 9 is on the side of the electrolyte solution 3 accommodated in the electrolyte solution tank 2 in a part of the wall portion of the electrolyte solution tank 2.
  • the air electrode 9 can be disposed so that the surface is on the atmosphere or air flow path side.
  • water contained in the electrolytic solution 3 accommodated in the electrolytic solution tank 2 can be supplied to the air electrode catalyst layer 7 from the first main surface side, and oxygen gas in the atmosphere is supplied from the second main surface side to the air. It can be supplied to the polar catalyst.
  • the air electrode catalyst layer 7 preferably includes, for example, an electron conductive material, and may include a conductive porous carrier (electron conductive material) and an air electrode catalyst supported on the porous carrier. This makes it possible to form a three-phase interface in which oxygen gas, water, and electrons coexist on the air electrode catalyst, thereby allowing the cathode reaction to proceed.
  • the air electrode catalyst layer 7 may contain a binder. Further, the porous carrier contained in the air electrode catalyst layer 7 may hold a gelling agent in the pores, and the gel layer 13 may be disposed.
  • the air electrode catalyst layer 7 may contain a gelling agent in advance.
  • the gelling agent absorbs the electrolytic solution 3 penetrating into the air electrode catalyst layer 7 and forms the gel layer 13, so that leakage of the electrolytic solution 3 through the air electrode 9 can be prevented.
  • the air electrode catalyst layer 7 may contain a water repellent resin. Thereby, leakage of the electrolyte solution 3 through the air electrode 9 can be suppressed.
  • the content of the water-absorbing polymer in the air electrode catalyst layer 7 is not particularly limited, but is preferably 3 wt% or more and 70 wt% or less, more preferably 5 wt% or more and 30 wt% or less. .
  • the gelling agent or gel formed by the water-absorbing polymer absorbing the electrolyte or water is the air electrode catalyst layer 7.
  • the pores of the porous structure cannot be sufficiently filled, and the electrolytic solution 3 may leak to the outside through the pores of the air electrode catalyst layer 7.
  • the gel cannot sufficiently cover the air electrode catalyst, the three-phase interface is not sufficiently formed, and the discharge characteristics may be deteriorated.
  • the content of the water-absorbing polymer in the air electrode catalyst layer 7 exceeds 70 wt%, the voids 25 (oxygen gas diffusion paths) are not sufficiently ensured in the pores of the porous structure of the air electrode catalyst layer 7, so that the discharge There is a possibility that the characteristics are significantly deteriorated.
  • the air electrode 9 composed of the air electrode catalyst layer 7 and the gas diffusion layer 8 is produced by applying a porous carrier carrying the air electrode catalyst to the conductive porous substrate (gas diffusion layer 8). May be.
  • the air electrode 9 can be produced by applying carbon carrying an air electrode catalyst to carbon paper or carbon felt.
  • the gas diffusion layer 8 may function as an air electrode current collector.
  • the gas diffusion layer 8 may be composed of carbon fibers and a microporous layer made of carbon black and a water repellent polymer.
  • the water repellent polymer is, for example, polytetrafluoroethylene (PTFE). This water-repellent polymer is provided to prevent leakage of the electrolyte solution 3 and has a gas-liquid separation function.
  • the thickness of the air electrode 9 can be, for example, not less than 300 ⁇ m and not more than 3 mm. Further, the air electrode 9 may be composed of only the air electrode catalyst layer 7. In addition, when the air electrode 9 is comprised only from the air electrode catalyst layer 7, the air electrode catalyst layer 7 is directly connected with the air electrode terminal 40 or an external wiring.
  • the air electrode 9 may have a structure in which the air electrode catalyst layer 7 and the air electrode current collector 10 are laminated.
  • the air electrode catalyst layer 7 may be disposed on the first main surface side
  • the air electrode current collector 10 may be disposed on the second main surface side
  • the air electrode current collector 10 may be disposed on the first main surface side.
  • the air electrode catalyst layer 7 may be disposed on the second main surface side.
  • the air electrode 9 is preferably formed of a porous body on the first main surface side. Further, the air electrode 9 can be electrically connected to the air electrode terminal 40. Thereby, the electric charge generated in the air electrode catalyst layer 7 can be taken out to the external circuit.
  • the metal-air battery 30 includes an air electrode current collector 10 that collects charges generated in the air electrode catalyst layer 7. As a result, the charges generated in the air electrode catalyst layer 7 can be taken out to an external circuit efficiently, that is, with low resistance.
  • the material of the air electrode current collector 10 is not particularly limited as long as it has corrosion resistance with respect to the electrolytic solution 3, and examples thereof include nickel, gold, silver, copper, and stainless steel.
  • the air electrode current collector 10 may be a conductive base material subjected to nickel plating, gold plating, silver plating, or copper plating. For this conductive substrate, iron, nickel, stainless steel, or the like can be used.
  • the shape of the air electrode current collector 10 may be a shape having a plurality of openings such as a plate shape, a mesh shape, and a punching metal.
  • the plurality of openings of the air electrode current collector 10 may be open to the atmosphere. Thereby, oxygen gas in the atmosphere can be supplied to the air electrode 9 through the opening.
  • a method of joining the air electrode current collector 10 to the porous carrier or the conductive porous substrate (gas diffusion layer 8) a method of pressure bonding by screwing through a frame, or a conductive adhesive And the like.
  • the air electrode 9 included in one cell may be provided only on one side of the metal electrode 5, or may be provided on both sides of the metal electrode 5 as shown in FIG.
  • Examples of the porous carrier contained in the air electrode catalyst layer 7 include carbon black such as acetylene black, furnace black, channel black and ketjen black, and conductive carbon particles such as graphite and activated carbon.
  • carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanowire, and the like can be used.
  • the air electrode catalyst include fine particles made of platinum, iron, cobalt, nickel, palladium, silver, ruthenium, iridium, molybdenum, manganese, lanthanum, these metal compounds, and alloys containing two or more of these metals.
  • This alloy is preferably an alloy containing at least two of platinum, iron, cobalt, and nickel.
  • the air electrode catalyst may be in the form of particles or may be supported on an electron conductive material.
  • the surface area of the air electrode catalyst can be increased and a large number of three-phase interfaces can be formed.
  • the amount of the air electrode catalyst necessary for manufacturing the air electrode 9 can be reduced, and the manufacturing cost of the metal-air battery 30 can be reduced.
  • the charge generated by the cathode reaction in the air electrode catalyst can be collected efficiently, and the discharge characteristics of the metal-air battery 30 can be enhanced.
  • the electron conductive material is, for example, Pt-supported carbon particles.
  • the binder contained in the air electrode catalyst layer 7 is, for example, polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF).
  • the porous carrier contained in the air electrode catalyst layer 7 may be subjected to a surface treatment so that a cationic group exists as a fixed ion on the surface thereof.
  • hydroxide ions can be conducted on the surface of the porous carrier, so that the hydroxide ions generated on the air electrode catalyst can easily move.
  • the air electrode catalyst layer 7 may have an anion exchange resin held in the pores of the porous carrier. Thereby, since hydroxide ions can be conducted through the anion exchange resin, the hydroxide ions generated on the air electrode catalyst are easily moved.
  • the air electrode catalyst layer 7 may be provided so as to be in contact with the electrolytic solution 3 in the electrolytic solution tank 2. Thus, hydroxide ions generated in the air electrode catalyst layer 7 can easily move to the electrolyte solution 3. Further, water necessary for the electrode reaction in the air electrode catalyst layer 7 is easily supplied from the electrolytic solution 3 to the air electrode catalyst layer 7. If the air electrode catalyst layer 7 is provided so as to be in contact with the electrolytic solution 3 in the electrolytic solution tank 2, the used active material may adhere to and adhere to the air electrode 9 in some cases. In this case, since the used active material has low electrical conductivity, battery resistance is increased, or air diffusion is suppressed by filling the pores of the porous structure of the air electrode 9, so that battery characteristics are deteriorated. There is.
  • the used active material (precipitate 17) adhering to the air electrode 9 precipitates by nucleation and crystal growth in the electrolyte solution in the vicinity of the metal electrode 5 having a high metal-containing ion concentration. Is considered to adhere to the air electrode 9 having a large surface area.
  • a gel layer 13 may be provided between the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the air electrode 9.
  • the gel layer 13 may be provided on the air electrode 9.
  • this gel layer 13 may consist of what gelatinized electrolyte solution. This can suppress an increase in ion conduction resistance between the anode and the cathode.
  • the gel layer 13 can be provided so as to partition the electrolyte solution 3 in the electrolyte solution tank 2 and the air electrode catalyst layer 7. By providing such a gel layer 13, it is possible to prevent the electrolytic solution 3 in the electrolytic solution tank 2 from directly flowing into the pores of the air electrode 9, and the electrolytic solution through the pores of the air electrode 9. 3 leakage can be suppressed.
  • the rate at which the electrolytic solution 3 permeates the gel layer 13 is slow, an appropriate amount of water can be supplied to the air electrode 9. Further, by providing the gel layer 13, it is possible to prevent the electrolytic solution 3 in the electrolytic solution tank 2 from directly flowing into the air electrode 9, so that a precipitate 17 such as a metal oxide adheres to the air electrode 9. Can be prevented. Further, since the conductivity of the metal-containing ions in the gel layer 13 is also sufficiently low, it is possible to suppress the metal oxide from being deposited on the air electrode 9. Thereby, battery characteristics can be maintained. Further, hydrogen gas may be generated in the metal electrode 5 due to self-corrosion.
  • the hydrogen gas reacts at the air electrode 9
  • the battery performance deteriorates or the output stability is impaired, but the hydrogen gas is covered at the air electrode 9 by covering the air electrode 9 with the gel layer 13 that is difficult for hydrogen gas to permeate. Reaction can be prevented.
  • the gel layer 13 is provided so as to cover the air electrode catalyst layer 7 between the air electrode catalyst layer 7 and the electrolyte solution 3 accommodated in the electrolyte solution tank 3 as in the metal-air battery 30 shown in FIG. be able to.
  • the first main surface of the air electrode 9 facing the electrolytic solution 3 accommodated in the electrolytic solution tank 2 may be formed of the porous body 32, and the gelling agent may be included in the pores of the porous body 32. Since the gelling agent is contained in the porous body 32, the gelling agent and water form the gel layer 13 when the electrolytic solution 3 penetrates into the air electrode 9.
  • the gel layer 13 may be composed of a polymer hydrogel layer containing water of an electrolyte aqueous solution. This can suppress an increase in ion conduction resistance between the anode and the cathode. Further, the porous body 32 in which the gel layer 13 is provided in the pores can be provided so as to partition the electrolytic solution 3 in the electrolytic solution tank 2 and the air electrode catalyst layer 7.
  • the electrolyte solution 3 in the electrolyte bath 2 can be prevented from flowing directly into the pores of the air electrode 9.
  • the leakage of the electrolyte solution through the pores of the air electrode 9 can be suppressed.
  • the water contained in the electrolytic solution 3 in the electrolytic solution tank 2 can be supplied to the air electrode 9 through the gel layer 13 in the pores, an appropriate amount of water is supplied to the air electrode 9.
  • Can do Furthermore, by providing the gel layer 13 in the pores of the porous body 32, it is possible to prevent the shape of the gel layer 13 from being deformed or peeled off due to the flow of the electrolytic solution 3 in the electrolytic solution tank 2. Can do.
  • the thickness of the porous body 32 substantially constant, the distance between the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the air electrode 9 can be made substantially constant. Thereby, the effect which suppresses the leakage of the electrolyte solution 3 can be made high. Further, since the ion conduction resistance of the gel layer 13 can be made substantially uniform, the reaction rate of the cathode reaction on the electrode surface of the air electrode 9 can be made substantially uniform, and the output of the metal-air battery 30 Characteristics can be improved.
  • the porous body 32 in which the gel layer 13 is formed in the pores is, for example, the electrolytic solution 3 accommodated in the air electrode catalyst layer 7 and the electrolytic solution tank 2 as in the metal-air battery 30 shown in FIG. Can be provided so as to cover the air electrode catalyst layer 7.
  • FIG. 3B is a schematic cross-sectional view of the porous body 32 included in the metal-air battery 30 shown in FIG.
  • the gel layer 13 is provided in the pores of the porous body 32 as shown in FIG.
  • a manufacturing method first, an electrolytic solution to which a gelling agent is added is applied to the porous material to be the porous body 32, and the gelled electrolytic solution is sucked from the surface opposite to the coating surface to thereby remove the gelled electrolytic solution. Introduce into the pores.
  • the porous body 32 in which the gel layer 13 was formed in the pore can be formed by installing this porous material on the air electrode catalyst layer 7.
  • a gelling agent is kneaded into the pores of the porous material to be the porous body 32 using a bar coater or the like, and this is placed on the air electrode catalyst layer 7.
  • the porous body 32 is not particularly limited as long as it is porous and has pores.
  • the porous body 32 is composed of a porous material, a foam material, a woven fabric, a nonwoven fabric, a mesh material, or the like.
  • the material of the porous body 32 is not particularly limited as long as it has corrosion resistance to an electrolytic solution such as an alkali-resistant material.
  • resin materials such as polyethylene, polypropylene, polyvinyl alcohol, and polyolefin, ceramic materials, zeolite, activated carbon,
  • foam metal such as nickel and stainless steel, metal mesh, and the like.
  • the material of the porous body 32 can be an insulating material.
  • the porous body 32 preferably has a high porosity. Thereby, the volume of the gel layer 13 that the porous body 32 can hold can be increased. Further, the thickness of the porous body 32 is preferably 30 ⁇ m or more.
  • the second porous body 34 may be provided on the first porous body 32 in which the gel layer 13 is formed in the pores.
  • the second porous body 34 sandwiches the first porous body 32 between the second porous body 34 and the air electrode 9 like the metal-air battery 30 shown in FIG. Can be provided.
  • FIG. 4B is a schematic cross-sectional view of the first porous body 32 included in the metal-air battery 30 shown in FIG.
  • the second porous body 34 can have a plurality of openings.
  • the gel layer 13 in the porous body 32 can come into contact with the electrolytic solution 3, and water can be supplied to the air electrode 9 through the gel layer 13.
  • the gel layer 13 may be provided in the plurality of openings of the second porous body 34.
  • the gel layer 13 may be disposed so as to be sandwiched between the first porous body 32 and the second porous body 34. This makes it possible to uniformly grow the formation of the gel layer 13 while maintaining the ionic conductivity between the air electrode 9 and the metal electrode 5.
  • the first porous body 32 or the second porous body 34 is preferably a film having a porous structure.
  • resin materials such as polyethylene, polypropylene, polyvinyl alcohol, polyolefin, and polyamide, ceramic materials, and zeolites , Activated carbon, Ni nickel and stainless steel, kraft paper, synthetic pulp paper, cellophane, glass fiber and so on.
  • the form of the 1st porous body 32 or the 2nd porous body 34 is a nonwoven fabric, a woven fabric, paper, a porous material, a foam metal, a metal mesh etc., for example.
  • the average pore diameter of the first porous body 32 and the second porous body 34 is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the negative electrode reaction product (precipitate 24 shown in FIG. 6) in the electrolytic solution tank 2 passes through the first porous body 32 or the second porous body 34 and adheres to the air electrode 9.
  • the long-term stability of the discharge characteristics of the metal-air battery 30 can be improved.
  • the second porous body 34 may have a function as a charging electrode.
  • a voltage is applied between the metal electrode 5 and the second porous body 34 to deposit a metal, which is an electrode active material, on the metal electrode 5 to be charged.
  • the second porous body 34 is made of a conductive material such as a metal plate.
  • a voltage is applied between the metal electrode 5 and the air electrode 9 to deposit a metal as an electrode active material on the metal electrode 5.
  • the air electrode 9 is used for both discharging and charging, the deterioration rate of the air electrode 9 is fast.
  • the 2nd porous body 34 has a function as an electrode for charge, the deterioration rate of the air electrode 9 can be slowed and the lifetime characteristic of the metal air battery 30 can be improved.
  • the material of the porous body 32 can be an insulating material. As a result, leakage current can be prevented from flowing during charging.
  • the deteriorated metal electrode 5 can be replaced with a new metal electrode 5. Further, even if dentlite is formed from the metal electrode 5, it is considered that the gel layer 13 becomes a filter, and there is no possibility of being short-circuited with the air electrode 9 through the second porous body 34.
  • the gel layer 13 may be provided in the pores of the air electrode 9. Further, the gel layer 13 may be provided in the pores of the air electrode catalyst layer 7. This gel layer 13 may consist of what gelatinized electrolyte solution. This can suppress an increase in ion conduction resistance between the anode and the cathode.
  • This gel layer 13 may consist of what gelatinized electrolyte solution. This can suppress an increase in ion conduction resistance between the anode and the cathode.
  • water contained in the electrolyte 3 in the electrolyte bath 2 can be supplied to the air electrode 9 through the gel layer 13 in the pores, many three-phase interfaces formed in the air electrode 9 are formed.
  • the discharge characteristics of the metal-air battery 30 can be improved. Moreover, since the air electrode 9 can hold
  • the metal-air battery 30 having the air electrode 9 in which the gel layer 13 is formed in the pores can be provided, for example, like the metal-air battery 30 shown in FIGS.
  • FIG. 5B is a schematic cross-sectional view of the air electrode catalyst layer 7 included in the metal-air battery 30 shown in FIG.
  • the gel layer 13 is provided in the pores of the air electrode catalyst layer 7 as shown in FIG.
  • a manufacturing method for example, first, an electrolytic solution to which a gelling agent is added is applied on the surface of the air electrode 9 on which the gas diffusion layer 8 and the air electrode catalyst layer 7 are laminated, on the air electrode catalyst layer 7 side, The gelled electrolyte is introduced into the pores of the air electrode catalyst layer 7 by suction from the surface opposite to the coated surface.
  • the air electrode 9 is installed on the side wall of the electrolytic solution tank 2.
  • a gelling agent is kneaded into the pores of the air electrode catalyst layer 7 using a bar coater or the like, and this is installed on the side wall of the electrolytic solution tank 2.
  • the air electrode 9 may have a structure in which an air electrode catalyst layer 7, an air electrode current collector 10, and a water repellent layer 6 are laminated.
  • the air electrode catalyst layer 7 is disposed on the first main surface side
  • the water repellent layer 6 is disposed on the second main surface side
  • the air electrode current collector 10 is disposed on the air electrode catalyst layer 7 and the water repellent layer 6. It may be arranged between.
  • the air catalyst layer 7 is preferably provided between the air electrode current collector 10 and the water repellent layer 6, and improves the bondability between the water repellent layer 6 and the air electrode current collector 10. The adhesion of the laminated structure of the air electrode 9 can be improved.
  • the water repellent layer 6 has porosity and a hydrophobic surface.
  • the water repellent layer 6 is provided on the air side or the air flow path side of the air electrode catalyst layer 7. According to such a configuration, oxygen gas can be supplied to the air electrode catalyst layer 7 through the pores of the water repellent layer 6.
  • the gelling agent in the pores of the air electrode catalyst layer 7
  • leakage of the electrolyte solution 3 through the pores of the air electrode catalyst layer 7 can be suppressed.
  • the water repellent layer 6 can prevent the electrolytic solution 3 from leaking. As a result, the safety of the metal-air battery can be improved.
  • the water repellent layer 6 may be omitted.
  • the air electrode 9 may be composed of the air electrode catalyst layer 7 and the air electrode current collector 10. Such an air electrode 9 can be formed by pressure-bonding the air electrode catalyst layer 7 and the air electrode current collector 10. By omitting the water repellent layer 6, the manufacturing cost of the metal-air battery 30 can be reduced. Further, by omitting the water repellent layer 6, the metal-air battery 30 can be thinned.
  • the water repellent layer 6 can include, for example, an electron conductive material such as carbon black and a material having a hydrophobic surface such as a fluororesin.
  • the water repellent layer 6 may not contain an electron conductive material.
  • the water repellent layer 6 may include an electron conductive material coated with a material having a hydrophobic surface.
  • a material of the electron conductive substance constituting the water repellent layer 6 a material that can be used for the electron conductive substance contained in the air electrode catalyst layer 7 can be used.
  • substances having a hydrophobic surface include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and perfluoro which is a fluorinated resin copolymer.
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • perfluoro which is a fluorinated resin copolymer.
  • Alkoxy fluororesin (PFA) tetrafluoroethylene / hexafluoropropylene copolymer
  • EFE ethylene / tetrafluoroethylene copolymer
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • Fluorine resin Fluorine resin
  • Fluorine resin such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); Acrylic resin; Polyolefin resin such as polyethylene and polypropylene; Polyester resin such as polyethylene terephthalate; Polyurethane resin; , And the like water-repellent silicone resin; de resin; polyacetal resin; polycarbonate resins, chlorinated resins such as polyvinyl chloride; polyether resins; polyphenylene-based resin.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Acrylic resin Polyolefin resin such as polyethylene and polypropylene
  • Polyester resin such as polyethylene terephthalate
  • Polyurethane resin Polyurethane resin
  • de resin polyacetal resin
  • polycarbonate resins chlorinated resins
  • chlorinated resins such as polyvinyl chloride
  • polyether resins polyphenylene-based resin.
  • the form of the porous water repellent layer 6 may be a particle aggregate, a foam made of the above polymer, a fiber bundle, a woven fiber, a non-woven fiber, or a combination thereof.
  • the water-repellent layer 6 includes “NTF2026A-N06” and “NTF2122A-S06” manufactured by Nitto Denko Corporation, which are porous films made of polytetrafluoroethylene (TEMISH (registered trademark)). Can be used.
  • the porosity of the porous water repellent layer 6 is preferably 10% or more and 90% or less, and more preferably 20% or more and 80% or less.
  • the film thickness of the water repellent layer 6 is not particularly limited, but is preferably 50 ⁇ m or more and 3 mm or less, and more preferably 100 ⁇ m or more and 2 mm or less.
  • the film thickness of the water repellent layer 6 is less than 50 ⁇ m, it is difficult to maintain the structure, and the water repellent layer 6 may peel from the air electrode current collector 10.
  • the film thickness of the water repellent layer 6 exceeds 3 mm, the diffusion of external air to the air electrode catalyst layer 7 is hindered, so that the discharge characteristics may be significantly lowered.
  • the water repellent layer 6 for example, an electron conductive substance and a fluororesin can be mixed and stirred, and the resulting mixture can be formed into a sheet by passing it through a pressure roller. Further, the water repellent layer 6 may be formed by screen printing, slurry coating method, hydrothermal synthesis method, CVD method or the like.
  • the metal electrode 5 is an electrode that serves as an anode, and includes a metal that is an electrode active material of the anode. Moreover, the metal electrode 5 is provided in the electrolyte solution tank 2 so that it can be taken out.
  • the metal electrode 5 may be, for example, a metal plate containing a metal that is an electrode active material.
  • the metal electrode 5 may include, for example, a metal electrode current collector and an electrode active material layer provided on the metal electrode current collector. Further, the metal electrode 5 or the electrode active material layer may be porous. Thereby, the reaction surface area can be increased, and the output characteristics of the metal-air battery 30 can be improved.
  • the porous electrode active material layer can be formed by, for example, applying a mixture of metal powder, which is an electrode active material, a conductive material, and a binder onto a metal electrode current collector and performing pressing.
  • the conductive material can be preferably used to leave an electron conduction path even when a non-conductive film is formed on the surface layer of the metal powder that is the electrode active material and the conductivity is lowered, such as acetylene black, furnace black, channel Carbon black such as black and ketjen black, and conductive carbon particles such as graphite and activated carbon can be used.
  • acetylene black furnace black
  • Carbon black such as black and ketjen black
  • conductive carbon particles such as graphite and activated carbon
  • the electrode active material contained in the metal electrode 5 is a metal that generates a charge in the metal electrode 5 by an anodic reaction and dissolves in the electrolyte as metal-containing ions. For this reason, the electrode active material contained in the metal electrode 5 is gradually consumed as the anode reaction proceeds.
  • the electrode active material contained in the metal electrode 5 decreases, the charge generated in the metal electrode 5 decreases and the metal electrode 5 is used.
  • the discharge by the metal-air battery 30 can be continued.
  • the charge generated in the metal electrode 5 is output to the outside as a discharge current and then used for the cathode reaction in the air electrode 9. Further, when the metal electrode 5 is installed in the electrolytic solution, hydrogen gas may be generated due to self-corrosion.
  • the metal electrode 5 can be provided in contact with the gel layer 13 ′ on the liquid surface.
  • gel layer 13 ' can be provided so that the liquid level of the electrolyte solution 3 accommodated in the electrolyte solution tank 2 may be covered.
  • the amount of the electrolytic solution adhering to the surface of the used metal electrode 5 taken out from the electrolytic solution tank 2 can be reduced, and the electrolytic solution can be prevented from dripping from the taken out metal electrode 5. it can.
  • the electrolyte solution can be prevented from leaking to the outside when the metal electrode 5 is replaced, so that the electrolyte replenishment frequency can be reduced without substantially reducing the amount of the electrolyte solution 3 in the electrolyte bath 2.
  • the safety of the metal-air battery 30 at the time of replacement work can be improved.
  • recovered used metal electrode 5 can also be improved.
  • the gel layer 13 ′ may adhere to the metal electrode 5 in a small amount when the metal electrode 5 is replaced. However, when the gel layer 13 ′ is made of water gelled, it can be said that the safety is even higher. Further, by reducing the amount of the electrolytic solution adhering to the surface of the used metal electrode 5, the corrosion of the recovered metal electrode 5 can be suppressed. Moreover, it can suppress that the collect
  • the gel layer 13 ′ can be formed into a film shape. Accordingly, when the metal electrode 5 is extracted from the electrolytic solution tank 2 or inserted into the electrolytic solution tank 2, a part of the metal electrode 5 can be suppressed from being trapped by the gel layer 13 ′ and detached. .
  • the gel layer 13 'on the liquid surface of the electrolytic solution 3 in the electrolytic solution tank 2 it is possible to suppress the transpiration and moisture absorption of the electrolytic solution 3 and the deterioration due to the reaction with carbon dioxide. Loss and a change in the concentration of the electrolytic solution 3 can be suppressed.
  • a high-concentration KOH aqueous solution used for the electrolytic solution 3 absorbs moisture when the environmental humidity is high, but the gelled KOH aqueous solution (gel layer 13) has a small amount of moisture absorption.
  • the moisture absorption of the electrolyte solution 3 can be suppressed and the change in the concentration of the electrolyte solution 3 can be suppressed.
  • This effect is significant when the gel layer 13 ′ is a gel of water or a low concentration electrolyte. Moreover, it can suppress that KOH aqueous solution used for the electrolyte solution 3 reacts with the carbon dioxide in air
  • the electrolytic solution 3 is hardly affected by the atmosphere, and the output of the metal-air battery 30 can be stabilized. Further, by providing the gel layer 13 ′ on the liquid surface, the fluctuation of the liquid surface of the electrolytic solution 3 due to vibration can be reduced. As a result, leakage of the electrolytic solution 3 due to the fluctuation of the liquid surface of the electrolytic solution 3 can be suppressed, and the safety of the metal-air battery 30 can be improved.
  • the gel layer 13 ′ on the liquid surface of the electrolytic solution 3 in the electrolytic solution tank 2, it is possible to suppress the formation of a meniscus between the liquid surface of the electrolytic solution 3 and the metal electrode 5. it can. Thereby, it can suppress that the metal electrode 5 partially thins and the intensity
  • the gel layer 13 ′ is not provided on the liquid surface of the electrolytic solution 3, the electrolytic solution 3 has extremely high hydrophilicity. Therefore, a concave meniscus is formed on the liquid surface, and the electrolytic solution spreads along the surface of the metal electrode 5. .
  • an end portion of the meniscus is formed at a portion where the metal electrode 5 and the liquid surface of the electrolyte solution 3 are in contact with each other.
  • the electrolyte solution at the meniscus end portion and the electrolyte solution further spreading on the surface of the metal electrode 5 are formed.
  • the oxygen gas in the air is easily dissolved, and the self-corrosion of the metal electrode 5 is likely to proceed.
  • only the part which contacts the liquid level of the electrolyte solution of the metal electrode 5 tends to be thinned, and the strength tends to decrease.
  • the electrolytic solution 3 that spreads through the metal electrode 5 causes corrosion or loss of the electrolytic solution 3 when it reaches other parts such as terminals.
  • the gel layer 13 ′ provided on the liquid surface of the electrolytic solution 3 does not bear ionic conduction, and thus is not limited to a gelled electrolyte solution, and may be a gelled water, for example.
  • the water is not limited to pure water, and may include an evaporation inhibitor and the like, and is not particularly limited as long as it does not react with the electrolytic solution.
  • a high-concentration KOH aqueous solution used for an electrolytic solution has a high density of 1.3 to 1.5.
  • the density is low. For this reason, the gel layer 13 floats on the liquid surface and can be held and fixed on the liquid surface.
  • the gel layer 13 ′ on the liquid surface of the electrolytic solution 3 is formed by, for example, adding a gelling agent to the electrolytic solution 3 or water stored in the external container to gel the electrolytic solution 3 or water in the external container to form the gel layer 13 ′. It can be formed by floating the formed gel layer 13 ′ on the liquid surface of the electrolytic solution 3. Note that when the metal electrode 5 is inserted into the electrolytic solution tank 2, the gel layer 13 'may adhere to the surface of the metal electrode 5, but the gel layer 13' immediately becomes a metal due to the buoyancy of the gel layer 13 '. It peels off from the electrode 5 and floats on the liquid surface.
  • gel layer 13 ' is what gelatinized electrolyte solution, even if gel layer 13' adheres to the metal electrode 5, since ion conduction is not prevented, it can discharge. Further, the end of the gel layer 13 ′ may be fixed to the housing 1. As a result, it is possible to prevent the installation location of the gel layer 13 ′ from changing when the metal electrode 5 is replaced.
  • the gel layer 13 ′ provided on the liquid surface of the electrolytic solution 3 accommodated in the electrolytic solution tank 2 contains the gel layer 13 ′ in the electrolytic solution tank 2, for example, like the metal-air battery 30 shown in FIG. 7. It can be provided so as to float on the liquid surface of the electrolytic solution 3. Moreover, you may provide the gel layers 13 and 13 'on both the liquid level of the electrolyte solution 3 and the air electrode 9, like the metal air battery 30 shown in FIG.
  • the gel layer 13 may be provided both on the liquid surface of the electrolytic solution 3 and in the porous body 32, or both on the liquid surface of the electrolytic solution 3 and in the air electrode 9.
  • the liquid level can be adjusted so that the discharge port 15 of the electrolytic solution 3 is maintained at a position lower than the position of the gel layer 13 ′. Accordingly, it is possible to suppress the gel layer 13 ′ from flowing into the discharge port 15 even when the electrolytic solution 3 is circulated.
  • the metal-containing ions When the concentration of the metal-containing ions generated in the electrolytic solution 3 by the anodic reaction exceeds the saturation concentration, the metal-containing ions may be deposited in the electrolytic solution 3 as fine particles of metal oxide or metal hydroxide (precipitate 17). . Further, when the concentration of the metal-containing ions reaches the passive film forming concentration, the metal-containing ions may be deposited on the surface of the metal electrode 5 as a passive film of metal oxide or metal hydroxide. Therefore, the precipitate 17 may be deposited as fine particles floating in the electrolytic solution or settling on the bottom of the electrolytic solution tank 2, or may be deposited as a passive film attached on the surface of the metal electrode 5.
  • the fine particles of the precipitate 17 adhere to the pores of the porous air electrode 9, thereby preventing oxygen gas diffusion.
  • the fine particles of the precipitates 17 adhering to the pores of the porous body 32 and the air electrode catalyst layer 9 the ion conduction path of OH ⁇ ions is hindered, resulting in a decrease in the output of the metal-air battery 30. .
  • the fine particles of the precipitate 17 accumulate in the electrolytic solution, it is necessary to remove the fine particles from the electrolytic solution 3.
  • the electrode active material is metallic zinc, and zinc hydroxide or zinc oxide is deposited in the electrolytic solution.
  • the electrode active material is metallic aluminum, and aluminum hydroxide is deposited in the electrolytic solution.
  • the electrode active material is metallic iron, and iron oxide hydroxide or iron oxide is deposited in the electrolytic solution.
  • the electrode active material is metallic magnesium, and magnesium hydroxide is deposited in the electrolyte.
  • the electrode active materials are metallic lithium, metallic sodium, and metallic calcium, respectively, and oxides and hydroxides of these metals are contained in the electrolyte. Precipitate.
  • a solid electrolyte membrane may be provided between the metal electrode 5 and the electrolytic solution. Thereby, it can suppress that an electrode active material is corroded by electrolyte solution. In this case, the electrode active material is dissolved in the electrolytic solution after ion conduction through the solid electrolyte membrane.
  • an electrode active material is not limited to these examples, What is necessary is just a metal air battery.
  • the electrode active material contained in the metal electrode 5 mentioned the metal which consists of a kind of metal element in said example the electrode active material contained in the metal electrode 5 may be an alloy.
  • the metal electrode current collector has conductivity. Further, the shape of the metal electrode current collector is preferably a plate shape, a shape provided with a hole penetrating in the thickness direction of the plate, an expanded metal or a mesh. In addition, the metal electrode current collector can be formed of, for example, a metal having corrosion resistance against the electrolytic solution.
  • the material of the metal electrode current collector is, for example, nickel, gold, silver, copper, stainless steel or the like.
  • the metal electrode current collector may be a nickel-plated, gold-plated, silver-plated, or copper-plated conductive substrate. For this conductive substrate, iron, nickel, stainless steel, or the like can be used.
  • the electrode active material layer may be fixed on the main surface of the metal electrode current collector, for example, by pressing metal particles or lumps that are electrode active materials against the surface of the metal electrode current collector.
  • a metal may be deposited on the current collector by plating or the like.
  • the shape of the metal electrode current collector the plate shape is preferable from the viewpoint of conductivity when the electrode active material is deposited by plating, and when the metal particles or lump is fixed, the particles or lump is dropped. From the viewpoint of preventing this, a plate provided with a through hole, or an expanded metal or mesh is preferable.
  • the metal electrode 5 can constitute a metal electrode holder together with the metal electrode support.
  • the metal electrode holder is provided so that the metal electrode 5 can be inserted into the electrolytic solution tank 2 and the used metal electrode 5 can be extracted from the electrolytic solution tank 2.
  • the electrode active material can be supplied to the metal-air battery 30.
  • a metal electrode support body can be provided so that it may become a lid
  • the metal electrode 5 can be inserted into the electrolytic solution tank 2 and the electrode insertion port can be covered, and the reaction between the components in the atmosphere and the electrolytic solution 3 can be suppressed.
  • Discharge test 1 As Example 1, a zinc-air battery having four cells 4 such as the metal-air battery 30 shown in FIG. 1 was produced and a discharge test was performed. In addition, as for the produced zinc air battery, the side surface of each cell is not couple
  • the zinc electrode is a SUS304 support (70 x 50 mm, thickness 1 mm) (metal electrode current collector) coated with a mixture of zinc powder and PTFE dispersion as a binder. Electrode active material layer) was formed (the area of the porous electrode was 50 ⁇ 50 mm and the thickness was 20 mm). The zinc electrode was inserted into the electrolyte bath 2 after forming the zinc-air battery body. An air electrode current collector 10 having a plurality of openings, an air electrode 9 (having a gas diffusion layer 8 and an air electrode catalyst layer 7), and a gel layer 13 are formed in this order. The air electrode current collector 10 was fixed to the opposite side wall portions of the electrolytic solution tank 2 also serving as the casing 1 to form a single cell main body. The size of the air electrode 9 is 50 ⁇ 50 mm, the thickness is about 300 ⁇ m, the depth of the electrolytic solution tank 2 is 80 mm, and the material of the electrolytic solution tank 2 (housing 1) is made of ABS.
  • the material of the air electrode current collector 10 was an iron plate plated with Ni.
  • the air electrode current collector 10 is provided with a plurality of openings having a diameter of 1 mm, and the opening ratio is 50%.
  • the thickness of the air electrode current collector 10 is 1 mm.
  • 35BC manufactured by SGL was used for the gas diffusion layer 8.
  • 35BC consists of carbon fiber and a microporous layer, and the microporous layer is a layer made of carbon black and water repellent resin (PTFE).
  • PTFE carbon black and water repellent resin
  • the water-repellent resin is necessary for preventing leakage of the electrolytic solution, and functions as gas-liquid separation. That is, the electrolytic solution is prevented from leaking from the electrolytic solution tank 2, and the supply of oxygen to the air electrode catalyst layer 7 is not hindered.
  • the air electrode catalyst layer 7 contains Tanaka Kikinzoku Pt-supported carbon and water-repellent resin (PTFE). In order to increase the reaction surface area, Pt is supported as fine particles on carbon having a large surface area. Similar to the gas diffusion layer, the water repellent resin (PTFE) contained in the air electrode catalyst layer 7 is also mixed to prevent leakage of the electrolyte.
  • the catalyst loading was 0.5 mg / cm 2 and the thickness of the air electrode catalyst layer 7 was about 30 ⁇ m.
  • the surface of the air electrode catalyst layer 7 on the metal electrode 5 side is covered with the gel layer 13 as shown in FIG.
  • the gel layer 13 is coated with potassium polyacrylate (Aldrich # 435325, powder) on the air electrode catalyst layer 7 using cotton, and a 7 mol / cm 3 KOH electrolyte solution is sprayed thereon. Scattered and formed. At this time, the spray amount of the electrolyte was about 10 times the weight of polyacrylic acid.
  • the air bubbles in the gel layer 13 are evacuated and degassed, and then the air electrode catalyst layer 7 and the gel layer 13 which are porous are entangled with each other by pressing well. Was made.
  • the thickness of the gel layer 13 was about 2 mm.
  • the zinc powder when inserting the zinc electrode, the zinc powder was not removed. Immediately after the zinc electrode was inserted, an electromotive force was generated (the open circuit voltage of the single cell 4 was about 1.6 V), and the battery was in a dischargeable state. The start-up property of the zinc-air battery was good.
  • the zinc electrode was not in contact with the gel layer 13 and was in the electrolytic solution 3.
  • the electrolyte solution discharged from each cell 4 enters the precipitation tank 18 as shown in FIG. 1, and zinc oxide (precipitate 17) deposited in the electrolyte solution is naturally precipitated and collected.
  • the area contributing to the reaction is 25 cm 2 ⁇ 2 and 50 cm 2 (the part of the zinc electrode not facing the air electrode 9 is Not to contribute to the reaction).
  • the load current during discharge was 1.5 A (the current per unit area of the zinc electrode was equivalent to 30 mA / cm 2 ), and a constant current load test (discharge test) was performed.
  • the discharge voltage was stable at 4.80V (about 1.20V per single cell), and power generation was possible for 4 hours.
  • the zinc oxide in the precipitation tank 18 was recovered, the electrolyte solution and the zinc electrode were replaced with new ones, and a repeated discharge test was performed.
  • Comparative Example 1 a zinc-air battery not provided with the gel layer 13 was produced and a discharge test was performed.
  • the gel layer 13 is not provided.
  • Other configurations and test methods are the same as those of the zinc-air battery of Example 1 unless there is a contradiction.
  • leakage of the electrolyte solution through the air electrode 9 was confirmed during the fourth discharge. Further, when the air electrode 9 was taken out after discharge, zinc oxide was fixed and adhered on the surface (a ZnO diffraction peak was detected from XRD).
  • Example 1 hydrogen gas dissolved in the electrolyte solution or adhered to the air electrode 9 It is presumed that the hydrogen gas reacted at the air electrode 9 and the voltage was lower than that in Example 1 (the hydrogen gas was oxidized and the air was reduced at the air electrode 9 to constitute an internal battery, and this caused the voltage. In Example 1, it is presumed that the gel layer 13 serves as a filter and there is almost no influence of the hydrogen gas generated by the zinc electrode).
  • Comparative Example 2 a zinc-air battery in which the electrolyte in the electrolyte bath 2 was all gelled with a gelling agent was produced, and a discharge test was performed.
  • the electrolytic solution is not circulated.
  • Other configurations and test methods are the same as those of the zinc-air battery of Example 1 unless there is a contradiction.
  • liquid leakage through the air electrode 9 was not confirmed for 30 days as in Example 1, and zinc oxide adhesion to the air electrode 9 was not confirmed. However, it took time until a part of the zinc powder dropped off when the zinc electrode was inserted into the electrolyte bath 2 and the voltage increased slowly and became dischargeable.
  • the zinc electrode was pulled out from the electrolytic solution tank 2 after the discharge, but the gelled electrolytic solution gathered together with zinc powder contained in the zinc electrode, zinc passivation formed on the zinc electrode, etc., and part of the zinc electrode Dropped out. These zinc powders and the like trapped in the gelled electrolyte are difficult to recover. If a part of the zinc electrode falls off, not all the zinc contained in the zinc electrode can be used for discharge, and this dropping is a factor that lowers the energy density of the zinc-air battery.
  • the discharge voltage of the zinc-air battery of Comparative Example 2 was as low as 4.61 V (about 1.15 V per single cell). This is because the gelled electrolyte has a higher impedance because it has lower ionic conductivity than the non-gelled electrolyte. It is presumed that such a difference was caused because the thickness of the gelled electrolyte existing between the anode and the cathode was larger than that in Example 1. Further, in the zinc-air battery of Comparative Example 2, since the electrolyte solution that gelled after the discharge could not be easily replaced, a second discharge was attempted without replacing the electrolyte solution. In the second discharge, the battery characteristics were remarkably deteriorated and could not be discharged.
  • Table 1 shows the measurement results of Example 1, Comparative Example 1, and Comparative Example 2 in the discharge test 1. Leakage of the electrolyte solution through the air electrode was confirmed in the zinc-air battery of Comparative Example 1, but was not confirmed in the zinc-air battery of Example 1. From this, it was found that by providing the gel layer 13 on the air electrode 9, leakage of the electrolyte solution through the air electrode can be suppressed.
  • the zinc-air battery of Example 1 was found to have a higher discharge voltage than the zinc-air batteries of Comparative Examples 1 and 2. The reason for this is that in the zinc-air battery of Example 1, the ion conduction resistance between the anode and the cathode is low, and there is almost no precipitation of zinc oxide on the air electrode.
  • Example 2 a zinc-air battery having four cells 4 such as the metal-air battery 30 shown in FIG. 7 was produced and a discharge test was performed.
  • the gel layer 13 is not provided on the air electrode 9, but the gel layer 13 ′ is provided on the surface of the electrolytic solution stored in the electrolytic solution tank 2.
  • the gel layer 13 was also provided on the liquid surface of the precipitation tank 18.
  • the electrolytic cell 20 was provided so that the electrolytic solution in the electrolytic solution tank 2 could flow.
  • the side surface of each cell is not couple
  • the air flow path 12 was not provided and the opening of the air electrode current collector 10 was opened to the atmosphere.
  • Other configurations and test methods are the same as those of the zinc-air battery of Example 1 unless there is a contradiction.
  • the gel layer 13 ′ was formed by floating a solution prepared by adding a gelling agent to water outside the cell on the liquid surface of the electrolyte (covered with the gel layer 13 ′). Further, in the discharge test using the metal-air battery 30 of Example 2, the electrolytic solution was not exchanged after the end of each discharge, and the electrolytic reaction was promoted by applying a voltage to the electrolysis electrode 21 of the electrolytic cell 20, The zinc-containing ion concentration of the electrolyte was reduced. In addition, the zinc electrode was replaced with a new one after the end of each discharge.
  • the discharge voltage was 4.69 V (1.17 V per unit cell), and the discharge voltage was higher than those of Comparative Example 1 and Comparative Example 2 described above. This is because the gel layer 13 'is provided on the liquid surface to suppress the transpiration and moisture absorption of the electrolytic solution, and the reaction between the carbon dioxide in the atmosphere and the electrolytic solution is suppressed, thereby changing the concentration of the electrolytic solution. This is probably because it was small.
  • leakage of the electrolyte solution through the air electrode 9 was confirmed during the fourth discharge. Further, in the zinc-air battery of Example 2, no meniscus was observed between the surface of the electrolytic solution accommodated in the electrolytic solution tank 2 and the zinc electrode. This suggests that thinning due to self-corrosion of the zinc electrode or strength reduction is unlikely to occur.
  • Example 2 In the zinc-air battery of Example 2, when replacing the zinc electrode after completion of each discharge, the electrolyte did not drip from the used zinc electrode as in Comparative Example 1, and the replacement work was safe. It was safe to transport used zinc electrodes after collection. From this, it was found that the amount of the electrolyte remaining on the surface of the zinc electrode can be reduced by providing the gel layer 13 ′ on the surface of the electrolyte 3 accommodated in the electrolyte bath 2. Thereby, corrosion of the zinc electrode can be suppressed. Further, it is possible to prevent the used zinc electrode from becoming heavy due to the remaining electrolytic solution, and it is possible to reduce transportation costs and the like. Furthermore, since the electrolytic solution in the electrolytic solution tank 2 is hardly reduced, the replenishment frequency of the electrolytic solution can be reduced.
  • the measurement results of Example 2 in the discharge test 2 are shown in Table 2. For comparison, the measurement results of Comparative Examples 1 and 2 are also shown.
  • Electrolyte tank 3 Electrolyte 4, 4a, 4b, 4c, 4d: Cell 5, 5a, 5b, 5c, 5d: Metal electrode 6: Water repellent layer 7, 7a, 7b, 7c, 7d: Air electrode catalyst layer 8, 8a, 8b, 8c, 8d: Gas diffusion layer 9, 9a, 9b, 9c, 9d: Air electrode 10, 10a, 10b, 10c, 10d: air electrode current collectors 12, 12a, 12b, 12c, 12d: air flow paths 13, 13 ′, 13a, 13a ′, 13b, 13b ′, 13c, 13c ′, 13d, 13d ′, 13e : Gel layer 15, 15a, 15b, 15c, 15d: Discharge port 17: Precipitate (used active material) 18: Precipitation tank 20: Electrolysis tank 21: Electrode for electrolysis 24: Precipitation 2 : Pump 26:

Abstract

This metal air battery comprises: an electrolytic solution tank for storing an electrolytic solution; a metal electrode that is provided within the electrolytic solution tank and that contains at least an electrode active material; and an air electrode that forms a wall part of a part of the electrolytic solution tank. The air electrode has a collector and an air electrode catalytic layer that contains at least an air electrode catalyst. The metal air battery contains a gelling agent on a first main surface-side of the air electrode opposing the electrolytic solution, or on the air electrode catalytic layer.

Description

空気極及び金属空気電池Air electrode and metal-air battery
 本発明は、空気極及び金属空気電池に関する。 The present invention relates to an air electrode and a metal-air battery.
 金属空気電池は高いエネルギー密度を有するため、次世代の電池として注目されている。金属空気電池は、電極活物質を含み電解液中に配置される金属電極をアノードとし、空気極をカソードとすることにより放電する。
 代表的な金属空気電池として、金属亜鉛を電極活物質とする亜鉛空気電池が挙げられる。亜鉛空気電池では、カソードにおいて以下の化学式1のような電極反応が進行すると考えられる。
(化学式1):O2+2H2O+4e-→4OH-
 また、アノードにおいて以下の化学式2のような電極反応(金属亜鉛の溶解反応)が進行すると考えられる。
(化学式2):Zn+4OH-→Zn(OH)4 2-+2e-
Since metal-air batteries have high energy density, they are attracting attention as next-generation batteries. The metal-air battery is discharged by using a metal electrode containing an electrode active material and disposed in an electrolyte as an anode and an air electrode as a cathode.
As a typical metal-air battery, a zinc-air battery using metal zinc as an electrode active material can be mentioned. In a zinc-air battery, it is considered that an electrode reaction of the following chemical formula 1 proceeds at the cathode.
(Chemical formula 1): O 2 + 2H 2 O + 4e → 4OH
Moreover, it is considered that an electrode reaction (dissolution reaction of metallic zinc) as shown in the following chemical formula 2 proceeds at the anode.
(Chemical formula 2): Zn + 4OH → Zn (OH) 4 2− + 2e
 このような電極反応が進行すると金属電極の電極活物質は消費され徐々に減少していく。そして、電極活物質が少なくなると、使用済みの金属電極を電解液中から除去し、新たな金属電極を電解液中に挿入することにより、再放電を行う(例えば、特許文献1参照)。
 また、電極反応が進行すると電解液の金属含有イオン(Zn(OH)4 2-)濃度は徐々に高くなっていき、そして、飽和に達すると以下の化学式3又は化学式4のような反応が進行し均一核生成または不均一核生成が生じる。そして、生成した核が結晶成長することにより金属酸化物または金属水酸化物の析出物が析出し使用済み活物質として電解液槽内に蓄積する。
(化学式3):Zn(OH)4 2-→ZnO+2OH-+H2O
(化学式4):Zn(OH)4 2-→Zn(OH)2+2OH-
When such an electrode reaction proceeds, the electrode active material of the metal electrode is consumed and gradually decreases. When the electrode active material is reduced, the used metal electrode is removed from the electrolytic solution, and a new metal electrode is inserted into the electrolytic solution to perform re-discharge (see, for example, Patent Document 1).
As the electrode reaction progresses, the concentration of metal-containing ions (Zn (OH) 4 2− ) in the electrolyte gradually increases, and when saturation is reached, a reaction such as the following chemical formula 3 or chemical formula 4 proceeds. Homogeneous nucleation or heterogeneous nucleation occurs. Then, as the produced nucleus grows, a metal oxide or metal hydroxide precipitate is deposited and accumulated in the electrolytic solution tank as a used active material.
(Chemical formula 3): Zn (OH) 4 2− → ZnO + 2OH + H 2 O
(Chemical formula 4): Zn (OH) 4 2− → Zn (OH) 2 + 2OH
 このような金属空気電池において、空気極におけるカソード反応に必要なH2Oは主に電解液から供給されるため、電解液槽内の電解液が空気極の細孔を介して電池外部に漏洩する場合がある。電解液にはアルカリ性水溶液などが用いられるため、電解液が電池外部に漏洩すると金属空気電池の安全性が低下する。
 この電解液の漏洩を防止するために、電解液の注入前の電解液槽中にあらかじめ固化剤を組み込んだ亜鉛空気電池が知られている(例えば、特許文献2参照)。この亜鉛空気電池では電解液を固化することにより、電解液槽中の電解液の流動性を低下させ電解液の漏洩を防止している。
 また、この電解液の漏洩を防止するために、空気極の外側に多孔性PTFE膜を有する金属空気電池や、フッ素樹脂を含有する空気極触媒層を備えた金属空気電池が知られている(例えば、特許文献3、4参照)。
In such a metal-air battery, H 2 O required for the cathode reaction at the air electrode is mainly supplied from the electrolyte, so that the electrolyte in the electrolyte tank leaks to the outside of the battery through the pores of the air electrode. There is a case. Since alkaline aqueous solution etc. are used for electrolyte solution, if electrolyte solution leaks out of a battery, the safety of a metal air battery will fall.
In order to prevent leakage of the electrolytic solution, a zinc-air battery in which a solidifying agent is incorporated in advance in an electrolytic solution tank before injection of the electrolytic solution is known (for example, see Patent Document 2). In this zinc-air battery, by solidifying the electrolytic solution, the fluidity of the electrolytic solution in the electrolytic solution tank is lowered to prevent leakage of the electrolytic solution.
In addition, in order to prevent leakage of the electrolytic solution, a metal air battery having a porous PTFE membrane outside the air electrode and a metal air battery having an air electrode catalyst layer containing a fluororesin are known ( For example, see Patent Documents 3 and 4).
特表2005-509262号公報JP 2005-509262 A 特公昭58-55625号公報Japanese Patent Publication No.58-55625 特開平8-7935号公報JP-A-8-7935 特開平6-338355号公報JP-A-6-338355
 しかし、電解液槽中の電解液を固化させる金属空気電池では、使用済みの金属電極を新たな金属電極に取り替えて再度放電を行うことは難しい。また、電解液槽中の電解液を循環させることができないため、放電時間が短くなる。
 また、金属電極を交換して放電を繰り返す金属空気電池では、使用済みの金属電極を電解液中から除去する際、取り出した金属電極から電解液が滴る場合があり、危険である。
 さらに、フッ素樹脂の含有する空気極を備えた金属空気電池では、フッ素樹脂による撥水性が徐々に低下し、空気極を介して電解液が漏洩する場合があり、また、長期間放電すると放電特性が低下する場合がある。
 本発明は、このような事情に鑑みてなされたものであり、金属電極の交換などにより繰り返し放電を行うことができ、かつ、外部への電解液の漏洩を防止することができる金属空気電池を提供する。
However, in a metal-air battery that solidifies the electrolyte in the electrolyte bath, it is difficult to replace the used metal electrode with a new metal electrode and discharge again. In addition, since the electrolytic solution in the electrolytic solution tank cannot be circulated, the discharge time is shortened.
Further, in a metal-air battery in which the metal electrode is replaced and repeatedly discharged, when the used metal electrode is removed from the electrolytic solution, the electrolytic solution may drip from the extracted metal electrode, which is dangerous.
Furthermore, in metal-air batteries equipped with an air electrode containing fluororesin, the water repellency due to the fluororesin gradually decreases, and the electrolyte may leak through the air electrode. May decrease.
The present invention has been made in view of such circumstances, and provides a metal-air battery that can be repeatedly discharged by exchanging metal electrodes and the like and can prevent leakage of the electrolyte to the outside. provide.
 本発明の金属空気電池は、電解液を収容する電解液槽と、前記電解液槽中に設けられ、少なくとも電極活物質を含む金属電極と、前記電解液槽の一部の壁部を形成する空気極とを備えた金属空気電池であって、前記空気極は、集電体と、少なくとも空気極触媒を含む空気極触媒層と、を有し、前記電解液と対向する前記空気極の第1主要面側、または前記空気極触媒層にゲル化剤を含むことを特徴とする。
 また、本発明の金属空気電池は、電解液を収容する電解液槽と、前記電解液槽中に設けられ、少なくとも電極活物質を含む金属電極と、前記電解液槽の一部の壁部を形成する空気極とを備えた金属空気電池であって、前記空気極は、集電体と、少なくとも空気極触媒と含む空気極触媒層と、を有し、前記電解液と、対向する前記空気極の第1主要面との間に、少なくともゲル化剤と水を含むゲル層を有することを特徴とする。
 さらに、本発明の空気極は、集電体と、少なくとも空気極触媒を含む空気極触媒層とを有する空気極であって、前記空気極の表面側の一部または前記空気極触媒層はゲル化剤を含むことを特徴とする。
The metal-air battery of the present invention forms an electrolytic solution tank that contains an electrolytic solution, a metal electrode that is provided in the electrolytic solution tank and includes at least an electrode active material, and a part of the wall of the electrolytic solution tank. A metal-air battery including an air electrode, wherein the air electrode includes a current collector and an air electrode catalyst layer including at least an air electrode catalyst, and the first electrode of the air electrode facing the electrolyte solution. One main surface side or the air electrode catalyst layer includes a gelling agent.
Further, the metal-air battery of the present invention includes an electrolytic bath that contains an electrolytic solution, a metal electrode that is provided in the electrolytic bath, and includes at least an electrode active material, and a part of the wall of the electrolytic bath. A metal-air battery including an air electrode to be formed, the air electrode including a current collector and an air electrode catalyst layer including at least an air electrode catalyst, and the air facing the electrolyte solution A gel layer containing at least a gelling agent and water is provided between the first main surface of the pole.
Furthermore, the air electrode of the present invention is an air electrode having a current collector and an air electrode catalyst layer containing at least an air electrode catalyst, wherein the air electrode catalyst layer is part of the surface side of the air electrode or the air electrode catalyst layer. It contains an agent.
 本発明によれば、電解液を収容する電解液槽と、前記電解液槽中に設けられ、少なくとも電極活物質を含む金属電極と、空気極とを備えるため、金属電極においてアノード反応を進行させることができ、空気極においてカソード反応を進行させることができる。このことにより、金属電極と空気極との間に起電力を生じさせることができ、放電電流を流すことができる。 According to the present invention, an anode tank is allowed to advance in the metal electrode since the electrolyte tank containing the electrolyte, the metal electrode including at least the electrode active material, and the air electrode are provided in the electrolyte tank. The cathode reaction can proceed at the air electrode. Thereby, an electromotive force can be generated between the metal electrode and the air electrode, and a discharge current can flow.
 本発明によれば、電解液槽に収容した電解液と対向する空気極の第1主要面側、または空気極内の空気極触媒層にゲル化剤を含むため、空気極内に浸透した電解液とゲル化剤とがゲルを形成し、空気極内の電解液の浸透を抑制するため、外部への電解液の漏洩を抑制することができる。
 また、本発明によれば、ゲル化剤と電解液に含まれる水とを含むゲル層が、電解液槽に収容した電解液と対向する空気極の第1主要面側に形成されるため、外部への電解液の漏洩を抑制することができる。
 電解液槽に収容した電解液と空気極との間にゲル層が形成された場合、電解液槽に収容した電解液が直接空気極の細孔内に流入することを防止することができ、空気極の細孔を介した電解液の外部への漏洩を抑制することができる。このことにより、金属空気電池の安全性、信頼性を向上させることができる。また、電解液がゲル層を透過する速度は遅いため、空気極に適切な量の水を供給することができる。また、ゲル層が形成されることにより、電極活物質から生じる析出物が空気極に付着することや、金属電極の自己腐食により発生する水素ガスが空気極に流入することを防止することができる。このことにより、電池特性や出力安定性の低下を抑制することができる。
According to the present invention, since the gelling agent is included in the first main surface side of the air electrode facing the electrolytic solution stored in the electrolytic solution tank, or the air electrode catalyst layer in the air electrode, the electrolysis that has penetrated into the air electrode. Since the liquid and the gelling agent form a gel and suppress the permeation of the electrolytic solution in the air electrode, leakage of the electrolytic solution to the outside can be suppressed.
Moreover, according to the present invention, the gel layer containing the gelling agent and the water contained in the electrolyte is formed on the first main surface side of the air electrode facing the electrolyte contained in the electrolyte bath, It is possible to suppress leakage of the electrolytic solution to the outside.
When a gel layer is formed between the electrolyte solution accommodated in the electrolyte bath and the air electrode, the electrolyte solution contained in the electrolyte bath can be prevented from flowing directly into the pores of the air electrode, Leakage of the electrolyte solution to the outside through the pores of the air electrode can be suppressed. Thereby, the safety and reliability of the metal-air battery can be improved. Moreover, since the rate at which the electrolytic solution permeates the gel layer is slow, an appropriate amount of water can be supplied to the air electrode. Moreover, by forming a gel layer, it is possible to prevent deposits generated from the electrode active material from adhering to the air electrode and hydrogen gas generated by self-corrosion of the metal electrode from flowing into the air electrode. . Thereby, it is possible to suppress a decrease in battery characteristics and output stability.
本発明の一実施形態の金属空気電池の概略断面図である。It is a schematic sectional drawing of the metal air battery of one Embodiment of this invention. 図1の破線A-Aにおける金属空気電池の概略断面図である。FIG. 2 is a schematic sectional view of the metal-air battery taken along a broken line AA in FIG. (a)は本発明の一実施形態の金属空気電池の概略断面図であり、(b)は(a)に示した金属空気電池に含まれる多孔質体の概略断面図である。(A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention, (b) is a schematic sectional drawing of the porous body contained in the metal air battery shown to (a). (a)は本発明の一実施形態の金属空気電池の概略断面図であり、(b)は(a)に示した金属空気電池に含まれる多孔質体の概略断面図である。(A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention, (b) is a schematic sectional drawing of the porous body contained in the metal air battery shown to (a). (a)は本発明の一実施形態の金属空気電池の概略断面図であり、(b)は(a)に示した金属空気電池に含まれる空気極触媒層の概略断面図である。(A) is a schematic sectional drawing of the metal air battery of one Embodiment of this invention, (b) is a schematic sectional drawing of the air electrode catalyst layer contained in the metal air battery shown to (a). 本発明の一実施形態の金属空気電池の概略断面図である。It is a schematic sectional drawing of the metal air battery of one Embodiment of this invention. 本発明の一実施形態の金属空気電池の概略断面図である。It is a schematic sectional drawing of the metal air battery of one Embodiment of this invention. 本発明の一実施形態の金属空気電池の概略断面図である。It is a schematic sectional drawing of the metal air battery of one Embodiment of this invention.
 本発明の金属空気電池は、電解液を収容する電解液槽と、電解液槽中に設けられ、少なくとも電極活物質を含む金属電極と、電解液槽の一部の壁面を形成する空気極とを備え、空気極は、集電体と、少なくとも空気極触媒層と、有し、電解液と対向する空気極の第1主要面側、または空気極触媒層にゲル化剤を含むことを特徴とする。
 また、本発明の金属空気電池は、電解液を収容する電解液槽と、電解液槽中に設けられ、少なくとも電極活物質を含む金属電極と、電解液槽の一部の壁部を形成する空気極とを備えた金属空気電池であって、空気極は、集電体と、少なくとも空気極触媒と含む空気極触媒層と、を有し、電解液と、対向する空気極の第1主要面との間に、少なくともゲル化剤と水を含むゲル層を有することを特徴とする。
 さらに、本発明の空気極は、集電体と、少なくとも空気極触媒を含む空気極触媒層とを有する空気極であって、空気極の表面側の一部または空気極触媒層はゲル化剤を含むことを特徴とする。
The metal-air battery of the present invention includes an electrolyte bath that contains an electrolyte, a metal electrode that is provided in the electrolyte bath and includes at least an electrode active material, and an air electrode that forms a part of the wall of the electrolyte bath. The air electrode has a current collector and at least an air electrode catalyst layer, and includes a gelling agent in the first main surface side of the air electrode facing the electrolyte solution or in the air electrode catalyst layer. And
Further, the metal-air battery of the present invention forms an electrolytic solution tank that contains an electrolytic solution, a metal electrode that is provided in the electrolytic solution tank and includes at least an electrode active material, and a part of the wall of the electrolytic solution tank. A metal-air battery including an air electrode, the air electrode including a current collector and an air electrode catalyst layer including at least an air electrode catalyst, an electrolyte, and a first main electrode of the air electrode facing each other. A gel layer containing at least a gelling agent and water is provided between the surface and the surface.
Furthermore, the air electrode of the present invention is an air electrode having a current collector and an air electrode catalyst layer containing at least an air electrode catalyst, wherein a part of the surface side of the air electrode or the air electrode catalyst layer is a gelling agent. It is characterized by including.
 本発明の金属空気電池または空気極において、ゲル化剤は、吸水性高分子であることが好ましく、ゲル層は、ゲル化剤と水系分散媒体を含む高分子ヒドロゲルの層であることが好ましい。
 このような構成によれば、アノード-カソード間のイオン伝導抵抗が高くなることを抑制することができ、電解液の外部漏洩を防ぎながら、金属空気電池の放電特性を向上させることができる。
 本発明の金属空気電池において、ゲル層は、空気極を覆うように設けられたことが好ましい。
 このような構成によれば、電解液槽に収容した電解液が直接空気極の細孔内に流入することを防止することができ、空気極の細孔を介した電解液の外部への漏洩を抑制することができる。
In the metal-air battery or air electrode of the present invention, the gelling agent is preferably a water-absorbing polymer, and the gel layer is preferably a polymer hydrogel layer containing a gelling agent and an aqueous dispersion medium.
According to such a configuration, it is possible to suppress an increase in the ion conduction resistance between the anode and the cathode, and it is possible to improve the discharge characteristics of the metal-air battery while preventing external leakage of the electrolytic solution.
In the metal-air battery of the present invention, the gel layer is preferably provided so as to cover the air electrode.
According to such a configuration, the electrolyte contained in the electrolyte bath can be prevented from flowing directly into the pores of the air electrode, and leakage of the electrolyte to the outside through the pores of the air electrode can be prevented. Can be suppressed.
 本発明の金属空気電池において、空気極と電解液の間の第1主要面が多孔質体で形成され、ゲル化剤は、多孔質体内に設けられたことが好ましい。
 このような構成によれば、電解液槽内の電解液の流れによりゲル層の形状が変形したり、剥離したりすることを抑制することができる。このことにより、電解液の漏洩を抑制する効果を高くすることができる。
In the metal-air battery of the present invention, it is preferable that the first main surface between the air electrode and the electrolytic solution is formed of a porous body, and the gelling agent is provided in the porous body.
According to such a structure, it can suppress that the shape of a gel layer deform | transforms or peels with the flow of the electrolyte solution in an electrolyte solution tank. This can increase the effect of suppressing leakage of the electrolyte.
 以下、本発明の一実施形態を図面を用いて説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The configurations shown in the drawings and the following description are merely examples, and the scope of the present invention is not limited to those shown in the drawings and the following description.
金属空気電池の構成
 図1、図3(a)、図4(a)、図5(a)、図6、図7、図8はそれぞれ本実施形態の金属空気電池の概略断面図である。また、図2は、図1の破線A-Aにおける金属空気電池の概略断面図である。図3(b)、図4(b)は、それぞれ多孔質体32の概略断面図であり、図5(b)は、空気極触媒層の概略断面図である。
 本実施形態の金属空気電池30は、電解液3を収容する電解液槽2と、電解液槽2中に設けられ、少なくとも電極活物質を含む金属電極5と、電解液槽2の一部の壁部を形成する空気極9とを備えた金属空気電池であって、空気極9は、集電体10と、少なくとも空気極触媒を含む空気極触媒層7と、を有し、電解液3と対向する空気極9の第1主要面側、または空気極触媒層7にゲル化剤を含むことを特徴とする。
 以下、本実施形態の金属空気電池30について説明する。
Configuration of Metal-Air Battery FIGS. 1, 3A, 4A, 5A, 6, 7, and 8 are schematic cross-sectional views of the metal-air battery of this embodiment. FIG. 2 is a schematic cross-sectional view of the metal-air battery taken along broken line AA in FIG. 3B and 4B are schematic cross-sectional views of the porous body 32, respectively, and FIG. 5B is a schematic cross-sectional view of the air electrode catalyst layer.
The metal-air battery 30 of the present embodiment includes an electrolytic solution tank 2 that contains the electrolytic solution 3, a metal electrode 5 that is provided in the electrolytic solution tank 2 and includes at least an electrode active material, and a part of the electrolytic solution tank 2. A metal-air battery including an air electrode 9 that forms a wall, and the air electrode 9 includes a current collector 10 and an air electrode catalyst layer 7 including at least an air electrode catalyst, and the electrolytic solution 3 A gelling agent is included in the first main surface side of the air electrode 9 or the air electrode catalyst layer 7 opposed to the air electrode 9.
Hereinafter, the metal-air battery 30 of this embodiment will be described.
1.金属空気電池
 本実施形態の金属空気電池30は、電極活物質となる金属を含む金属電極5を負極(アノード)とし、空気極9を正極(カソード)とする電池である。例えば、亜鉛空気電池、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池、マグネシウム空気電池、アルミニウム空気電池、鉄空気電池などである。また、本実施形態の金属空気電池30は、一次電池であってもよく、二次電池であってもよい。また、本実施形態の金属空気電池30は、金属電極5を交換することにより繰り返し放電できる電池であってもよい。
 また、金属空気電池30は、電解液槽2、空気極9などからなる金属空気電池本体と、金属空気電池本体に着脱可能な構造を有し、金属電極5、金属電極端子41などからなる金属電極ホルダーとから構成されてもよい。
1. Metal-air battery The metal-air battery 30 of the present embodiment is a battery in which the metal electrode 5 containing a metal serving as an electrode active material is a negative electrode (anode) and the air electrode 9 is a positive electrode (cathode). For example, a zinc air battery, a lithium air battery, a sodium air battery, a calcium air battery, a magnesium air battery, an aluminum air battery, and an iron air battery. Further, the metal-air battery 30 of the present embodiment may be a primary battery or a secondary battery. Further, the metal-air battery 30 of the present embodiment may be a battery that can be repeatedly discharged by replacing the metal electrode 5.
The metal-air battery 30 has a metal-air battery body composed of the electrolytic solution tank 2, the air electrode 9 and the like, and a structure that can be attached to and detached from the metal-air battery body, and is composed of a metal electrode 5, a metal electrode terminal 41, and the like. You may comprise from an electrode holder.
2.セル
 セル4は、金属空気電池30の構成単位であり、電解液槽2(電解液室)中に設けられかつアノードとなる金属電極5と、カソードとなる空気極9とからなる電極対を有する。セル4は、例えば、1つの空気極9と1つの金属電極5とが電解液3を挟むように設けられた電極対を有してもよく、図1に示した金属空気電池30のように2つの空気極9が1つの金属電極5を挟むように設けられた電極対を有してもよい。
 また、セル4は、電解液槽2又は電解液室と、電解液槽2中又は電解液室中に設けられかつアノードとなる金属電極5と、カソードとなる空気極9とを備えてもよい。
2. Cell The cell 4 is a structural unit of the metal-air battery 30 and has an electrode pair that is provided in the electrolyte bath 2 (electrolyte chamber) and includes a metal electrode 5 serving as an anode and an air electrode 9 serving as a cathode. . The cell 4 may have, for example, an electrode pair in which one air electrode 9 and one metal electrode 5 are provided so as to sandwich the electrolytic solution 3, and like the metal-air battery 30 shown in FIG. The two air electrodes 9 may have an electrode pair provided so as to sandwich one metal electrode 5.
The cell 4 may include an electrolytic solution tank 2 or an electrolytic solution chamber, a metal electrode 5 provided in the electrolytic solution tank 2 or the electrolytic solution chamber and serving as an anode, and an air electrode 9 serving as a cathode. .
3.セル集合体
 セル集合体は、複数のセル4を重ねたスタック構造を有する。セル集合体は、複数のセル4が1つの電解液槽2内に設けられてもよく、それぞれのセル4が電解液槽2または電解液室を有してもよい。なお、セル集合体を構成するセルの数は特に限定されず、必要となる発電能力に応じてセルの数量を決定すればよい。例えば、図1に示した金属空気電池30は、4つのセル4a~4dを有している。
 また、セル集合体を構成する複数のセル4がそれぞれ電解液槽2を有する場合、各セル4が有する電解液槽2は共通の筐体1に設けられてもよく、各セル4が筐体1を有し、この筐体1に電解液槽2が設けられてもよい。
 なお、1つの筐体1に2個または3個のセル4を設け、このような筐体1を複数組み合わせることによりセル集合体を形成してもよい。
 セル集合体に含まれる複数のセル4の電極対は、直列接続してもよく、並列接続してもよい。例えば、図1に示した金属空気電池30では、4つのセル4a~4dに含まれる電極対が直列接続している。
3. Cell Assembly The cell assembly has a stack structure in which a plurality of cells 4 are stacked. In the cell assembly, a plurality of cells 4 may be provided in one electrolytic solution tank 2, and each cell 4 may have the electrolytic solution tank 2 or the electrolytic solution chamber. The number of cells constituting the cell assembly is not particularly limited, and the number of cells may be determined according to the required power generation capacity. For example, the metal-air battery 30 shown in FIG. 1 has four cells 4a to 4d.
In addition, when the plurality of cells 4 constituting the cell assembly each have the electrolytic solution tank 2, the electrolytic solution tank 2 included in each cell 4 may be provided in the common housing 1, and each cell 4 is disposed in the housing. 1, and the electrolytic solution tank 2 may be provided in the housing 1.
Note that two or three cells 4 may be provided in one casing 1 and a plurality of such casings 1 may be combined to form a cell aggregate.
The electrode pairs of the plurality of cells 4 included in the cell assembly may be connected in series or in parallel. For example, in the metal-air battery 30 shown in FIG. 1, electrode pairs included in four cells 4a to 4d are connected in series.
4.電解液、ゲル化剤、ゲル層、電解液槽
 電解液3は、溶媒に電解質が溶解しイオン導電性を有する液体である。電解液3は、電解液槽2内に溜められる、または電解液槽2内を流通する。電解液3の種類は、金属電極5に含まれる電極活物質の種類によって異なるが、水溶媒を用いた電解液(電解質水溶液)であってもよい。
 例えば、亜鉛空気電池、アルミニウム空気電池、鉄空気電池の場合、電解液には、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ性水溶液を用いることができ、マグネシウム空気電池の場合、電解液には塩化ナトリウム水溶液を用いることができる。
4). Electrolytic Solution, Gelling Agent, Gel Layer, Electrolytic Solution Tank The electrolytic solution 3 is a liquid having ionic conductivity by dissolving an electrolyte in a solvent. The electrolytic solution 3 is stored in the electrolytic solution tank 2 or circulates in the electrolytic solution tank 2. The type of the electrolytic solution 3 is different depending on the type of the electrode active material contained in the metal electrode 5, but may be an electrolytic solution (aqueous electrolyte solution) using a water solvent.
For example, in the case of a zinc-air battery, an aluminum-air battery, or an iron-air battery, an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution can be used as the electrolytic solution. An aqueous sodium chloride solution can be used.
 ゲル層13は、電解液槽2に収容した電解液3と対向する空気極9との間に設けられることが好ましい。
 ゲル層13は、水系分散媒体を含む高分子ヒドロゲルからなる層である。また、ゲル層13は、分散質としてゲル化剤を含む。水系分散媒体は、例えば、水溶媒を用いた電解質水溶液や水などが挙げられる。また、ゲル層13は膜状であってもよく、高い粘度を有する液体状であってもよい。
 また、ゲル層13が電解質水溶液を含む水系分散媒体を含む高分子ヒドロゲルからなる層である場合、ゲル層13は、電解液槽2に収容する電解液3と同種の電解質を含むことができる。このことにより、ゲル層13がイオン伝導性を有することができ、アノード-カソード間を移動する水酸化物イオンなどがゲル層13をイオン伝導することができる。なお、水酸化物イオンの伝導率はゲル化していない電解液3と同等に高く、高出力を得ることが可能である。
The gel layer 13 is preferably provided between the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the air electrode 9 facing the gel layer 13.
The gel layer 13 is a layer made of a polymer hydrogel containing an aqueous dispersion medium. Moreover, the gel layer 13 contains a gelling agent as a dispersoid. Examples of the aqueous dispersion medium include an aqueous electrolyte solution and water using a water solvent. The gel layer 13 may be in the form of a film or a liquid having a high viscosity.
Further, when the gel layer 13 is a layer made of a polymer hydrogel containing an aqueous dispersion medium containing an aqueous electrolyte solution, the gel layer 13 can contain the same type of electrolyte as the electrolytic solution 3 accommodated in the electrolytic solution tank 2. Thus, the gel layer 13 can have ionic conductivity, and hydroxide ions moving between the anode and the cathode can conduct the ionic conduction in the gel layer 13. Note that the conductivity of hydroxide ions is as high as that of the non-gelled electrolyte solution 3, and a high output can be obtained.
 ゲル化剤は、電解液槽2に収容した電解液3に対向する空気極9の第1主要面側または空気極触媒層の中に含まれていてもよい。また、ゲル層13は、電解液槽2内の電解液が流入するように設けられた沈殿槽18、電解槽20内の電解液3の液面上に配置されてもよい。
 ゲル層13は、例えば、電解液3や水にゲル化剤を加えることにより形成することができる。ゲル化剤によって電解液3や水はその三次元網目構造の中に取り込まれるため、ゲル層13は高い保水性を有する。この高い保水性のため、ゲル層13に取り込まれた電解液や水の蒸散を低く抑えることができ、電解液3や水の損失を低減できる。
 また、本実施形態では電解液槽2内の電解液3は、ゲル層13を介して外気(空気)と接するため、電解液3の蒸散や吸湿、また二酸化炭素との反応による劣化を抑えることができ、電解液の濃度変化を抑制することができる。とくに、金属電極5まわりの電解液濃度が変化すると亜鉛の溶解反応や溶解量に大きな影響を与えるため、金属空気電池30の出力安定性の面で好ましくない。ゲル層13が存在することで、電解液槽2内電解液3の濃度が安定し、金属空気電池30の出力安定性向上が図れる。また、電解液3の蒸気はアルカリ性蒸気、または塩化ナトリウム含有の蒸気となって電気的接点など他部品の腐食の原因となりうるが、ゲル層13により電解液3の蒸散を抑制することで他部品の腐食を抑えることができる。更に電解液3の蒸散を低く抑えられることで、電解液3の補充の頻度を減らすことができメンテナンスも容易である。
The gelling agent may be contained in the first main surface side of the air electrode 9 facing the electrolytic solution 3 accommodated in the electrolytic solution tank 2 or in the air electrode catalyst layer. In addition, the gel layer 13 may be disposed on the liquid surface of the electrolytic solution 3 in the precipitation tank 18 and the electrolytic tank 20 provided so that the electrolytic solution in the electrolytic solution tank 2 flows in.
The gel layer 13 can be formed, for example, by adding a gelling agent to the electrolytic solution 3 or water. Since the electrolyte solution 3 and water are taken into the three-dimensional network structure by the gelling agent, the gel layer 13 has high water retention. Because of this high water retention, transpiration of the electrolyte and water taken into the gel layer 13 can be kept low, and loss of the electrolyte 3 and water can be reduced.
Moreover, in this embodiment, since the electrolyte solution 3 in the electrolyte solution tank 2 is in contact with the outside air (air) through the gel layer 13, it suppresses deterioration due to transpiration and moisture absorption of the electrolyte solution 3 and reaction with carbon dioxide. And the change in the concentration of the electrolytic solution can be suppressed. In particular, if the concentration of the electrolyte solution around the metal electrode 5 changes, it greatly affects the zinc dissolution reaction and amount, which is not preferable in terms of output stability of the metal-air battery 30. The presence of the gel layer 13 stabilizes the concentration of the electrolytic solution 3 in the electrolytic solution tank 2 and improves the output stability of the metal-air battery 30. Further, the vapor of the electrolytic solution 3 becomes alkaline vapor or sodium chloride-containing vapor and may cause corrosion of other components such as electrical contacts. However, the gel layer 13 prevents other components from evaporating. Corrosion of can be suppressed. Furthermore, since the transpiration of the electrolytic solution 3 can be kept low, the frequency of replenishment of the electrolytic solution 3 can be reduced, and maintenance is easy.
 ゲル化剤には、従来公知の吸水性高分子が使用でき、耐アルカリ性に優れた材料が好ましく用いられる。吸水性高分子としては、例えば、架橋型ポリアクリル酸塩や親水基としてスルホ基を有する2-アクリルアミド-2-メチルプロパンスルホン酸が例示される。また、ポリアクリル酸塩の種類は特に限定されないが、例えば、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸カルシウム、ポリアクリル酸マグネシウムを挙げることができる。
 また、吸水性高分子としては、例えば、でん粉系のアクリロニトリルグラフト共重合体、アクリル酸グラフト共重合体、アクリルアミドグラフト共重合体や、セルロース系のアクリロニトリルグラフト共重合体、カルボキシメチルセルロース架橋体や、多糖類系のヒアルロン酸や、ポリビニルアルコール系のポリビニルアルコール架橋体、ポリビニルアルコール吸水ゲル凍結・解凍エストラマーや、アクリル酸系のアクリル酸・ナトリウムビニルアルコール共重合体、ポリアクリル酸ナトリウム架橋体や、アクリルアミド系のN-置換アクリルアミド架橋体などを用いることができる。なお、これら吸水性高分子は、架橋密度を増やすことで吸水量を減らすことができ、適宜調整可能である。架橋密度の調整に、架橋剤や重合開始剤などを用いても構わない。架橋剤は、N, N'メチレンビスアクリルアミドや、エチレングリコールジメタクリレートが例示でき、重合開始剤はアゾビスイソブチロニトリル(AIBN)や、過酸化ベンゾイル、ペルオキソ二硫酸カリウムに代表される過硫酸塩が例示できる。更に、架橋密度を増やすため吸水性高分子同士の水素結合・イオン結合・配位結合を利用しても良い。例えば、多価イオンを有する塩化カルシウム溶液を用いれば、吸水性高分子のもつカルボキシル基をイオン結合させ架橋密度を増やすことができる。
As the gelling agent, a conventionally known water-absorbing polymer can be used, and a material excellent in alkali resistance is preferably used. Examples of the water-absorbing polymer include cross-linked polyacrylate and 2-acrylamido-2-methylpropanesulfonic acid having a sulfo group as a hydrophilic group. Moreover, although the kind of polyacrylate is not specifically limited, For example, polyacrylic acid sodium, polyacrylic acid potassium, polyacrylic acid calcium, and polyacrylic acid magnesium can be mentioned.
Examples of the water-absorbing polymer include starch-based acrylonitrile graft copolymers, acrylic acid graft copolymers, acrylamide graft copolymers, cellulose-based acrylonitrile graft copolymers, carboxymethyl cellulose crosslinked products, Sugar-based hyaluronic acid, polyvinyl alcohol-based polyvinyl alcohol cross-linked product, polyvinyl alcohol water-absorbing gel freeze / thaw elastomer, acrylic acid-based acrylic acid / sodium vinyl alcohol copolymer, cross-linked sodium polyacrylate, acrylamide-based N-substituted acrylamide cross-linked products can be used. These water-absorbing polymers can reduce the amount of water absorption by increasing the crosslinking density, and can be adjusted as appropriate. A crosslinking agent, a polymerization initiator, or the like may be used to adjust the crosslinking density. Examples of the crosslinking agent include N, N 'methylene bisacrylamide and ethylene glycol dimethacrylate, and the polymerization initiator is azobisisobutyronitrile (AIBN), benzoyl peroxide, and persulfate represented by potassium peroxodisulfate. A salt can be illustrated. Furthermore, in order to increase the crosslinking density, hydrogen bonds, ionic bonds, and coordinate bonds between the water-absorbing polymers may be used. For example, if a calcium chloride solution having multivalent ions is used, the carboxyl group of the water-absorbing polymer can be ionically bonded to increase the crosslinking density.
 また、上記架橋型ポリアクリル酸カリウムの場合、自重の数百から約千倍までの電解液を取り込んでゲル化する。また、後述するようにゲル層13は薄く形成する、または膜状にすることができるため、ポリアクリル酸カリウムの量は少量でよく低コストに抑えることができる。また、電解液3にアルカリ性水溶液を用いる場合に、ポリアクリル酸カリウムは耐アルカリ性に優れるため、材料劣化は無視できるほど小さく、仮にゲル層13の交換が必要になったとしてもその頻度を低減できる。
 例えば、外部容器に溜めた電解液3又は水にゲル化剤を加え、外部容器内の電解液3又は水をゲル化しゲル層13を形成し、この形成したゲル層13を電解液3の液面上や空気極9上などに配置することができる。
 なお、ゲル層13の水系分散体に水を用いる場合、水は純水に限らず、蒸発防止剤などが含まれても良く、電解液と反応するようなものでなければ特に限定されない。
Moreover, in the case of the said bridge | crosslinking-type potassium polyacrylate, it takes in the electrolyte solution from several hundred to about 1000 times the own weight, and gelatinizes. Further, as will be described later, the gel layer 13 can be formed thin or formed into a film, so that the amount of potassium polyacrylate can be small, and the cost can be reduced. Moreover, when using alkaline aqueous solution for the electrolyte solution 3, since the polyacrylic acid potassium is excellent in alkali resistance, material deterioration is so small that it can be disregarded, and even if the gel layer 13 needs to be replaced, the frequency can be reduced. .
For example, a gelling agent is added to the electrolytic solution 3 or water stored in the external container, the electrolytic solution 3 or water in the external container is gelled to form a gel layer 13, and the formed gel layer 13 is used as a solution of the electrolytic solution 3. It can arrange | position on a surface, the air electrode 9, etc.
In addition, when water is used for the aqueous dispersion of the gel layer 13, the water is not limited to pure water, and may include an evaporation inhibitor and the like, and is not particularly limited as long as it does not react with the electrolytic solution.
 また、例えば、ゲル化剤を空気極9上などに塗り、この上に電解液や水をスプレーなどにより散布することによりゲル層13を形成してもよい。このようにすることで、ゲル層13を薄く形成する、または膜状にすることができる。
 また、例えば、外部容器に溜めた電解液にゲル化剤を加えた後、多孔質体32上又は空気極9上にゲル化電解液を塗布し、多孔質体32又は空気極9の下側から吸引することにより、塗布したゲル化電解液を多孔質体32中又は空気極9中に移動させることができる。このことにより、ゲル層13を多孔質体32中や空気極9中に配置することができる。
 また、ゲル化剤と、水又は電解液とからゲル層13を形成した後、真空処理などにより脱泡処理を行い、ゲル層13内の気泡を除去してもよい。気泡が残ったままでは、アノードとカソード間を伝導する水酸化物イオンの伝導距離が長くなるなどして抵抗が大きくなるためである。また、ゲル層13を空気極9上などに設置した後、この積層体をプレス処理してもよい。ゲル層13は粘着性を有するため、空気極9などをよく絡ませることができ、ゲル層13の剥離を抑制することができる。また、空気極9にゲル層13が絡むことで空気極9の空気極触媒との接触面積が増え、イオン伝導パスが繋がりやすくなることから高出力が得やすい。更に、ゲル層13と空気極9の一体化物が得られることで部品点数が少なくなり、低コスト化を図ることができる。
Further, for example, the gel layer 13 may be formed by applying a gelling agent on the air electrode 9 or the like, and spraying an electrolytic solution or water thereon by spraying or the like. By doing in this way, the gel layer 13 can be formed thinly or can be made into a film form.
Further, for example, after adding a gelling agent to the electrolytic solution stored in the external container, the gelled electrolytic solution is applied on the porous body 32 or the air electrode 9, and the lower side of the porous body 32 or the air electrode 9. The applied gelled electrolytic solution can be moved into the porous body 32 or the air electrode 9 by being sucked from. Thus, the gel layer 13 can be disposed in the porous body 32 or the air electrode 9.
In addition, after the gel layer 13 is formed from the gelling agent and water or an electrolytic solution, the bubbles in the gel layer 13 may be removed by performing a defoaming process by a vacuum process or the like. This is because if the bubbles remain, the resistance increases due to an increase in the conduction distance of hydroxide ions conducted between the anode and the cathode. Further, after the gel layer 13 is placed on the air electrode 9 or the like, the laminate may be pressed. Since the gel layer 13 has adhesiveness, the air electrode 9 and the like can be entangled well, and peeling of the gel layer 13 can be suppressed. Further, since the gel layer 13 is entangled with the air electrode 9, the contact area between the air electrode 9 and the air electrode catalyst is increased, and the ion conduction path is easily connected, so that high output is easily obtained. Further, since the integrated product of the gel layer 13 and the air electrode 9 is obtained, the number of parts is reduced, and the cost can be reduced.
 電解液槽2は、電解液3を溜める又は流通させる電解槽であり、 電解液に対して耐食性を有する。また、電解液槽2は、電解液室を有することができる。
 電解液槽2または電解液室は、その中に金属電極5を取り出し可能に設置することができる構造を有する。電解液槽2は、金属空気電池本体に設けることができる。また、電解液槽2は、複数の電解液室を有してもよい。
The electrolytic solution tank 2 is an electrolytic cell that stores or distributes the electrolytic solution 3 and has corrosion resistance to the electrolytic solution. Moreover, the electrolytic solution tank 2 can have an electrolytic solution chamber.
The electrolytic solution tank 2 or the electrolytic solution chamber has a structure in which the metal electrode 5 can be installed so that it can be taken out. The electrolyte bath 2 can be provided in the metal-air battery main body. Moreover, the electrolytic solution tank 2 may have a plurality of electrolytic solution chambers.
 金属空気電池30が電解液槽2内の電解液3を流動させる機構を有してもよい。電解液3を流動させる機構としては、例えば、ポンプ25および電解液流路26を用いて電解液3を循環させ、電解液槽2内の電解液3を流動させてもよい。このことにより、金属電極5の周りにフレッシュな電解液3を供給できるため、電池特性を高くすることができ、放電容量も大きくすることができる。
 また、金属空気電池30が攪拌機、バイブレーターなどの電解液槽2内の電解液3を物理的に動かすことのできる可動部を備えてもよい。
 また、流動させる電解液3は、ゲル化してなく、高い流動性を有するため、金属電極5に多孔性電極(例えば、金属粉を焼結し調製した電極)を用いた場合でも、電解液3は多孔性電極の細孔内に入り込むことができる。このため、金属電極5を電解液槽2内に挿入した後すぐに放電を行うことが可能となる。また、流動させる電解液3は粘度が低いため、金属電極5を電解液槽2に挿入する際や抜き出す際に金属電極5の一部が脱落することを抑制することができる。
The metal-air battery 30 may have a mechanism for causing the electrolytic solution 3 in the electrolytic solution tank 2 to flow. As a mechanism for causing the electrolytic solution 3 to flow, for example, the electrolytic solution 3 may be circulated using the pump 25 and the electrolytic solution flow channel 26 to cause the electrolytic solution 3 in the electrolytic solution tank 2 to flow. As a result, the fresh electrolyte 3 can be supplied around the metal electrode 5, so that the battery characteristics can be improved and the discharge capacity can be increased.
Moreover, the metal air battery 30 may be provided with a movable part that can physically move the electrolyte 3 in the electrolyte bath 2 such as a stirrer and a vibrator.
Further, since the electrolyte 3 to be fluidized is not gelled and has high fluidity, even when a porous electrode (for example, an electrode prepared by sintering metal powder) is used as the metal electrode 5, the electrolyte 3 Can penetrate into the pores of the porous electrode. For this reason, it becomes possible to discharge immediately after inserting the metal electrode 5 into the electrolytic solution tank 2. Moreover, since the electrolyte 3 to be flowed has a low viscosity, it is possible to prevent a part of the metal electrode 5 from dropping off when the metal electrode 5 is inserted into or extracted from the electrolyte bath 2.
 例えば、図1に示した金属空気電池30では、ポンプ25により沈殿槽18内の電解液3をセル4a~4dにそれぞれ供給し、セル4a~4dの排出口15a~15dから排出される電解液3が沈殿槽18に流入するように電解液流路26、沈殿槽18、ポンプ25を設けている。このような構成により電解液3を循環させることにより、析出物17を沈殿槽18に蓄積させることができ、電解液槽2内に析出物17が蓄積することを抑制することができる。このことにより、析出物17が電池反応に悪影響を及ぼすことを抑制することができる。また、析出物17の回収を沈殿槽18において行うことができるため、回収作業中に金属空気電池30により放電を続けることが可能である。
 ここで、図1において、セル4a~4d間で電解液3は排出口15a~15dを介して連通しているが、電解液3の循環方法はこれに限らない。例えば、セル4a~4dの上部に液分配部を設け、液分配部から液滴を垂らすように各セル4に電解液3を供給しても良い。また各セル4に供給した電解液3は、同様に液滴を垂らすようにして沈殿槽18に流入させ、ポンプ25を使って液分配部に電解液3を送液するなどして電解液循環を行ってもよい。このように液分配部から各セル4に電解液3を供給することで、各セル4の液絡(電解液による短絡)を防ぐことができるので出力を向上させることができる。
 例えば、図7に示した金属空気電池30のように、沈殿槽18内の電解液3の液面上にゲル層13eを配置してもよい。このことにより、電解液3の蒸散・吸湿、また二酸化炭素との反応による劣化を抑制することができ、電解液3の電解質濃度の変化を抑制することができる。
For example, in the metal-air battery 30 shown in FIG. 1, the electrolytic solution 3 in the precipitation tank 18 is supplied to the cells 4a to 4d by the pump 25, and discharged from the discharge ports 15a to 15d of the cells 4a to 4d. An electrolyte channel 26, a precipitation tank 18, and a pump 25 are provided so that 3 flows into the precipitation tank 18. By circulating the electrolyte 3 with such a configuration, the precipitate 17 can be accumulated in the precipitation tank 18, and accumulation of the precipitate 17 in the electrolyte tank 2 can be suppressed. This can prevent the deposit 17 from adversely affecting the battery reaction. Moreover, since the deposit 17 can be collected in the sedimentation tank 18, it is possible to continue the discharge by the metal-air battery 30 during the collection operation.
Here, in FIG. 1, the electrolyte solution 3 communicates between the cells 4a to 4d via the discharge ports 15a to 15d, but the method of circulating the electrolyte solution 3 is not limited to this. For example, a liquid distributor may be provided above the cells 4a to 4d, and the electrolytic solution 3 may be supplied to each cell 4 so that the liquid droplets are dropped from the liquid distributor. Similarly, the electrolytic solution 3 supplied to each cell 4 is caused to flow into the sedimentation tank 18 so as to drips, and the electrolytic solution is circulated by sending the electrolytic solution 3 to the liquid distributor using the pump 25. May be performed. Thus, by supplying the electrolyte solution 3 to each cell 4 from a liquid distribution part, since the liquid junction (short circuit by electrolyte solution) of each cell 4 can be prevented, an output can be improved.
For example, like the metal-air battery 30 shown in FIG. 7, the gel layer 13e may be disposed on the liquid surface of the electrolytic solution 3 in the precipitation tank 18. As a result, transpiration and moisture absorption of the electrolytic solution 3 and deterioration due to reaction with carbon dioxide can be suppressed, and changes in the electrolyte concentration of the electrolytic solution 3 can be suppressed.
 また、金属空気電池30は、電解液槽2内の電解液3が金属含有イオン濃度を低下させる手段に流入するように設けられてもよい。
 金属含有イオン濃度を低下させる手段は、例えば、電解槽20、析出促進部などである。電解槽20は、例えば、図7に示した金属空気電池30のように電解用電極21の電極対を有することができる。この電極対に電圧を印加すると、電気化学的に金属、金属化合物などの析出反応を生じさせることができ、電解液の金属含有イオン濃度を低下させることができる。
 また、析出促進部は、例えば、析出物17と同種の材料からなる結晶核粒子を有する部分である。このような析出促進部に電解液3を流入させると、結晶核粒子の表面上に析出物17を結晶成長させることができ、電解液3の金属含有イオン濃度を低下させることができる。
 このように、金属含有イオン濃度を低下させる手段を設けることにより、電解液3を交換することなく、金属空気電池30により繰り返し放電することが可能になる。
Further, the metal-air battery 30 may be provided so that the electrolyte 3 in the electrolyte bath 2 flows into a means for reducing the metal-containing ion concentration.
Means for reducing the concentration of the metal-containing ion is, for example, the electrolytic cell 20 or the precipitation promoting part. The electrolytic cell 20 can have an electrode pair of electrodes for electrolysis 21 like the metal-air battery 30 shown in FIG. When a voltage is applied to the electrode pair, a precipitation reaction of a metal, a metal compound, or the like can be caused electrochemically, and the metal-containing ion concentration of the electrolytic solution can be reduced.
Further, the precipitation promoting portion is a portion having crystal nucleus particles made of the same kind of material as the precipitate 17, for example. When the electrolytic solution 3 is allowed to flow into such a precipitation promoting part, the precipitate 17 can be crystal-grown on the surface of the crystal nucleus particles, and the metal-containing ion concentration of the electrolytic solution 3 can be reduced.
Thus, by providing means for reducing the concentration of the metal-containing ions, it is possible to repeatedly discharge the metal-air battery 30 without replacing the electrolytic solution 3.
 電解液槽2を構成する筐体1の材料は、電解液に対して耐食性を有する材料であれば特に限定されず、例えば、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリ酢酸ビニル、ABS樹脂、塩化ビニリデン、ポリアセタール、ポリエチレン、ポリプロピレン、ポリイソブチレン、フッ素樹脂、エポキシ樹脂などである。 The material of the housing 1 constituting the electrolytic solution tank 2 is not particularly limited as long as the material has corrosion resistance to the electrolytic solution. For example, polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyvinyl acetate, ABS resin, vinylidene chloride, polyacetal, polyethylene, polypropylene, polyisobutylene, fluorine resin, epoxy resin, etc.
5.空気極
 空気極9は、空気極触媒を含む空気極触媒層7を有しかつカソードとなる電極である。また、空気極9は、多孔性のガス拡散層8と、ガス拡散層8上に設けられた多孔性の空気極触媒層7とを有してもよい。また、空気極9の細孔中にゲル化剤を含み、ゲル層13を配置してもよい。
 空気極9では、空気極触媒上において電解液3などから供給される水と大気から供給される酸素ガスと電子とが反応し水酸化物イオン(OH-)を生成する(カソード反応)。つまり、空気極9の三相界面においてカソード反応が進行する。
 また、空気極9は、空気極9に大気に含まれる酸素ガスが拡散できるように設けられる。例えば、空気極9は、少なくとも空気極9の表面の一部が大気に曝されるように設けることができる。図1、2に示した金属空気電池30では、筐体1に複数の空気流路12を設けており、空気流路12を介して大気に含まれる酸素ガスが空気極9中に拡散できる。なお、この空気流路12を介して空気極9に水を供給してもよい。
 例えば、空気極9をシート形状とし、電解液槽2の壁部の一部に空気極9の第1主要面が電解液槽2に収容した電解液3側となり、空気極9の第2主要面が大気又は空気流路側となるように空気極9を配置することができる。このことにより、第1主要面側から電解液槽2に収容した電解液3に含まれる水を空気極触媒層7に供給することができ、第2主要面側から大気中の酸素ガスを空気極触媒に供給することができる。
5. Air electrode The air electrode 9 is an electrode which has the air electrode catalyst layer 7 containing an air electrode catalyst, and serves as a cathode. Further, the air electrode 9 may include a porous gas diffusion layer 8 and a porous air electrode catalyst layer 7 provided on the gas diffusion layer 8. Further, the gel layer 13 may be disposed by including a gelling agent in the pores of the air electrode 9.
In the air electrode 9, water supplied from the electrolytic solution 3 and the like, oxygen gas supplied from the atmosphere, and electrons react on the air electrode catalyst to generate hydroxide ions (OH ) (cathode reaction). That is, the cathode reaction proceeds at the three-phase interface of the air electrode 9.
The air electrode 9 is provided so that oxygen gas contained in the atmosphere can diffuse into the air electrode 9. For example, the air electrode 9 can be provided so that at least a part of the surface of the air electrode 9 is exposed to the atmosphere. In the metal-air battery 30 shown in FIGS. 1 and 2, a plurality of air flow paths 12 are provided in the housing 1, and oxygen gas contained in the atmosphere can diffuse into the air electrode 9 through the air flow paths 12. Note that water may be supplied to the air electrode 9 through the air flow path 12.
For example, the air electrode 9 has a sheet shape, and the first main surface of the air electrode 9 is on the side of the electrolyte solution 3 accommodated in the electrolyte solution tank 2 in a part of the wall portion of the electrolyte solution tank 2. The air electrode 9 can be disposed so that the surface is on the atmosphere or air flow path side. As a result, water contained in the electrolytic solution 3 accommodated in the electrolytic solution tank 2 can be supplied to the air electrode catalyst layer 7 from the first main surface side, and oxygen gas in the atmosphere is supplied from the second main surface side to the air. It can be supplied to the polar catalyst.
 空気極触媒層7は、例えば、電子伝導性物質を含むことが好ましく、導電性の多孔性担体(電子伝導性物質)と多孔性担体に担持された空気極触媒とを含んでもよい。このことにより、空気極触媒上において、酸素ガスと水と電子を共存する三相界面を形成することが可能になり、カソード反応を進行させることが可能になる。また、空気極触媒層7は、バインダーを含んでもよい。また、空気極触媒層7に含まれる多孔性担体は、その細孔中にゲル化剤を保持していてもよく、ゲル層13を配置してもよい。また、空気極触媒層7は予めゲル化剤を含有していてもよい。ゲル化剤は、空気極触媒層7に浸透していく電解液3を吸収しゲル層13を形成するため、空気極9を介した電解液3の漏洩を防止することができる。また、空気極触媒層7は、撥水樹脂を含有してもよい。このことにより、空気極9を介した電解液3の漏洩を抑制することができる。 The air electrode catalyst layer 7 preferably includes, for example, an electron conductive material, and may include a conductive porous carrier (electron conductive material) and an air electrode catalyst supported on the porous carrier. This makes it possible to form a three-phase interface in which oxygen gas, water, and electrons coexist on the air electrode catalyst, thereby allowing the cathode reaction to proceed. The air electrode catalyst layer 7 may contain a binder. Further, the porous carrier contained in the air electrode catalyst layer 7 may hold a gelling agent in the pores, and the gel layer 13 may be disposed. The air electrode catalyst layer 7 may contain a gelling agent in advance. The gelling agent absorbs the electrolytic solution 3 penetrating into the air electrode catalyst layer 7 and forms the gel layer 13, so that leakage of the electrolytic solution 3 through the air electrode 9 can be prevented. The air electrode catalyst layer 7 may contain a water repellent resin. Thereby, leakage of the electrolyte solution 3 through the air electrode 9 can be suppressed.
 空気極触媒層7の吸水性高分子の含有率は、特に制限されるものではないが、3wt%以上、70wt%以下とすることが好ましく、5wt%以上、30wt%以下とすることがより好ましい。空気極触媒層7の吸水性高分子の含有率が、3wt%未満である場合、吸水性高分子が電解液又は水を吸収して形成されるゲル化剤またはゲルが空気極触媒層7の多孔構造の細孔を十分に満たすことができず、電解液3が空気極触媒層7の細孔を介して外部に漏出してしまうおそれがある。また、空気極触媒をゲルが十分に覆うことができないため、三相界面が十分に形成されず、放電特性が低下するおそれがある。一方、空気極触媒層7の吸水性高分子の含有率が、70wt%を超える場合、空気極触媒層7の多孔構造の細孔に空隙25(酸素ガス拡散経路)が十分確保されないため、放電特性が著しく低下するおそれがある。
 なお、空気極触媒層7の吸水性高分子の含有率は、例えば、含有率(wt%)={A/(A+B)}×100(A:空気極触媒層7における吸水性高分子の重量、B:空気極触媒層7における空気極触媒及び電子伝導性物質の重量)として定義することができる。
The content of the water-absorbing polymer in the air electrode catalyst layer 7 is not particularly limited, but is preferably 3 wt% or more and 70 wt% or less, more preferably 5 wt% or more and 30 wt% or less. . When the content of the water-absorbing polymer in the air electrode catalyst layer 7 is less than 3 wt%, the gelling agent or gel formed by the water-absorbing polymer absorbing the electrolyte or water is the air electrode catalyst layer 7. There is a possibility that the pores of the porous structure cannot be sufficiently filled, and the electrolytic solution 3 may leak to the outside through the pores of the air electrode catalyst layer 7. Moreover, since the gel cannot sufficiently cover the air electrode catalyst, the three-phase interface is not sufficiently formed, and the discharge characteristics may be deteriorated. On the other hand, when the content of the water-absorbing polymer in the air electrode catalyst layer 7 exceeds 70 wt%, the voids 25 (oxygen gas diffusion paths) are not sufficiently ensured in the pores of the porous structure of the air electrode catalyst layer 7, so that the discharge There is a possibility that the characteristics are significantly deteriorated.
The content of the water-absorbing polymer in the air electrode catalyst layer 7 is, for example, the content (wt%) = {A / (A + B)} × 100 (A: the weight of the water-absorbing polymer in the air electrode catalyst layer 7). B: Weight of the air electrode catalyst and the electron conductive material in the air electrode catalyst layer 7).
 また、空気極触媒層7とガス拡散層8とから構成される空気極9は、空気極触媒を担持した多孔性担体を導電性多孔性基材(ガス拡散層8)に塗布することにより作製されてもよい。例えば、空気極9は、空気極触媒を担持したカーボンをカーボンペーパーやカーボンフェルトに塗布することにより作製することができる。このガス拡散層8は、空気極集電体として機能してもよい。また、ガス拡散層8は、カーボン繊維と、カーボンブラックと撥水高分子からなるマイクロポーラスレイヤーとから構成されてもよい。撥水性高分子は、例えばポリテトラフルオロエチレン(PTFE)である。この撥水性高分子は、電解液3の漏洩を防ぐために設けられ、気液分離機能を有する。すなわち、電解液3が電解液槽2から漏洩するのを防ぎ、かつ空気極触媒層7への酸素ガスの供給を妨げない。
 空気極9の厚さは、例えば、300μm以上3mm以下とすることができる。
 また、空気極9は、空気極触媒層7のみから構成されてもよい。なお、空気極9が空気極触媒層7のみから構成される場合、空気極触媒層7は、空気極端子40または外部配線と直接接続する。また、空気極9は、空気極触媒層7と空気極集電体10とが積層された構造を有してもよい。この場合、空気極触媒層7が第1主要面側に配置され、空気極集電体10が第2主要面側に配置されてもよく、空気極集電体10が第1主要面側に配置され、空気極触媒層7が第2主要面側に配置されてもよい。さらに、空気極9は、第1主要面側が多孔質体で形成されていることが好ましい。
 さらに、空気極9は、空気極端子40と電気的に接続することができる。このことにより、空気極触媒層7で生じた電荷を外部回路へと取り出すことができる。
The air electrode 9 composed of the air electrode catalyst layer 7 and the gas diffusion layer 8 is produced by applying a porous carrier carrying the air electrode catalyst to the conductive porous substrate (gas diffusion layer 8). May be. For example, the air electrode 9 can be produced by applying carbon carrying an air electrode catalyst to carbon paper or carbon felt. The gas diffusion layer 8 may function as an air electrode current collector. The gas diffusion layer 8 may be composed of carbon fibers and a microporous layer made of carbon black and a water repellent polymer. The water repellent polymer is, for example, polytetrafluoroethylene (PTFE). This water-repellent polymer is provided to prevent leakage of the electrolyte solution 3 and has a gas-liquid separation function. That is, the electrolytic solution 3 is prevented from leaking from the electrolytic solution tank 2, and the supply of oxygen gas to the air electrode catalyst layer 7 is not hindered.
The thickness of the air electrode 9 can be, for example, not less than 300 μm and not more than 3 mm.
Further, the air electrode 9 may be composed of only the air electrode catalyst layer 7. In addition, when the air electrode 9 is comprised only from the air electrode catalyst layer 7, the air electrode catalyst layer 7 is directly connected with the air electrode terminal 40 or an external wiring. The air electrode 9 may have a structure in which the air electrode catalyst layer 7 and the air electrode current collector 10 are laminated. In this case, the air electrode catalyst layer 7 may be disposed on the first main surface side, the air electrode current collector 10 may be disposed on the second main surface side, and the air electrode current collector 10 may be disposed on the first main surface side. The air electrode catalyst layer 7 may be disposed on the second main surface side. Further, the air electrode 9 is preferably formed of a porous body on the first main surface side.
Further, the air electrode 9 can be electrically connected to the air electrode terminal 40. Thereby, the electric charge generated in the air electrode catalyst layer 7 can be taken out to the external circuit.
 金属空気電池30は、空気極触媒層7に生じた電荷を集電する空気極集電体10を備える。このことにより、空気極触媒層7で生じた電荷を効率よく、つまり低抵抗で外部回路へと取り出すことができる。空気極集電体10の材料としては、電解液3に対して耐食性を有すれば特に限定されないが、例えば、ニッケル、金、銀、銅、ステンレスなどである。また、空気極集電体10は、ニッケルめっき処理、金めっき処理、銀めっき処理、銅めっき処理された導電性基材などであってもよい。この導電性基材には、鉄、ニッケル、ステンレスなどを用いることができる。
 また、空気極集電体10の形状は、例えば、板状、メッシュ状、パンチングメタルなどの複数の開口を有する形状とすることができる。空気極集電体10の複数の開口は大気に開放されていてもよい。このことにより、開口を介して大気中の酸素ガスを空気極9に供給することができる。
 また、空気極集電体10と、多孔性担体又は導電性多孔性基材(ガス拡散層8)とを接合する方法としては、フレームを介してネジ止めにより圧着する方法や、導電性接着剤を用いて結合させる方法などが挙げられる。
The metal-air battery 30 includes an air electrode current collector 10 that collects charges generated in the air electrode catalyst layer 7. As a result, the charges generated in the air electrode catalyst layer 7 can be taken out to an external circuit efficiently, that is, with low resistance. The material of the air electrode current collector 10 is not particularly limited as long as it has corrosion resistance with respect to the electrolytic solution 3, and examples thereof include nickel, gold, silver, copper, and stainless steel. Further, the air electrode current collector 10 may be a conductive base material subjected to nickel plating, gold plating, silver plating, or copper plating. For this conductive substrate, iron, nickel, stainless steel, or the like can be used.
Further, the shape of the air electrode current collector 10 may be a shape having a plurality of openings such as a plate shape, a mesh shape, and a punching metal. The plurality of openings of the air electrode current collector 10 may be open to the atmosphere. Thereby, oxygen gas in the atmosphere can be supplied to the air electrode 9 through the opening.
In addition, as a method of joining the air electrode current collector 10 to the porous carrier or the conductive porous substrate (gas diffusion layer 8), a method of pressure bonding by screwing through a frame, or a conductive adhesive And the like.
 1つのセルに含まれる空気極9は、金属電極5の一方側にのみ設けられてもよく、図1のように金属電極5の両側にそれぞれ設けられてもよい。
 空気極触媒層7に含まれる多孔性担体には、例えば、アセチレンブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等のカーボンブラック、黒鉛、活性炭等の導電性カーボン粒子が挙げられる。また、気相法炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノワイヤー等の炭素繊維を用いることもできる。
 空気極触媒には、たとえば、白金、鉄、コバルト、ニッケル、パラジウム、銀、ルテニウム、イリジウム、モリブデン、マンガン、ランタン、これらの金属化合物、およびこれらの金属の2種以上を含む合金からなる微粒子が挙げられる。この合金は、白金、鉄、コバルト、ニッケルのうち少なくとも2種以上を含有する合金が好ましく、たとえば、白金-鉄合金、白金-コバルト合金、鉄-コバルト合金、コバルト-ニッケル合金、鉄-ニッケル合金等、鉄-コバルト-ニッケル合金が挙げられる。
The air electrode 9 included in one cell may be provided only on one side of the metal electrode 5, or may be provided on both sides of the metal electrode 5 as shown in FIG.
Examples of the porous carrier contained in the air electrode catalyst layer 7 include carbon black such as acetylene black, furnace black, channel black and ketjen black, and conductive carbon particles such as graphite and activated carbon. In addition, carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanowire, and the like can be used.
Examples of the air electrode catalyst include fine particles made of platinum, iron, cobalt, nickel, palladium, silver, ruthenium, iridium, molybdenum, manganese, lanthanum, these metal compounds, and alloys containing two or more of these metals. Can be mentioned. This alloy is preferably an alloy containing at least two of platinum, iron, cobalt, and nickel. For example, platinum-iron alloy, platinum-cobalt alloy, iron-cobalt alloy, cobalt-nickel alloy, iron-nickel alloy And iron-cobalt-nickel alloy.
 また、空気極触媒は、粒子状であってもよく、電子伝導性物質に担持された状態であってもよい。特に、空気極触媒を電子伝導性物質に担持することにより、空気極触媒の表面積を広くすることができ、三相界面を多く形成することができる。また、空気極触媒を電子伝導性物質に担持することにより、空気極9の製造に必要な空気極触媒の量を減らすことができ、金属空気電池30の製造コストを低減することができる。さらに、空気極触媒を電子伝導性物質に担持することにより、空気極触媒におけるカソード反応で生じた電荷を効率よく集電することができ、金属空気電池30の放電特性を高くすることができる。電子伝導性物質は、例えば、Pt担持カーボン粒子である。
 また、空気極触媒層7に含まれるバインダーは、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などである。
 また、空気極触媒層7に含まれる多孔性担体は、その表面に陽イオン基が固定イオンとして存在するように表面処理がなされていてもよい。このことにより、多孔性担体の表面を水酸化物イオンが伝導できるため、空気極触媒上で生成した水酸化物イオンが移動しやすくなる。
 また、空気極触媒層7は、多孔性担体の細孔に保持されたアニオン交換樹脂を有してもよい。このことにより、アニオン交換樹脂を水酸化物イオンが伝導できるため、空気極触媒上で生成した水酸化物イオンが移動しやすくなる。
The air electrode catalyst may be in the form of particles or may be supported on an electron conductive material. In particular, by supporting the air electrode catalyst on the electron conductive material, the surface area of the air electrode catalyst can be increased and a large number of three-phase interfaces can be formed. In addition, by supporting the air electrode catalyst on the electron conductive material, the amount of the air electrode catalyst necessary for manufacturing the air electrode 9 can be reduced, and the manufacturing cost of the metal-air battery 30 can be reduced. Furthermore, by carrying the air electrode catalyst on the electron conductive material, the charge generated by the cathode reaction in the air electrode catalyst can be collected efficiently, and the discharge characteristics of the metal-air battery 30 can be enhanced. The electron conductive material is, for example, Pt-supported carbon particles.
The binder contained in the air electrode catalyst layer 7 is, for example, polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF).
Further, the porous carrier contained in the air electrode catalyst layer 7 may be subjected to a surface treatment so that a cationic group exists as a fixed ion on the surface thereof. As a result, hydroxide ions can be conducted on the surface of the porous carrier, so that the hydroxide ions generated on the air electrode catalyst can easily move.
The air electrode catalyst layer 7 may have an anion exchange resin held in the pores of the porous carrier. Thereby, since hydroxide ions can be conducted through the anion exchange resin, the hydroxide ions generated on the air electrode catalyst are easily moved.
 空気極触媒層7は電解液槽2内の電解液3に接触するように設けてもよい。このことにより、空気極触媒層7で生成した水酸化物イオンが容易に電解液3へ移動することができる。また、空気極触媒層7における電極反応に必要な水が電解液3から空気極触媒層7に供給されやすくなる。
 なお、空気極触媒層7を電解液槽2内の電解液3と接触するように設けると、使用済み活物質が空気極9に付着・固着する場合がある。この場合、使用済み活物質は電気伝導性が低いため電池抵抗を増大させたり、空気極9の多孔質構造の目を埋めることにより空気の拡散を抑制したりするため、電池特性が低下する場合がある。なお、空気極9に付着する使用済み活物質(析出物17)は、金属含有イオン濃度の高い金属電極5の近傍の電解液中において核生成及び結晶成長して析出し、この使用済み活物質が表面積の大きい空気極9に付着すると考えられる。
The air electrode catalyst layer 7 may be provided so as to be in contact with the electrolytic solution 3 in the electrolytic solution tank 2. Thus, hydroxide ions generated in the air electrode catalyst layer 7 can easily move to the electrolyte solution 3. Further, water necessary for the electrode reaction in the air electrode catalyst layer 7 is easily supplied from the electrolytic solution 3 to the air electrode catalyst layer 7.
If the air electrode catalyst layer 7 is provided so as to be in contact with the electrolytic solution 3 in the electrolytic solution tank 2, the used active material may adhere to and adhere to the air electrode 9 in some cases. In this case, since the used active material has low electrical conductivity, battery resistance is increased, or air diffusion is suppressed by filling the pores of the porous structure of the air electrode 9, so that battery characteristics are deteriorated. There is. In addition, the used active material (precipitate 17) adhering to the air electrode 9 precipitates by nucleation and crystal growth in the electrolyte solution in the vicinity of the metal electrode 5 having a high metal-containing ion concentration. Is considered to adhere to the air electrode 9 having a large surface area.
 電解液槽2に収容した電解液3と空気極9との間にゲル層13を設けてもよい。また、このゲル層13は、空気極9上に設けてもよい。また、このゲル層13は、電解液をゲル化したものからなってもよい。このことによりアノード-カソード間のイオン伝導抵抗が高くなることを抑制することができる。また、ゲル層13は、電解液槽2内の電解液3と空気極触媒層7とを仕切るように設けることができる。このようなゲル層13を設けることにより、電解液槽2内の電解液3が空気極9の細孔に直接流入することを抑制することができ、空気極9の細孔を介した電解液3の漏洩を抑制することができる。また、電解液3がゲル層13を透過する速度は遅いため、適切な量の水を空気極9に供給することができる。また、このゲル層13を設けることにより、電解液槽2内の電解液3が空気極9に直接流入することを防止できるため、金属酸化物などの析出物17が空気極9に付着することを防止することができる。また、ゲル層13内における金属含有イオンの伝導度も十分低いことから、空気極9上で金属酸化物が析出するのを抑えることができる。このことにより、電池特性を維持することができる。
 また、金属電極5において、自己腐食により水素ガスが発生する場合がある。この水素ガスが空気極9で反応すると電池性能が低下したり、出力安定性が損なわれるが、水素ガスが透過しにくいゲル層13で空気極9を覆うことにより、水素ガスが空気極9で反応することを防止することができる。
 ゲル層13は、例えば、図1に示した金属空気電池30のように、空気極触媒層7と電解液槽3に収容した電解液3との間に空気極触媒層7を覆うように設けることができる。
A gel layer 13 may be provided between the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the air electrode 9. The gel layer 13 may be provided on the air electrode 9. Moreover, this gel layer 13 may consist of what gelatinized electrolyte solution. This can suppress an increase in ion conduction resistance between the anode and the cathode. Further, the gel layer 13 can be provided so as to partition the electrolyte solution 3 in the electrolyte solution tank 2 and the air electrode catalyst layer 7. By providing such a gel layer 13, it is possible to prevent the electrolytic solution 3 in the electrolytic solution tank 2 from directly flowing into the pores of the air electrode 9, and the electrolytic solution through the pores of the air electrode 9. 3 leakage can be suppressed. Moreover, since the rate at which the electrolytic solution 3 permeates the gel layer 13 is slow, an appropriate amount of water can be supplied to the air electrode 9. Further, by providing the gel layer 13, it is possible to prevent the electrolytic solution 3 in the electrolytic solution tank 2 from directly flowing into the air electrode 9, so that a precipitate 17 such as a metal oxide adheres to the air electrode 9. Can be prevented. Further, since the conductivity of the metal-containing ions in the gel layer 13 is also sufficiently low, it is possible to suppress the metal oxide from being deposited on the air electrode 9. Thereby, battery characteristics can be maintained.
Further, hydrogen gas may be generated in the metal electrode 5 due to self-corrosion. When this hydrogen gas reacts at the air electrode 9, the battery performance deteriorates or the output stability is impaired, but the hydrogen gas is covered at the air electrode 9 by covering the air electrode 9 with the gel layer 13 that is difficult for hydrogen gas to permeate. Reaction can be prevented.
For example, the gel layer 13 is provided so as to cover the air electrode catalyst layer 7 between the air electrode catalyst layer 7 and the electrolyte solution 3 accommodated in the electrolyte solution tank 3 as in the metal-air battery 30 shown in FIG. be able to.
 電解液槽2に収容した電解液3と対向する空気極9の第1主要面を多孔質体32で形成し、多孔質体32の細孔中にゲル化剤を含ませてもよい。多孔質体32にゲル化剤が含まれていることで、電解液3が空気極9に浸透した際にゲル化剤と水がゲル層13を形成する。ゲル層13は、電解質水溶液の水を含む高分子ヒドロゲルの層からなってもよい。このことによりアノード-カソード間のイオン伝導抵抗が高くなることを抑制することができる。また、細孔中にゲル層13が設けられた多孔質体32は、電解液槽2内の電解液3と空気極触媒層7とを仕切るように設けることができる。このような細孔中にゲル層13が形成された多孔質体32を設けることにより、電解液槽2内の電解液3が空気極9の細孔に直接流入することを抑制することができ、空気極9の細孔を介した電解液の漏洩を抑制することができる。また、電解液槽2内の電解液3に含まれる水を細孔中のゲル層13を介して空気極9に供給することができるため、適切な量の水を空気極9に供給することができる。さらに、ゲル層13を多孔質体32の細孔中に設けることにより、電解液槽2内の電解液3の流れによりゲル層13の形状が変形したり、剥離したりすることを抑制することができる。このことにより、電解液の漏洩を抑制する効果を高くすることができる。また、多孔質体32の厚さを実質的に一定にすることにより、電解液槽2に収容した電解液3と、空気極9との距離を実質的に一定にすることができる。このことにより、電解液3の漏洩を抑制する効果を高くすることができる。また、ゲル層13のイオン伝導抵抗を実質的に均一にすることができるため、空気極9の電極面におけるカソード反応の反応速度を実質的に均一にすることができ、金属空気電池30の出力特性を向上させることができる。 The first main surface of the air electrode 9 facing the electrolytic solution 3 accommodated in the electrolytic solution tank 2 may be formed of the porous body 32, and the gelling agent may be included in the pores of the porous body 32. Since the gelling agent is contained in the porous body 32, the gelling agent and water form the gel layer 13 when the electrolytic solution 3 penetrates into the air electrode 9. The gel layer 13 may be composed of a polymer hydrogel layer containing water of an electrolyte aqueous solution. This can suppress an increase in ion conduction resistance between the anode and the cathode. Further, the porous body 32 in which the gel layer 13 is provided in the pores can be provided so as to partition the electrolytic solution 3 in the electrolytic solution tank 2 and the air electrode catalyst layer 7. By providing the porous body 32 in which the gel layer 13 is formed in such pores, the electrolyte solution 3 in the electrolyte bath 2 can be prevented from flowing directly into the pores of the air electrode 9. The leakage of the electrolyte solution through the pores of the air electrode 9 can be suppressed. Moreover, since the water contained in the electrolytic solution 3 in the electrolytic solution tank 2 can be supplied to the air electrode 9 through the gel layer 13 in the pores, an appropriate amount of water is supplied to the air electrode 9. Can do. Furthermore, by providing the gel layer 13 in the pores of the porous body 32, it is possible to prevent the shape of the gel layer 13 from being deformed or peeled off due to the flow of the electrolytic solution 3 in the electrolytic solution tank 2. Can do. This can increase the effect of suppressing leakage of the electrolyte. In addition, by making the thickness of the porous body 32 substantially constant, the distance between the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the air electrode 9 can be made substantially constant. Thereby, the effect which suppresses the leakage of the electrolyte solution 3 can be made high. Further, since the ion conduction resistance of the gel layer 13 can be made substantially uniform, the reaction rate of the cathode reaction on the electrode surface of the air electrode 9 can be made substantially uniform, and the output of the metal-air battery 30 Characteristics can be improved.
 細孔中にゲル層13を形成した多孔質体32は、例えば、図3(a)に示した金属空気電池30のように、空気極触媒層7と電解液槽2に収容した電解液3との間に空気極触媒層7を覆うように設けることができる。図3(b)は、図3(a)に示した金属空気電池30に含まれる多孔質体32の概略断面図である。ゲル層13は、図3(b)のように多孔質体32の細孔に設けられている。
 製造方法としては、まず、多孔質体32となる多孔質材に、ゲル化剤を加えた電解液を塗布し、塗布面の反対の面から吸引することによりゲル化電解液を多孔質材の細孔内に導入する。そして、この多孔質材を空気極触媒層7上に設置することにより、細孔内にゲル層13が形成された多孔質体32を形成することができる。または、バーコーターなどを用いて、多孔質体32となる多孔質材の細孔にゲル化剤を練り込み、これを空気極触媒層7上に設置する。このようにすることで、電解液槽2に電解液3を供給する際に、細孔内で電解液3のゲル化が起こり、ゲル層13が形成された多孔質体32を形成することができる。
The porous body 32 in which the gel layer 13 is formed in the pores is, for example, the electrolytic solution 3 accommodated in the air electrode catalyst layer 7 and the electrolytic solution tank 2 as in the metal-air battery 30 shown in FIG. Can be provided so as to cover the air electrode catalyst layer 7. FIG. 3B is a schematic cross-sectional view of the porous body 32 included in the metal-air battery 30 shown in FIG. The gel layer 13 is provided in the pores of the porous body 32 as shown in FIG.
As a manufacturing method, first, an electrolytic solution to which a gelling agent is added is applied to the porous material to be the porous body 32, and the gelled electrolytic solution is sucked from the surface opposite to the coating surface to thereby remove the gelled electrolytic solution. Introduce into the pores. And the porous body 32 in which the gel layer 13 was formed in the pore can be formed by installing this porous material on the air electrode catalyst layer 7. Alternatively, a gelling agent is kneaded into the pores of the porous material to be the porous body 32 using a bar coater or the like, and this is placed on the air electrode catalyst layer 7. By doing in this way, when supplying electrolyte solution 3 to electrolyte solution tank 2, gelation of electrolyte solution 3 occurs in a pore, and porous body 32 in which gel layer 13 was formed can be formed. it can.
 多孔質体32は、多孔性であり細孔を有すれば、特に限定されないが、例えば、多孔性材料、発泡材料、織布、不織布、メッシュ材料などで構成される。
 多孔質体32の材料は、耐アルカリ性材料などの電解液への耐食性を有すれば特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリオレフィンなどの樹脂材料や、セラミックス材料、ゼオライト、活性炭、ニッケルやステンレスなどの発泡金属、金属メッシュなどである。また、多孔質体32の材料は、絶縁性材料とすることができる。
 また、多孔質体32は、空隙率が高いことが好ましい。このことにより、多孔質体32が保持することができるゲル層13の体積を大きくすることができる。また、多孔質体32の厚さは、30μm以上であることが好ましい。
The porous body 32 is not particularly limited as long as it is porous and has pores. For example, the porous body 32 is composed of a porous material, a foam material, a woven fabric, a nonwoven fabric, a mesh material, or the like.
The material of the porous body 32 is not particularly limited as long as it has corrosion resistance to an electrolytic solution such as an alkali-resistant material. For example, resin materials such as polyethylene, polypropylene, polyvinyl alcohol, and polyolefin, ceramic materials, zeolite, activated carbon, For example, foam metal such as nickel and stainless steel, metal mesh, and the like. The material of the porous body 32 can be an insulating material.
The porous body 32 preferably has a high porosity. Thereby, the volume of the gel layer 13 that the porous body 32 can hold can be increased. Further, the thickness of the porous body 32 is preferably 30 μm or more.
 細孔中にゲル層13を形成した第1の多孔質体32上に第2の多孔質体34を設けてもよい。第2の多孔質体34は、例えば、図4(a)に示した金属空気電池30のように、第2の多孔質体34と空気極9により第1の多孔質体32を挟むように設けることができる。図4(b)は、図4(a)に示した金属空気電池30に含まれる第1の多孔質体32の概略断面図である。
 第2の多孔質体34を設けることにより、第1の多孔質体32及び空気極9を第2の多孔質体34と空気極集電体10とで挟むことができるため、第1の多孔質体32によるゲル層13の保持性能を高くすることができる。また、空気極9と空気極集電体10の接触も良好となるため、電気抵抗が小さくなり電池性能を向上させることができる。この挟み込みの効果を大きくするため、空気極集電体10と第2の多孔質体34は、空気極9や第1の多孔質体32と比較して湾曲しにくい強度のあるものを用いると好ましい。
 第2の多孔質体34は、複数の開口を有することができる。このことにより、多孔質体32内のゲル層13が電解液3と接触することができ、ゲル層13を介して空気極9に水を供給することができる。また、第2の多孔質体34の複数の開口内にゲル層13が設けられていてもよい。さらに、ゲル層13は、第1の多孔質体32と第2の多孔質体34の間に挟持するように配置されてもよい。このことで、空気極9と金属電極5間のイオン伝導性を保ちながら、ゲル層13の形成を均等に成長させることが可能になる。
The second porous body 34 may be provided on the first porous body 32 in which the gel layer 13 is formed in the pores. For example, the second porous body 34 sandwiches the first porous body 32 between the second porous body 34 and the air electrode 9 like the metal-air battery 30 shown in FIG. Can be provided. FIG. 4B is a schematic cross-sectional view of the first porous body 32 included in the metal-air battery 30 shown in FIG.
By providing the second porous body 34, the first porous body 32 and the air electrode 9 can be sandwiched between the second porous body 34 and the air electrode current collector 10. The retention performance of the gel layer 13 by the mass 32 can be enhanced. In addition, since the contact between the air electrode 9 and the air electrode current collector 10 is improved, the electrical resistance is reduced and the battery performance can be improved. In order to increase the effect of this sandwiching, when the air electrode current collector 10 and the second porous body 34 have a strength that is difficult to bend compared to the air electrode 9 and the first porous body 32, preferable.
The second porous body 34 can have a plurality of openings. Thus, the gel layer 13 in the porous body 32 can come into contact with the electrolytic solution 3, and water can be supplied to the air electrode 9 through the gel layer 13. Further, the gel layer 13 may be provided in the plurality of openings of the second porous body 34. Furthermore, the gel layer 13 may be disposed so as to be sandwiched between the first porous body 32 and the second porous body 34. This makes it possible to uniformly grow the formation of the gel layer 13 while maintaining the ionic conductivity between the air electrode 9 and the metal electrode 5.
 第1の多孔質体32または第2の多孔質体34は、多孔構造を有する膜であることが好ましく、例えば、ポリエチレン・ポリプロピレン・ポリビニルアルコール・ポリオレフィン・ポリアミドなどの樹脂材料や、セラミックス材料、ゼオライト、活性炭、Niニッケルやステンレス、クラフト紙、合成パルプ紙、セロハン、ガラス繊維などである。
 第1の多孔質体32または第2の多孔質体34の形態は、例えば、不織布、織布、紙、多孔質材料、発泡金属、金属メッシュなどである。
 また、第1の多孔質体32及び第2の多孔質体34の平均孔径は、10μm以下が好ましく、5μm以下であることがより好ましい。このことにより、電解液槽2中の負極反応生成物(図6に示す、析出物24)が第1の多孔質体32または第2の多孔質体34を透過し空気極9に付着することを抑制することができ、金属空気電池30の放電特性の長期安定性を向上させることができる。
The first porous body 32 or the second porous body 34 is preferably a film having a porous structure. For example, resin materials such as polyethylene, polypropylene, polyvinyl alcohol, polyolefin, and polyamide, ceramic materials, and zeolites , Activated carbon, Ni nickel and stainless steel, kraft paper, synthetic pulp paper, cellophane, glass fiber and so on.
The form of the 1st porous body 32 or the 2nd porous body 34 is a nonwoven fabric, a woven fabric, paper, a porous material, a foam metal, a metal mesh etc., for example.
The average pore diameter of the first porous body 32 and the second porous body 34 is preferably 10 μm or less, and more preferably 5 μm or less. As a result, the negative electrode reaction product (precipitate 24 shown in FIG. 6) in the electrolytic solution tank 2 passes through the first porous body 32 or the second porous body 34 and adheres to the air electrode 9. The long-term stability of the discharge characteristics of the metal-air battery 30 can be improved.
 第2の多孔質体34は、充電用電極としての機能を有してもよい。この場合、金属電極5と第2の多孔質体34との間に電圧を印加して金属電極5に電極活物質である金属を析出させ、充電する。この場合、第2の多孔質体34は、金属板などの導電性を有する材料からなる。
 金属空気電池30を二次電池として用いる場合、金属電極5と空気極9との間に電圧を印加して、金属電極5に電極活物質である金属を析出させることが考えられる。しかし、空気極9を放電時と充電時の両方に用いると、空気極9の劣化速度が速い。このため、第2の多孔質体34が充電用電極としての機能を有すると、空気極9の劣化速度を遅くすることができ、金属空気電池30の寿命特性を向上させることができる。また、この場合、多孔質体32の材料は、絶縁性材料とすることができる。このことにより、充電時にリーク電流が流れることを抑制することができる。
 また、金属空気電池30を二次電池として用いる場合、充電中、電解液槽2中の電解液3を循環させることが好ましい。このことにより、デンドライトの形成を抑制することができ、金属空気電池30の長期信頼性を向上させることができる。また、デンドライトが形成され金属電極5が劣化した場合、劣化した金属電極5を新たな金属電極5に交換することができる。
 また、金属電極5からデントライトが形成しても、ゲル層13がフィルターとなり、第2の多孔質体34を突き抜けて空気極9と短絡するおそれがないと考えられる。
The second porous body 34 may have a function as a charging electrode. In this case, a voltage is applied between the metal electrode 5 and the second porous body 34 to deposit a metal, which is an electrode active material, on the metal electrode 5 to be charged. In this case, the second porous body 34 is made of a conductive material such as a metal plate.
When the metal-air battery 30 is used as a secondary battery, it is conceivable that a voltage is applied between the metal electrode 5 and the air electrode 9 to deposit a metal as an electrode active material on the metal electrode 5. However, when the air electrode 9 is used for both discharging and charging, the deterioration rate of the air electrode 9 is fast. For this reason, if the 2nd porous body 34 has a function as an electrode for charge, the deterioration rate of the air electrode 9 can be slowed and the lifetime characteristic of the metal air battery 30 can be improved. In this case, the material of the porous body 32 can be an insulating material. As a result, leakage current can be prevented from flowing during charging.
Moreover, when using the metal air battery 30 as a secondary battery, it is preferable to circulate the electrolyte solution 3 in the electrolyte tank 2 during charging. Thereby, formation of dendrites can be suppressed and the long-term reliability of the metal-air battery 30 can be improved. Further, when dendrite is formed and the metal electrode 5 deteriorates, the deteriorated metal electrode 5 can be replaced with a new metal electrode 5.
Further, even if dentlite is formed from the metal electrode 5, it is considered that the gel layer 13 becomes a filter, and there is no possibility of being short-circuited with the air electrode 9 through the second porous body 34.
 空気極9の細孔中にゲル層13を設けてもよい。また、空気極触媒層7の細孔中にゲル層13を設けてもよい。このゲル層13は、電解液をゲル化したものからなってもよい。このことによりアノード-カソード間のイオン伝導抵抗が高くなることを抑制することができる。空気極9の細孔中にゲル層13を設けることにより、電解液槽2内の電解液3が空気極9の細孔に直接流入することを抑制することができ、空気極9の細孔を介した電解液3の漏洩を抑制することができる。また、電解液槽2内の電解液3に含まれる水を細孔中のゲル層13を介して空気極9に供給することができるため、空気極9に形成される三相界面を多く形成することができ、金属空気電池30の放電特性を向上させることができる。また、空気極9がゲル層13を保持することができるため、電解液槽2内の電解液の流れによりゲル層13の形状が変形したり、剥離したりすることを抑制することができる。このことにより、電解液の漏洩を抑制する効果を高くすることができる。また、空気極9の細孔中にゲル層13を設けることにより、電解液3に含まれる電極活物質や析出物17の極微細な粒子が空気極触媒層7に付着することを抑制できる。 The gel layer 13 may be provided in the pores of the air electrode 9. Further, the gel layer 13 may be provided in the pores of the air electrode catalyst layer 7. This gel layer 13 may consist of what gelatinized electrolyte solution. This can suppress an increase in ion conduction resistance between the anode and the cathode. By providing the gel layer 13 in the pores of the air electrode 9, it is possible to prevent the electrolyte solution 3 in the electrolytic solution tank 2 from directly flowing into the pores of the air electrode 9. It is possible to suppress leakage of the electrolytic solution 3 via the. In addition, since water contained in the electrolyte 3 in the electrolyte bath 2 can be supplied to the air electrode 9 through the gel layer 13 in the pores, many three-phase interfaces formed in the air electrode 9 are formed. The discharge characteristics of the metal-air battery 30 can be improved. Moreover, since the air electrode 9 can hold | maintain the gel layer 13, it can suppress that the shape of the gel layer 13 deform | transforms with the flow of the electrolyte solution in the electrolyte solution tank 2, or peels. This can increase the effect of suppressing leakage of the electrolyte. Further, by providing the gel layer 13 in the pores of the air electrode 9, it is possible to prevent the electrode active material contained in the electrolytic solution 3 and the extremely fine particles of the precipitate 17 from adhering to the air electrode catalyst layer 7.
 細孔中にゲル層13を形成した空気極9を有する金属空気電池30は、例えば、図5(a)(b)に示した金属空気電池30のように設けることができる。図5(b)は、図5(a)に示した金属空気電池30に含まれる空気極触媒層7の概略断面図である。ゲル層13は、図5(b)のように空気極触媒層7の細孔に設けられている。
 製造方法としては、例えば、まず、ガス拡散層8と空気極触媒層7とを積層した空気極9の空気極触媒層7側の表面上に、ゲル化剤を加えた電解液を塗布し、塗布面の反対の面から吸引することによりゲル化電解液を空気極触媒層7の細孔内に導入する。そして、この空気極9を電解液槽2の側壁に設置する。または、バーコーターなどを用いて、空気極触媒層7の細孔にゲル化剤を練り込み、これを電解液槽2の側壁に設置する。このようにすることで、電解液槽2に電解液3を供給する際に、細孔内で電解液3のゲル化が起こり、ゲル層13が形成された空気極触媒層7を形成することができる。
The metal-air battery 30 having the air electrode 9 in which the gel layer 13 is formed in the pores can be provided, for example, like the metal-air battery 30 shown in FIGS. FIG. 5B is a schematic cross-sectional view of the air electrode catalyst layer 7 included in the metal-air battery 30 shown in FIG. The gel layer 13 is provided in the pores of the air electrode catalyst layer 7 as shown in FIG.
As a manufacturing method, for example, first, an electrolytic solution to which a gelling agent is added is applied on the surface of the air electrode 9 on which the gas diffusion layer 8 and the air electrode catalyst layer 7 are laminated, on the air electrode catalyst layer 7 side, The gelled electrolyte is introduced into the pores of the air electrode catalyst layer 7 by suction from the surface opposite to the coated surface. The air electrode 9 is installed on the side wall of the electrolytic solution tank 2. Alternatively, a gelling agent is kneaded into the pores of the air electrode catalyst layer 7 using a bar coater or the like, and this is installed on the side wall of the electrolytic solution tank 2. By doing in this way, when supplying the electrolyte solution 3 to the electrolyte tank 2, gelation of the electrolyte solution 3 occurs in the pores, and the air electrode catalyst layer 7 in which the gel layer 13 is formed is formed. Can do.
 さらに、図6に示すように、空気極9は、空気極触媒層7と空気極集電体10と撥水層6とが積層された構造を有してもよい。この場合、空気極触媒層7が第1主要面側に配置され、撥水層6が第2主要面側に配置され、空気極集電体10が空気極触媒層7と撥水層6との間に配置されてもよい。一方で、空気触媒層7は、空気極集電体10と撥水層6との間に設けられていることが好ましく、撥水層6と、空気極集電体10との接合性を向上させることができ、空気極9の積層構造の接着性を向上させることができる。
 撥水層6は、多孔性を有しかつ疎水性の表面を有する。また、撥水層6は、空気極触媒層7の大気側又は空気流路側に設けられる。このような構成によれば、撥水層6の細孔を介して空気極触媒層7に酸素ガスを供給することができる。
 また、空気極触媒層7の細孔内にゲル化剤を配置することにより空気極触媒層7の細孔を介した電解液3の漏洩を抑制することができるが、空気極触媒層7のゲルから電解液3が滲み出てきた場合に、撥水層6により電解液3の漏洩を防止することができる。このことにより、金属空気電池の安全性を向上させることができる。
 なお、撥水層6は、省略してもよい。例えば、空気極9が空気極触媒層7と空気極集電体10とから構成されてもよい。このような空気極9は、空気極触媒層7と空気極集電体10とを圧着することにより形成することができる。撥水層6を省略することにより、金属空気電池30の製造コストを低減することができる。また、撥水層6を省略することにより、金属空気電池30の薄型化が可能である。
Further, as shown in FIG. 6, the air electrode 9 may have a structure in which an air electrode catalyst layer 7, an air electrode current collector 10, and a water repellent layer 6 are laminated. In this case, the air electrode catalyst layer 7 is disposed on the first main surface side, the water repellent layer 6 is disposed on the second main surface side, and the air electrode current collector 10 is disposed on the air electrode catalyst layer 7 and the water repellent layer 6. It may be arranged between. On the other hand, the air catalyst layer 7 is preferably provided between the air electrode current collector 10 and the water repellent layer 6, and improves the bondability between the water repellent layer 6 and the air electrode current collector 10. The adhesion of the laminated structure of the air electrode 9 can be improved.
The water repellent layer 6 has porosity and a hydrophobic surface. The water repellent layer 6 is provided on the air side or the air flow path side of the air electrode catalyst layer 7. According to such a configuration, oxygen gas can be supplied to the air electrode catalyst layer 7 through the pores of the water repellent layer 6.
Moreover, by disposing the gelling agent in the pores of the air electrode catalyst layer 7, leakage of the electrolyte solution 3 through the pores of the air electrode catalyst layer 7 can be suppressed. When the electrolytic solution 3 oozes from the gel, the water repellent layer 6 can prevent the electrolytic solution 3 from leaking. As a result, the safety of the metal-air battery can be improved.
The water repellent layer 6 may be omitted. For example, the air electrode 9 may be composed of the air electrode catalyst layer 7 and the air electrode current collector 10. Such an air electrode 9 can be formed by pressure-bonding the air electrode catalyst layer 7 and the air electrode current collector 10. By omitting the water repellent layer 6, the manufacturing cost of the metal-air battery 30 can be reduced. Further, by omitting the water repellent layer 6, the metal-air battery 30 can be thinned.
 撥水層6は、例えば、カーボンブラックなどの電子伝導性物質と、フッ素樹脂などの疎水性の表面を有する物質とを含むことができる。なお、撥水層6は、電子伝導性物質を含まなくてもよい。また、撥水層6は、疎水性の表面を有する物質でコーティングされた電子伝導性物質を含んでもよい。
 撥水層6を構成する電子伝導性物質の材料としては、上述の空気極触媒層7に含まれる電子伝導性物質に使用できる材料を使用することができる。
 疎水性の表面を有する物質としては、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、フッ素化樹脂共重合体であるペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)等のフッ素樹脂;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;アクリル系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリエチレンテレフタラート等のポリエステル系樹脂;ポリウレタン系樹脂;ポリアミド系樹脂;ポリアセタール系樹脂;ポリカーボネート系樹脂;ポリ塩化ビニル等の塩素系樹脂;ポリエーテル系樹脂;ポリフェニレン系樹脂;撥水化処理されたシリコーン樹脂などを挙げることができる。
The water repellent layer 6 can include, for example, an electron conductive material such as carbon black and a material having a hydrophobic surface such as a fluororesin. The water repellent layer 6 may not contain an electron conductive material. Further, the water repellent layer 6 may include an electron conductive material coated with a material having a hydrophobic surface.
As a material of the electron conductive substance constituting the water repellent layer 6, a material that can be used for the electron conductive substance contained in the air electrode catalyst layer 7 can be used.
Examples of substances having a hydrophobic surface include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and perfluoro which is a fluorinated resin copolymer. Alkoxy fluororesin (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), etc. Fluorine resin; Fluorine resin such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); Acrylic resin; Polyolefin resin such as polyethylene and polypropylene; Polyester resin such as polyethylene terephthalate; Polyurethane resin; , And the like water-repellent silicone resin; de resin; polyacetal resin; polycarbonate resins, chlorinated resins such as polyvinyl chloride; polyether resins; polyphenylene-based resin.
 多孔性の撥水層6の形態としては、粒子凝集体、上記高分子からなる発泡体、繊維束、織繊維、不織繊維、あるいはこれらの組み合わせなどであることができる。
 撥水層6には、具体的には、ポリテトラフルオロエチレンからなる多孔質フィルムである日東電工(株)製テミッシュ〔TEMISH(登録商標)〕の「NTF2026A-N06」や「NTF2122A-S06」を使用することができる。
 多孔性の撥水層6の気孔率は、10%以上90%以下であることが好ましく、20%以上80%以下であることがより好ましい。撥水層6の気孔率が90%を超える場合、構造を維持することが困難であり、長期安定性を損なうことがある。一方、撥水層6の気孔率が10%未満である場合、外部の空気の空気極触媒層7への拡散が阻害され、放電特性が低下することがある。撥水層6の気孔率は、撥水層6の容積と重量を測定し、撥水層6の比重を求め、これと素材の比重より、下記式:
 気孔率(%)=〔1-(撥水層の比重/素材比重)〕×100
 により算出することができる。
The form of the porous water repellent layer 6 may be a particle aggregate, a foam made of the above polymer, a fiber bundle, a woven fiber, a non-woven fiber, or a combination thereof.
Specifically, the water-repellent layer 6 includes “NTF2026A-N06” and “NTF2122A-S06” manufactured by Nitto Denko Corporation, which are porous films made of polytetrafluoroethylene (TEMISH (registered trademark)). Can be used.
The porosity of the porous water repellent layer 6 is preferably 10% or more and 90% or less, and more preferably 20% or more and 80% or less. When the porosity of the water repellent layer 6 exceeds 90%, it is difficult to maintain the structure, and long-term stability may be impaired. On the other hand, when the porosity of the water repellent layer 6 is less than 10%, the diffusion of external air to the air electrode catalyst layer 7 may be hindered, and the discharge characteristics may be deteriorated. The porosity of the water-repellent layer 6 is determined by measuring the volume and weight of the water-repellent layer 6 to determine the specific gravity of the water-repellent layer 6.
Porosity (%) = [1- (specific gravity of water repellent layer / material specific gravity)] × 100
Can be calculated.
 撥水層6の膜厚は特に制限されないが、膜厚50μm以上3mm以下とすることが好ましく、100μm以上2mm以下とすることがより好ましい。撥水層6の膜厚が、50μm未満である場合、構造を維持することが困難になり、空気極集電体10から剥離することがある。一方、撥水層6の膜厚が、3mmを超える場合、外部の空気の空気極触媒層7への拡散が阻害されるため、放電特性が著しく低下することがある。
 撥水層6の形成方法として、例えば、電子伝導性物質、フッ素樹脂とを混合撹拌し、得られた混合物を延圧ローラーに通してシート状にして形成することができる。また、撥水層6は、スクリーン印刷、スラリーコート法、水熱合成法、CVD法等により形成されてもよい。
The film thickness of the water repellent layer 6 is not particularly limited, but is preferably 50 μm or more and 3 mm or less, and more preferably 100 μm or more and 2 mm or less. When the film thickness of the water repellent layer 6 is less than 50 μm, it is difficult to maintain the structure, and the water repellent layer 6 may peel from the air electrode current collector 10. On the other hand, when the film thickness of the water repellent layer 6 exceeds 3 mm, the diffusion of external air to the air electrode catalyst layer 7 is hindered, so that the discharge characteristics may be significantly lowered.
As a method for forming the water repellent layer 6, for example, an electron conductive substance and a fluororesin can be mixed and stirred, and the resulting mixture can be formed into a sheet by passing it through a pressure roller. Further, the water repellent layer 6 may be formed by screen printing, slurry coating method, hydrothermal synthesis method, CVD method or the like.
6.金属電極
 金属電極5は、アノードとなる電極であり、アノードの電極活物質である金属を含む。また、金属電極5は、電解液槽2中に取り出し可能に設けられる。
 金属電極5は、例えば、電極活物質である金属を含む金属板であってもよい。また、金属電極5は、例えば、金属電極集電体と金属電極集電体上に設けられた電極活物質層とを有してもよい。
 また、金属電極5又は電極活物質層は、多孔質であってもよい。このことにより、反応表面積を増やすことができ、金属空気電池30の出力特性を向上させることができる。また、反応表面積を増やすことにより、単位表面積あたりの印加電流値を減らすことができ、電極表面上に不動態膜が形成されにくくなる。このため、金属電極5の活性な表面を維持しやすくなる。
 多孔質の電極活物質層は、例えば、金属電極集電体上に、電極活物質である金属の粉と導電材料とバインダーとの混合物を塗布し、プレスを行うことにより形成することができる。導電材料は、電極活物質である金属の粉の表層に不導態膜が形成され導電性が低下した場合でも、電子伝導パスを残すために好ましく用いることができ、アセチレンブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックなどのカーボンブラック、黒鉛、活性炭などの導電性カーボン粒子を用いることができる。また、バインダーとしては耐薬に優れるポリテトラフルオロエチレン(PTFE)を、好ましく用いることができる。
6). Metal electrode The metal electrode 5 is an electrode that serves as an anode, and includes a metal that is an electrode active material of the anode. Moreover, the metal electrode 5 is provided in the electrolyte solution tank 2 so that it can be taken out.
The metal electrode 5 may be, for example, a metal plate containing a metal that is an electrode active material. In addition, the metal electrode 5 may include, for example, a metal electrode current collector and an electrode active material layer provided on the metal electrode current collector.
Further, the metal electrode 5 or the electrode active material layer may be porous. Thereby, the reaction surface area can be increased, and the output characteristics of the metal-air battery 30 can be improved. Further, by increasing the reaction surface area, the applied current value per unit surface area can be reduced, and a passive film is hardly formed on the electrode surface. For this reason, it becomes easy to maintain the active surface of the metal electrode 5.
The porous electrode active material layer can be formed by, for example, applying a mixture of metal powder, which is an electrode active material, a conductive material, and a binder onto a metal electrode current collector and performing pressing. The conductive material can be preferably used to leave an electron conduction path even when a non-conductive film is formed on the surface layer of the metal powder that is the electrode active material and the conductivity is lowered, such as acetylene black, furnace black, channel Carbon black such as black and ketjen black, and conductive carbon particles such as graphite and activated carbon can be used. As the binder, polytetrafluoroethylene (PTFE) having excellent chemical resistance can be preferably used.
 金属電極5に含まれる電極活物質は、アノード反応により金属電極5中に電荷を発生させ金属含有イオンとして電解液に溶解する金属である。このため、金属電極5に含まれる電極活物質はアノード反応の進行に伴い徐々に消費されていく。金属電極5に含まれる電極活物質が少なくなると、金属電極5に発生する電荷が少なくなり金属電極5は使用済みとなる。この使用済みの金属電極5を電解液槽2中から取り出し新たな金属電極5を電解液槽2中に挿入することにより金属空気電池30による放電を続けることができる。
 なお、金属電極5中に発生した電荷は、放電電流として外部出力された後、空気極9におけるカソード反応に利用される。
 また、金属電極5を電解液中に設置すると、自己腐食により水素ガスが発生する場合がある。
The electrode active material contained in the metal electrode 5 is a metal that generates a charge in the metal electrode 5 by an anodic reaction and dissolves in the electrolyte as metal-containing ions. For this reason, the electrode active material contained in the metal electrode 5 is gradually consumed as the anode reaction proceeds. When the electrode active material contained in the metal electrode 5 decreases, the charge generated in the metal electrode 5 decreases and the metal electrode 5 is used. By discharging the used metal electrode 5 from the electrolytic solution tank 2 and inserting a new metal electrode 5 into the electrolytic solution tank 2, the discharge by the metal-air battery 30 can be continued.
The charge generated in the metal electrode 5 is output to the outside as a discharge current and then used for the cathode reaction in the air electrode 9.
Further, when the metal electrode 5 is installed in the electrolytic solution, hydrogen gas may be generated due to self-corrosion.
 ゲル層13’を電解液槽2に収容した電解液3の液面上に設けた場合、金属電極5は、液面上のゲル層13’に接触するように設けることができる。また、ゲル層13’は、電解液槽2に収容した電解液3の液面を覆うように設けることができる。このように、ゲル層13’及び金属電極5を設けることにより、金属電極5を電解液槽2内から抜き出す際に、使用済みの金属電極5の表面に付着した電解液3をゲル層13’により拭い取ることができる。このことにより、電解液槽2から取り出した使用済みの金属電極5の表面に付着した電解液の量を少なくすることができ、取り出した金属電極5から電解液が滴り落ちることを抑制することができる。この結果、金属電極5の交換の際に電解液が外部に漏洩することを抑制することができるので、電解液槽2内の電解液3量をほとんど減らすことなく電解液補充頻度を減らすことができ、また、交換作業時の金属空気電池30の安全性を向上させることができる。また、回収した使用済みの金属電極5の運搬作業の安全性も向上させることができる。ゲル層13’は金属電極5交換の際に、金属電極5に少量付着することがあるが、ゲル層13’が水をゲル化したものからなるときは、安全性が更に高いといえる。
 また、使用済みの金属電極5の表面に付着した電解液の量を少なくすることにより、回収した金属電極5の腐食を抑えることができる。また、回収した金属電極5が重くなることを抑制することができ、運搬費用などを低減することができる。
 また、ゲル層13’は、収容した電解液3の液面の実質的すべてを覆うように設けることもできる。金属電極5の自己腐食により水素ガスが発生する場合があるが、水素ガスはゲル層13’を時間をかけて透過するため、電解液槽2内に水素ガスが蓄積されることはないと考えられる。
 また、ゲル層13’は、膜状とすることができる。このことにより、金属電極5を電解液槽2内から抜き出す際または電解液槽2内に挿入する際に金属電極5の一部がゲル層13’に捕らわれ脱離することを抑制することができる。
When the gel layer 13 ′ is provided on the liquid surface of the electrolytic solution 3 accommodated in the electrolytic solution tank 2, the metal electrode 5 can be provided in contact with the gel layer 13 ′ on the liquid surface. Moreover, gel layer 13 'can be provided so that the liquid level of the electrolyte solution 3 accommodated in the electrolyte solution tank 2 may be covered. Thus, by providing the gel layer 13 ′ and the metal electrode 5, when the metal electrode 5 is extracted from the electrolytic solution tank 2, the electrolyte solution 3 attached to the surface of the used metal electrode 5 is removed from the gel layer 13 ′. Can be wiped off. As a result, the amount of the electrolytic solution adhering to the surface of the used metal electrode 5 taken out from the electrolytic solution tank 2 can be reduced, and the electrolytic solution can be prevented from dripping from the taken out metal electrode 5. it can. As a result, the electrolyte solution can be prevented from leaking to the outside when the metal electrode 5 is replaced, so that the electrolyte replenishment frequency can be reduced without substantially reducing the amount of the electrolyte solution 3 in the electrolyte bath 2. In addition, the safety of the metal-air battery 30 at the time of replacement work can be improved. Moreover, the safety | security of the conveyance operation | work of the collect | recovered used metal electrode 5 can also be improved. The gel layer 13 ′ may adhere to the metal electrode 5 in a small amount when the metal electrode 5 is replaced. However, when the gel layer 13 ′ is made of water gelled, it can be said that the safety is even higher.
Further, by reducing the amount of the electrolytic solution adhering to the surface of the used metal electrode 5, the corrosion of the recovered metal electrode 5 can be suppressed. Moreover, it can suppress that the collect | recovered metal electrode 5 becomes heavy, and can reduce conveyance expense.
Further, the gel layer 13 ′ can be provided so as to cover substantially all of the liquid surface of the accommodated electrolytic solution 3. Although hydrogen gas may be generated due to self-corrosion of the metal electrode 5, the hydrogen gas permeates through the gel layer 13 ′ over time, so that hydrogen gas is not accumulated in the electrolytic solution tank 2. It is done.
Further, the gel layer 13 ′ can be formed into a film shape. Accordingly, when the metal electrode 5 is extracted from the electrolytic solution tank 2 or inserted into the electrolytic solution tank 2, a part of the metal electrode 5 can be suppressed from being trapped by the gel layer 13 ′ and detached. .
 また、電解液槽2内の電解液3の液面上にゲル層13’を設けることにより、電解液3の蒸散・吸湿、また二酸化炭素との反応による劣化を抑えることができ、電解液3の損失、電解液3の濃度変化を抑制することができる。例えば、電解液3に用いられる高濃度のKOH水溶液は環境湿度が高いと吸湿するが、ゲル化したKOH水溶液(ゲル層13)では吸湿量が少ない。このため、電解液槽2内の電解液3の液面上にゲル層13’を設けることにより、電解液3の吸湿を抑制することができ、電解液3の濃度変化を抑制することができる。この効果は、ゲル層13’に水又は低濃度の電解液をゲル化したものを用いる場合に効果が大きい。
 また、電解液3に用いられるKOH水溶液が大気中の二酸化炭素と反応し炭酸塩として析出するのを抑制することができる。これにより電解液3の劣化、もしくは濃度変化を防ぐことができる。このようにゲル層13’により、電解液3が大気の影響を受けにくく、金属空気電池30の出力を安定させることができる。
 また、液面上にゲル層13’を設けることにより、振動による電解液3の液面の揺れを小さくすることができる。このことにより、電解液3の液面の揺れによる電解液3の漏洩を抑制することができ、金属空気電池30の安全性を向上させることができる。
Moreover, by providing the gel layer 13 'on the liquid surface of the electrolytic solution 3 in the electrolytic solution tank 2, it is possible to suppress the transpiration and moisture absorption of the electrolytic solution 3 and the deterioration due to the reaction with carbon dioxide. Loss and a change in the concentration of the electrolytic solution 3 can be suppressed. For example, a high-concentration KOH aqueous solution used for the electrolytic solution 3 absorbs moisture when the environmental humidity is high, but the gelled KOH aqueous solution (gel layer 13) has a small amount of moisture absorption. For this reason, by providing gel layer 13 'on the liquid level of the electrolyte solution 3 in the electrolyte tank 2, the moisture absorption of the electrolyte solution 3 can be suppressed and the change in the concentration of the electrolyte solution 3 can be suppressed. . This effect is significant when the gel layer 13 ′ is a gel of water or a low concentration electrolyte.
Moreover, it can suppress that KOH aqueous solution used for the electrolyte solution 3 reacts with the carbon dioxide in air | atmosphere, and precipitates as carbonate. Thereby, deterioration or concentration change of the electrolytic solution 3 can be prevented. Thus, by the gel layer 13 ′, the electrolytic solution 3 is hardly affected by the atmosphere, and the output of the metal-air battery 30 can be stabilized.
Further, by providing the gel layer 13 ′ on the liquid surface, the fluctuation of the liquid surface of the electrolytic solution 3 due to vibration can be reduced. As a result, leakage of the electrolytic solution 3 due to the fluctuation of the liquid surface of the electrolytic solution 3 can be suppressed, and the safety of the metal-air battery 30 can be improved.
 また、電解液槽2内の電解液3の液面上にゲル層13’を設けることにより、電解液3の液面と金属電極5との間にメニスカスが形成されることを抑制することができる。これにより、金属電極5が部分的に減肉し金属電極5の強度が落ちることを抑制することができ、また電気的接点など他部品の腐食を抑制することができ、更には電解液3の損失を抑えることができる。電解液3の液面上にゲル層13’を設けていない場合、電解液3は親水性が極めて高いため、液面に凹状のメニスカスが形成され、金属電極5表面を伝って電解液が広がる。このため、金属電極5と電解液3の液面とが接触する部分には、メニスカスの端部が形成され、このメニスカス端部の電解液や、更に金属電極5表面に広がった電解液には空気中の酸素ガスが溶けやすく、金属電極5の自己腐食が進みやすい。このため、金属電極5の電解液の液面と接触する部分だけ減肉しやすく、強度が落ちやすい。また、金属電極5を伝って広がった電解液3は、端子など他部品に達すると腐食の原因ともなるし、電解液3の損失ともなる。液面上にゲル層13’を設けることにより、ゲル層13’の高い保水性によりこのようなメニスカスの形成、または金属電極5表面への電解液3が広がることを抑制することができる。 Further, by providing the gel layer 13 ′ on the liquid surface of the electrolytic solution 3 in the electrolytic solution tank 2, it is possible to suppress the formation of a meniscus between the liquid surface of the electrolytic solution 3 and the metal electrode 5. it can. Thereby, it can suppress that the metal electrode 5 partially thins and the intensity | strength of the metal electrode 5 falls, can suppress corrosion of other components, such as an electrical contact, Furthermore, the electrolyte solution 3 Loss can be suppressed. When the gel layer 13 ′ is not provided on the liquid surface of the electrolytic solution 3, the electrolytic solution 3 has extremely high hydrophilicity. Therefore, a concave meniscus is formed on the liquid surface, and the electrolytic solution spreads along the surface of the metal electrode 5. . For this reason, an end portion of the meniscus is formed at a portion where the metal electrode 5 and the liquid surface of the electrolyte solution 3 are in contact with each other. The electrolyte solution at the meniscus end portion and the electrolyte solution further spreading on the surface of the metal electrode 5 are formed. The oxygen gas in the air is easily dissolved, and the self-corrosion of the metal electrode 5 is likely to proceed. For this reason, only the part which contacts the liquid level of the electrolyte solution of the metal electrode 5 tends to be thinned, and the strength tends to decrease. Further, the electrolytic solution 3 that spreads through the metal electrode 5 causes corrosion or loss of the electrolytic solution 3 when it reaches other parts such as terminals. By providing the gel layer 13 ′ on the liquid surface, it is possible to suppress the formation of such a meniscus or the spread of the electrolytic solution 3 on the surface of the metal electrode 5 due to the high water retention of the gel layer 13 ′.
 電解液3の液面上に設けるゲル層13’は、イオン伝導を担わないため、電解液をゲル化したものに限定されず、例えば水をゲル化したものであってもよい。水は純水に限らず、蒸発防止剤などが含まれても良いし、電解液と反応するようなものでなければ特に限定されない。
 なお、一般的に電解液に使用される高濃度KOH水溶液は密度が1.3~1.5と高い。それに対し、水や電解液をゲル化したものは、ゲル化によって膨張するため、密度が低い。このため、ゲル層13は液面に浮き液面上に保持・固定することができる。
 電解液3の液面上のゲル層13’は、例えば、外部容器に溜めた電解液3又は水にゲル化剤を加え、外部容器内の電解液3又は水をゲル化しゲル層13’を形成し、この形成したゲル層13’を電解液3の液面上に浮かべることにより形成することができる。
 なお、金属電極5を電解液槽2中に挿入する際、ゲル層13’が金属電極5の表面に付着することがあるが、ゲル層13’の浮力により、ゲル層13’はすぐに金属電極5から剥がれ、液面上に浮上する。また、ゲル層13’が電解液をゲル化したものであれば、ゲル層13’が金属電極5に付着してもイオン伝導を妨げないため、放電可能である。
 また、ゲル層13’の端は、筐体1に固定されてもよい。このことにより、金属電極5の交換の際にゲル層13’の設置箇所が変わることを抑制することができる。
The gel layer 13 ′ provided on the liquid surface of the electrolytic solution 3 does not bear ionic conduction, and thus is not limited to a gelled electrolyte solution, and may be a gelled water, for example. The water is not limited to pure water, and may include an evaporation inhibitor and the like, and is not particularly limited as long as it does not react with the electrolytic solution.
In general, a high-concentration KOH aqueous solution used for an electrolytic solution has a high density of 1.3 to 1.5. On the other hand, since water and electrolyte solution gelled expand by gelation, the density is low. For this reason, the gel layer 13 floats on the liquid surface and can be held and fixed on the liquid surface.
The gel layer 13 ′ on the liquid surface of the electrolytic solution 3 is formed by, for example, adding a gelling agent to the electrolytic solution 3 or water stored in the external container to gel the electrolytic solution 3 or water in the external container to form the gel layer 13 ′. It can be formed by floating the formed gel layer 13 ′ on the liquid surface of the electrolytic solution 3.
Note that when the metal electrode 5 is inserted into the electrolytic solution tank 2, the gel layer 13 'may adhere to the surface of the metal electrode 5, but the gel layer 13' immediately becomes a metal due to the buoyancy of the gel layer 13 '. It peels off from the electrode 5 and floats on the liquid surface. Moreover, if gel layer 13 'is what gelatinized electrolyte solution, even if gel layer 13' adheres to the metal electrode 5, since ion conduction is not prevented, it can discharge.
Further, the end of the gel layer 13 ′ may be fixed to the housing 1. As a result, it is possible to prevent the installation location of the gel layer 13 ′ from changing when the metal electrode 5 is replaced.
 電解液槽2に収容した電解液3の液面上に設けたゲル層13’は、例えば、図7に示した金属空気電池30のように、ゲル層13’を電解液槽2に収容した電解液3の液面上に浮かべるように設けることができる。
 また、図8に示した金属空気電池30のように、電解液3の液面上と空気極9上の両方にゲル層13、13’を設けてもよい。また、ゲル層13は、電解液3の液面上と多孔質体32中の両方、又は電解液3の液面上と空気極9中の両方に設けられてもよい。
 このことにより、空気極9の細孔を介した電解液の漏洩と、金属電極5の交換時の電解液の漏洩の両方を抑制することができる。
 また、図7、8に示した金属空気電池30のように、電解液3の排出口15がゲル層13’の位置よりも低い位置に維持されるように液面が調整することができる。このことにより、電解液3を循環させてもゲル層13’が排出口15に流入することを抑制することができる。
The gel layer 13 ′ provided on the liquid surface of the electrolytic solution 3 accommodated in the electrolytic solution tank 2 contains the gel layer 13 ′ in the electrolytic solution tank 2, for example, like the metal-air battery 30 shown in FIG. 7. It can be provided so as to float on the liquid surface of the electrolytic solution 3.
Moreover, you may provide the gel layers 13 and 13 'on both the liquid level of the electrolyte solution 3 and the air electrode 9, like the metal air battery 30 shown in FIG. The gel layer 13 may be provided both on the liquid surface of the electrolytic solution 3 and in the porous body 32, or both on the liquid surface of the electrolytic solution 3 and in the air electrode 9.
Thereby, both leakage of the electrolyte solution through the pores of the air electrode 9 and leakage of the electrolyte solution when the metal electrode 5 is replaced can be suppressed.
Moreover, like the metal-air battery 30 shown in FIGS. 7 and 8, the liquid level can be adjusted so that the discharge port 15 of the electrolytic solution 3 is maintained at a position lower than the position of the gel layer 13 ′. Accordingly, it is possible to suppress the gel layer 13 ′ from flowing into the discharge port 15 even when the electrolytic solution 3 is circulated.
 アノード反応により電解液3中に生じた金属含有イオンは、その濃度が飽和濃度を超えると電解液3中に金属酸化物または金属水酸化物の微粒子など(析出物17)として析出する場合がある。また、金属含有イオンの濃度が不動態膜形成濃度に達すると、金属含有イオンは、金属電極5の表面上に金属酸化物または金属水酸化物の不動態膜として析出する場合がある。従って、析出物17は、電解液中に浮遊する又は電解液槽2の底に沈降する微粒子として析出する場合と、金属電極5の表面上に付着した不動態膜として析出する場合とがある。 When the concentration of the metal-containing ions generated in the electrolytic solution 3 by the anodic reaction exceeds the saturation concentration, the metal-containing ions may be deposited in the electrolytic solution 3 as fine particles of metal oxide or metal hydroxide (precipitate 17). . Further, when the concentration of the metal-containing ions reaches the passive film forming concentration, the metal-containing ions may be deposited on the surface of the metal electrode 5 as a passive film of metal oxide or metal hydroxide. Therefore, the precipitate 17 may be deposited as fine particles floating in the electrolytic solution or settling on the bottom of the electrolytic solution tank 2, or may be deposited as a passive film attached on the surface of the metal electrode 5.
 析出物17が微粒子として析出し、この微粒子が電解液3中に過剰に存在すると、多孔性の空気極9の細孔に析出物17の微粒子が付着することで酸素ガスの拡散が妨げられたり、多孔質体32や、空気極触媒層9の細孔に析出物17の微粒子が付着することで、OH-イオンのイオン伝導パスが妨げられたりする結果、金属空気電池30の出力が低下する。このため、電解液中に析出物17の微粒子が蓄積すると、電解液3中からこの微粒子を除去する必要がある。
 析出物17が不動態膜として析出し、この不動態膜が金属電極5の表面の大部分を覆うと、金属電極5の表面におけるアノード反応は阻害され金属空気電池30の出力が低下する。このため、不動態膜が表面を覆った金属電極5を電解液槽2中から除去し新たな金属電極5を電解液槽2中に挿入することにより金属空気電池30による放電を続けることができる。
If the precipitate 17 is deposited as fine particles and the fine particles are excessively present in the electrolyte solution 3, the fine particles of the precipitate 17 adhere to the pores of the porous air electrode 9, thereby preventing oxygen gas diffusion. As a result of the fine particles of the precipitates 17 adhering to the pores of the porous body 32 and the air electrode catalyst layer 9, the ion conduction path of OH ions is hindered, resulting in a decrease in the output of the metal-air battery 30. . For this reason, when the fine particles of the precipitate 17 accumulate in the electrolytic solution, it is necessary to remove the fine particles from the electrolytic solution 3.
When the precipitate 17 is deposited as a passive film, and this passive film covers most of the surface of the metal electrode 5, the anode reaction on the surface of the metal electrode 5 is inhibited, and the output of the metal-air battery 30 decreases. For this reason, it is possible to continue the discharge by the metal-air battery 30 by removing the metal electrode 5 covered with the passive film from the electrolyte bath 2 and inserting a new metal electrode 5 into the electrolyte bath 2. .
 例えば、亜鉛空気電池の場合、電極活物質は金属亜鉛であり、電解液中には水酸化亜鉛または酸化亜鉛が析出する。アルミニウム空気電池の場合、電極活物質は金属アルミニウムであり、電解液中には水酸化アルミニウムが析出する。鉄空気電池の場合、電極活物質は金属鉄であり、電解液中には酸化水酸化鉄または酸化鉄が析出する。マグネシウム空気電池の場合、電極活物質は金属マグネシウムであり、電解液中には水酸化マグネシウムが析出する。
 また、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池の場合、電極活物質はそれぞれ、金属リチウム、金属ナトリウム、金属カルシウムであり、電解液中にはこれらの金属の酸化物、水酸化物などが析出する。なお、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池の場合、金属電極5と電解液との間に固体電解質膜を有してもよい。このことにより、電極活物質が電解液により腐食されることを抑制することができる。また、この場合、電極活物質は固体電解質膜をイオン伝導した後電解液に溶解する。
 なお、電極活物質は、これらの例には限定されず、金属空気電池となるものであればよい。また、金属電極5に含まれる電極活物質は、上記の例では一種の金属元素からなる金属を挙げたが、金属電極5に含まれる電極活物質は合金であってもよい。
For example, in the case of a zinc-air battery, the electrode active material is metallic zinc, and zinc hydroxide or zinc oxide is deposited in the electrolytic solution. In the case of an aluminum air battery, the electrode active material is metallic aluminum, and aluminum hydroxide is deposited in the electrolytic solution. In the case of an iron-air battery, the electrode active material is metallic iron, and iron oxide hydroxide or iron oxide is deposited in the electrolytic solution. In the case of a magnesium air battery, the electrode active material is metallic magnesium, and magnesium hydroxide is deposited in the electrolyte.
In the case of lithium-air batteries, sodium-air batteries, and calcium-air batteries, the electrode active materials are metallic lithium, metallic sodium, and metallic calcium, respectively, and oxides and hydroxides of these metals are contained in the electrolyte. Precipitate. In the case of a lithium air battery, a sodium air battery, or a calcium air battery, a solid electrolyte membrane may be provided between the metal electrode 5 and the electrolytic solution. Thereby, it can suppress that an electrode active material is corroded by electrolyte solution. In this case, the electrode active material is dissolved in the electrolytic solution after ion conduction through the solid electrolyte membrane.
In addition, an electrode active material is not limited to these examples, What is necessary is just a metal air battery. Moreover, although the electrode active material contained in the metal electrode 5 mentioned the metal which consists of a kind of metal element in said example, the electrode active material contained in the metal electrode 5 may be an alloy.
 金属電極集電体は、導電性を有する。また、金属電極集電体の形状は板状、または板の厚み方向に貫通した孔が設けられた形状、またはエキスパンドメタルやメッシュが好ましい。また、この金属電極集電体は、例えば、電解液に対して耐食性を有する金属により形成することができる。金属電極集電体の材料は、例えば、ニッケル、金、銀、銅、ステンレスなどである。また、金属電極集電体は、ニッケルめっき処理、金めっき処理、銀めっき処理、銅めっき処理された導電性基材などであってもよい。この導電性基材には、鉄、ニッケル、ステンレスなどを用いることができる。
 このことにより、アノード反応により金属電極5に生じた電荷を金属電極集電体により集電することができ、発生させた電荷を外部回路に出力することができる。金属電極集電体の主要面上への電極活物質層の固定は、例えば、電極活物質である金属の粒子や塊を金属電極集電体の表面に押し付けて固定してもよく、金属電極集電体上にめっき法などにより金属を析出させてもよい。なお、金属電極集電体の形状に関して、めっき法で電極活物質を析出させる場合には導電性の観点で板形状が好ましく、金属の粒子や塊を固定させる場合には、粒子や塊の脱落を防止する観点で板に貫通孔が設けられたもの、またはエキスパンドメタルやメッシュが好ましい。
The metal electrode current collector has conductivity. Further, the shape of the metal electrode current collector is preferably a plate shape, a shape provided with a hole penetrating in the thickness direction of the plate, an expanded metal or a mesh. In addition, the metal electrode current collector can be formed of, for example, a metal having corrosion resistance against the electrolytic solution. The material of the metal electrode current collector is, for example, nickel, gold, silver, copper, stainless steel or the like. The metal electrode current collector may be a nickel-plated, gold-plated, silver-plated, or copper-plated conductive substrate. For this conductive substrate, iron, nickel, stainless steel, or the like can be used.
As a result, the charge generated in the metal electrode 5 by the anode reaction can be collected by the metal electrode current collector, and the generated charge can be output to an external circuit. The electrode active material layer may be fixed on the main surface of the metal electrode current collector, for example, by pressing metal particles or lumps that are electrode active materials against the surface of the metal electrode current collector. A metal may be deposited on the current collector by plating or the like. Regarding the shape of the metal electrode current collector, the plate shape is preferable from the viewpoint of conductivity when the electrode active material is deposited by plating, and when the metal particles or lump is fixed, the particles or lump is dropped. From the viewpoint of preventing this, a plate provided with a through hole, or an expanded metal or mesh is preferable.
 金属電極5は、金属電極支持体と共に金属電極ホルダーを構成することができる。金属電極ホルダーは、金属電極5を電解液槽2内に挿入することができ、使用済みの金属電極5を電解液槽2内から抜き出せるように設けられる。このことにより、金属空気電池30に電極活物質を供給することができる。
 金属電極支持体は、金属空気電池本体に設けられた電極挿入口の蓋となるように設けることができる。このことにより、電解液槽2に金属電極5を挿入すると共に電極挿入口に蓋をすることができ、大気中の成分と電解液3とが反応することを抑制することができる。
The metal electrode 5 can constitute a metal electrode holder together with the metal electrode support. The metal electrode holder is provided so that the metal electrode 5 can be inserted into the electrolytic solution tank 2 and the used metal electrode 5 can be extracted from the electrolytic solution tank 2. As a result, the electrode active material can be supplied to the metal-air battery 30.
A metal electrode support body can be provided so that it may become a lid | cover of the electrode insertion port provided in the metal air battery main body. Thus, the metal electrode 5 can be inserted into the electrolytic solution tank 2 and the electrode insertion port can be covered, and the reaction between the components in the atmosphere and the electrolytic solution 3 can be suppressed.
放電試験1
 実施例1として、図1に示した金属空気電池30のような4つのセル4を有する亜鉛空気電池を作製し、放電試験を行った。なお、作製した亜鉛空気電池は、各セルの側面は結合していない。また、空気流路12は設けてなく、空気極集電体10の開口を大気に開放した。
 金属電極5である亜鉛電極には多孔質電極を用いた。多孔質化は、反応表面積を増やすため図られることが多い。反応表面積を増やすことによって、単位面積あたりの印加電流値を減らすことが出来るので、電極表面に不動態膜が形成しにくくなり、活性な表面を維持しやすい。
Discharge test 1
As Example 1, a zinc-air battery having four cells 4 such as the metal-air battery 30 shown in FIG. 1 was produced and a discharge test was performed. In addition, as for the produced zinc air battery, the side surface of each cell is not couple | bonded. Moreover, the air flow path 12 was not provided, but the opening of the air electrode current collector 10 was opened to the atmosphere.
A porous electrode was used as the zinc electrode which is the metal electrode 5. Porous formation is often attempted to increase the reaction surface area. By increasing the reaction surface area, the applied current value per unit area can be reduced, so that it is difficult to form a passive film on the electrode surface, and it is easy to maintain an active surface.
 亜鉛電極は、SUS304の支持体(70×50mm、厚さ1mm)(金属電極集電体)に、亜鉛粉とバインダーとしてのPTFE分散液を混合したものを塗布し、プレスによって亜鉛多孔質電極(電極活物質層)を成形した(多孔質電極の面積は50×50mmで、厚みは20mm)。なお、亜鉛電極は、亜鉛空気電池本体を形成した後に電解液槽2内に挿入した。
 開口を複数有する空気極集電体10と、空気極9(ガス拡散層8と空気極触媒層7を有する)と、ゲル層13がこの順に積層された積層体を形成し、この積層体と空気極集電体10とを筺体1を兼ねる電解液槽2の対向する側壁部にそれぞれ固定し、単セル本体を形成した。
 空気極9の大きさは50×50mm、厚みは約300μmであり、電解液槽2の深さは80mm、電解液槽2(筐体1)の材質はABS製とした。
The zinc electrode is a SUS304 support (70 x 50 mm, thickness 1 mm) (metal electrode current collector) coated with a mixture of zinc powder and PTFE dispersion as a binder. Electrode active material layer) was formed (the area of the porous electrode was 50 × 50 mm and the thickness was 20 mm). The zinc electrode was inserted into the electrolyte bath 2 after forming the zinc-air battery body.
An air electrode current collector 10 having a plurality of openings, an air electrode 9 (having a gas diffusion layer 8 and an air electrode catalyst layer 7), and a gel layer 13 are formed in this order. The air electrode current collector 10 was fixed to the opposite side wall portions of the electrolytic solution tank 2 also serving as the casing 1 to form a single cell main body.
The size of the air electrode 9 is 50 × 50 mm, the thickness is about 300 μm, the depth of the electrolytic solution tank 2 is 80 mm, and the material of the electrolytic solution tank 2 (housing 1) is made of ABS.
 空気極集電体10の材料は、鉄製の板をNiメッキしたものを用いた。空気極集電体10には、直径1mmの開口が複数設けられており、その開口率は50%である。また、空気極集電体10の厚みは1mmである。ガス拡散層8には、SGL社製35BCを用いた。35BCはカーボン繊維とマイクロポーラスレイヤーからなっており、マイクロポーラスレイヤーはカーボンブラックと撥水樹脂(PTFE)からなる層である。撥水樹脂は電解液の漏洩を防ぐために必要であり、気液分離として機能する。すなわち、電解液が電解液槽2から漏洩するのを防ぎ、かつ空気極触媒層7への酸素の供給を妨げない。空気極触媒層7は、田中貴金属製のPt担持カーボン、撥水樹脂(PTFE)を含有する。反応表面積をふやすため、Ptは表面積の大きいカーボン上に微粒子として担持されている。空気極触媒層7に含まれる撥水樹脂(PTFE)もガス拡散層同様、電解液の漏洩を防ぐために混合されている。触媒担持量は0.5mg/cm2であり、空気極触媒層7の厚みは30μm程度であった。 The material of the air electrode current collector 10 was an iron plate plated with Ni. The air electrode current collector 10 is provided with a plurality of openings having a diameter of 1 mm, and the opening ratio is 50%. The thickness of the air electrode current collector 10 is 1 mm. For the gas diffusion layer 8, 35BC manufactured by SGL was used. 35BC consists of carbon fiber and a microporous layer, and the microporous layer is a layer made of carbon black and water repellent resin (PTFE). The water-repellent resin is necessary for preventing leakage of the electrolytic solution, and functions as gas-liquid separation. That is, the electrolytic solution is prevented from leaking from the electrolytic solution tank 2, and the supply of oxygen to the air electrode catalyst layer 7 is not hindered. The air electrode catalyst layer 7 contains Tanaka Kikinzoku Pt-supported carbon and water-repellent resin (PTFE). In order to increase the reaction surface area, Pt is supported as fine particles on carbon having a large surface area. Similar to the gas diffusion layer, the water repellent resin (PTFE) contained in the air electrode catalyst layer 7 is also mixed to prevent leakage of the electrolyte. The catalyst loading was 0.5 mg / cm 2 and the thickness of the air electrode catalyst layer 7 was about 30 μm.
 空気極触媒層7の金属電極5側の表面は図1のようにゲル層13に覆われる。このゲル層13は、ポリアクリル酸カリウム(アルドリッチ製♯435325、粉末状)を空気極触媒層7上に、コットンを使って塗り、この上に7mol/cm3のKOH電解液をスプレーを用いて散布し形成した。このとき、電解液の散布量はポリアクリル酸重量の約10倍とした。空気極9を3日放置後、ゲル層13の気泡を真空引きして脱泡し、その後、プレスして多孔質である空気極触媒層7とゲル層13をよく絡ませることによりゲル層13を作製した。ゲル層13の厚みは約2mmであった。 The surface of the air electrode catalyst layer 7 on the metal electrode 5 side is covered with the gel layer 13 as shown in FIG. The gel layer 13 is coated with potassium polyacrylate (Aldrich # 435325, powder) on the air electrode catalyst layer 7 using cotton, and a 7 mol / cm 3 KOH electrolyte solution is sprayed thereon. Scattered and formed. At this time, the spray amount of the electrolyte was about 10 times the weight of polyacrylic acid. After leaving the air electrode 9 for 3 days, the air bubbles in the gel layer 13 are evacuated and degassed, and then the air electrode catalyst layer 7 and the gel layer 13 which are porous are entangled with each other by pressing well. Was made. The thickness of the gel layer 13 was about 2 mm.
 上記のように形成した単セル本体を4つ直列に配線し、亜鉛空気電池本体を形成した。電解液3には7mol/dm3のKOH水溶液を用い、400mL/minの流速で図1のように各セル4a~4dの下から上へ流した。そして、各セル4の電解液室にそれぞれ亜鉛電極を挿入し亜鉛空気電池を完成させた。なお、亜鉛電極の反応部(50×50mm)は空気極9と対向しており、略平行に挿入されている。 Four unit cell bodies formed as described above were wired in series to form a zinc-air battery body. As the electrolytic solution 3, a 7 mol / dm 3 KOH aqueous solution was used and flowed from the bottom to the top of each cell 4a to 4d as shown in FIG. 1 at a flow rate of 400 mL / min. And the zinc electrode was inserted in the electrolyte chamber of each cell 4, respectively, and the zinc air battery was completed. The reaction part (50 × 50 mm) of the zinc electrode faces the air electrode 9 and is inserted substantially in parallel.
 また、亜鉛電極を挿入する際に、亜鉛粉の脱落は確認されることなかった。亜鉛電極挿入後、すぐに起電力が生じ(単セル4の開回路電圧は約1.6V)、放電可能な状態となり、亜鉛空気電池の起動性は良好であった。なお、亜鉛電極はゲル層13と触れておらず、電解液3中にあった。各セル4から出た電解液は、図1のように沈殿槽18に入り、電解液中に析出した亜鉛酸化物(析出物17)が自然沈殿し回収できるようにされている。 Also, when inserting the zinc electrode, the zinc powder was not removed. Immediately after the zinc electrode was inserted, an electromotive force was generated (the open circuit voltage of the single cell 4 was about 1.6 V), and the battery was in a dischargeable state. The start-up property of the zinc-air battery was good. The zinc electrode was not in contact with the gel layer 13 and was in the electrolytic solution 3. The electrolyte solution discharged from each cell 4 enters the precipitation tank 18 as shown in FIG. 1, and zinc oxide (precipitate 17) deposited in the electrolyte solution is naturally precipitated and collected.
 単セルでみると、亜鉛電極は空気極9に両面とも対向しているので、反応に寄与する面積は25cm2×2で50cm2である(空気極9に対向していない亜鉛電極の部位は反応に寄与しないとする)。放電時の負荷電流は1.5A(亜鉛電極の単位面積あたりの電流は30mA/cm2に相当)とし、定電流負荷試験(放電試験)を行った。放電電圧は4.80V(単セルあたり1.20V程度)で安定し、4時間発電することができた。
 上記放電試験後、沈殿槽18内の亜鉛酸化物を回収し、電解液と亜鉛電極を新しいものに差換え、繰り返し放電試験を行った。1日1回の放電試験を30日繰り返したが、空気極9の細孔を介した電解液の漏洩は確認されなかった。また、放電試験がすべて終了した後に空気極9を取り出し、放電試験前との重量を比較したところ重量変化は無視できる程度であった。
In a single cell, since the zinc electrode faces both sides of the air electrode 9, the area contributing to the reaction is 25 cm 2 × 2 and 50 cm 2 (the part of the zinc electrode not facing the air electrode 9 is Not to contribute to the reaction). The load current during discharge was 1.5 A (the current per unit area of the zinc electrode was equivalent to 30 mA / cm 2 ), and a constant current load test (discharge test) was performed. The discharge voltage was stable at 4.80V (about 1.20V per single cell), and power generation was possible for 4 hours.
After the discharge test, the zinc oxide in the precipitation tank 18 was recovered, the electrolyte solution and the zinc electrode were replaced with new ones, and a repeated discharge test was performed. The discharge test once a day was repeated for 30 days, but no leakage of the electrolyte solution through the pores of the air electrode 9 was confirmed. Further, when all the discharge tests were completed, the air electrode 9 was taken out and compared with the weight before the discharge test. As a result, the weight change was negligible.
 次に、比較例1として、ゲル層13を設けていない亜鉛空気電池を作製し、放電試験を行った。比較例1の亜鉛空気電池では、ゲル層13を設けていない。その他の構成および試験方法は、矛盾がない限り、実施例1の亜鉛空気電池と同じである。
 比較例1の亜鉛空気電池では、4回目の放電の際に、空気極9を介した電解液の漏洩が確認された。また、放電後に空気極9を取り出したところ、表面に亜鉛酸化物が固着・付着していた(XRDより、ZnOの回折ピークを検出した)。取り出した空気極9の重量を測定すると、発電前の空気極9の重量より増加しており、放電反応で電解液中に溶解した亜鉛の約5重量%が空気極9に固着・付着していた。
 更に比較例1の亜鉛空気電池では、放電電圧は4.59V(単セルあたり1.15V程度)と低かった。これには2つの要因が考えられる。
 1つは比較例1の亜鉛空気電池のほうがインピーダンスが高かったことで、空気極9への亜鉛酸化物付着が影響しているものと推測される。もう1つは水素ガスの影響で、実施例1・比較例1ともに亜鉛電極から水素ガスの発生が確認されたが、比較例1では電解液に溶解した水素ガス、または空気極9に付着した水素ガスが空気極9で反応し、実施例1よりも電圧が低かったと推測される(空気極9で水素ガスの酸化と、空気の還元が起こり内部電池を構成すると考えられ、これが原因で電圧が下がると考えられる。実施例1ではゲル層13がフィルターとなって亜鉛電極で生成する水素ガスの影響がほとんどないと推測される)。
Next, as Comparative Example 1, a zinc-air battery not provided with the gel layer 13 was produced and a discharge test was performed. In the zinc-air battery of Comparative Example 1, the gel layer 13 is not provided. Other configurations and test methods are the same as those of the zinc-air battery of Example 1 unless there is a contradiction.
In the zinc-air battery of Comparative Example 1, leakage of the electrolyte solution through the air electrode 9 was confirmed during the fourth discharge. Further, when the air electrode 9 was taken out after discharge, zinc oxide was fixed and adhered on the surface (a ZnO diffraction peak was detected from XRD). When the weight of the air electrode 9 taken out was measured, it increased from the weight of the air electrode 9 before power generation, and about 5% by weight of zinc dissolved in the electrolytic solution by the discharge reaction was fixed and adhered to the air electrode 9. It was.
Furthermore, in the zinc-air battery of Comparative Example 1, the discharge voltage was as low as 4.59 V (about 1.15 V per single cell). There are two possible causes for this.
One is that the zinc-air battery of Comparative Example 1 has a higher impedance, and it is assumed that the zinc oxide adhesion to the air electrode 9 has an effect. The other was due to the influence of hydrogen gas, and in both Example 1 and Comparative Example 1, generation of hydrogen gas was confirmed from the zinc electrode. In Comparative Example 1, hydrogen gas dissolved in the electrolyte solution or adhered to the air electrode 9 It is presumed that the hydrogen gas reacted at the air electrode 9 and the voltage was lower than that in Example 1 (the hydrogen gas was oxidized and the air was reduced at the air electrode 9 to constitute an internal battery, and this caused the voltage. In Example 1, it is presumed that the gel layer 13 serves as a filter and there is almost no influence of the hydrogen gas generated by the zinc electrode).
 次に、比較例2として、ゲル化剤により電解液槽2内の電解液をすべてゲル化した亜鉛空気電池を作製し、放電試験を行った。また、比較例2では電解液を循環させていない。その他の構成および試験方法は、矛盾がない限り、実施例1の亜鉛空気電池と同じである。
 比較例2の亜鉛空気電池では、空気極9を介した液漏れは、実施例1同様30日確認されず、空気極9への亜鉛酸化物付着も確認されなかった。
 しかし、電解液槽2への亜鉛電極挿入時に亜鉛粉の脱落が一部確認され、電圧の上昇も緩やかで放電可能になるまで時間を要した。更に、放電後に亜鉛電極を電解液槽2から引き抜いたが、ゲル化した電解液が亜鉛電極に含まれる亜鉛粉、亜鉛電極上に形成された亜鉛不動態などに纏いつき、亜鉛電極の一部が脱落した。ゲル化した電解液に捕らわれたこれらの亜鉛粉などは回収が困難であった。亜鉛電極の一部が脱落すると、亜鉛電極に含まれるすべての亜鉛を放電に利用できないため、この脱落は、亜鉛空気電池のエネルギー密度を下げる要因となる。
Next, as Comparative Example 2, a zinc-air battery in which the electrolyte in the electrolyte bath 2 was all gelled with a gelling agent was produced, and a discharge test was performed. In Comparative Example 2, the electrolytic solution is not circulated. Other configurations and test methods are the same as those of the zinc-air battery of Example 1 unless there is a contradiction.
In the zinc-air battery of Comparative Example 2, liquid leakage through the air electrode 9 was not confirmed for 30 days as in Example 1, and zinc oxide adhesion to the air electrode 9 was not confirmed.
However, it took time until a part of the zinc powder dropped off when the zinc electrode was inserted into the electrolyte bath 2 and the voltage increased slowly and became dischargeable. Furthermore, the zinc electrode was pulled out from the electrolytic solution tank 2 after the discharge, but the gelled electrolytic solution gathered together with zinc powder contained in the zinc electrode, zinc passivation formed on the zinc electrode, etc., and part of the zinc electrode Dropped out. These zinc powders and the like trapped in the gelled electrolyte are difficult to recover. If a part of the zinc electrode falls off, not all the zinc contained in the zinc electrode can be used for discharge, and this dropping is a factor that lowers the energy density of the zinc-air battery.
 比較例2の亜鉛空気電池の放電電圧は4.61V(単セルあたり1.15V程度)と低かった。これはゲル化した電解液がゲル化していない電解液よりもイオン伝導性が低いためインピーダンスが高かったためである。実施例1よりもアノード-カソード間に存在するゲル化した電解液の厚さが分厚いため、このような差が生じたと推測される。
 また、比較例2の亜鉛空気電池では、放電後にゲル化した電解液を容易に交換できなかったため、電解液を交換せずに2回目の放電を試みた。2回目の放電では電池特性が著しく低下し放電を行うことができなかった。これは、電解液を循環させていないため、亜鉛含有イオン同士が衝突するなどして核を生成する均一核生成反応が進行しにくい。これによりゲル化した電解液中の亜鉛含有イオン濃度が過剰に高くなったためであると推測される。これにより、2回目以降の放電では、亜鉛の溶解反応が抑制されるため電池特性が低下すると考えられる。
 また、沈殿槽18に亜鉛酸化物が集約される実施例1とは異なり、比較例2では亜鉛酸化物がゲル化した電解液内に析出するしかなく蓄積されていく。これがイオン伝導率を更に低下させる要因と推測される。更に、亜鉛酸化物は半導体であるから、わずかながら電気を通し亜鉛電極と空気極9の短絡の要因となり不安全である。
The discharge voltage of the zinc-air battery of Comparative Example 2 was as low as 4.61 V (about 1.15 V per single cell). This is because the gelled electrolyte has a higher impedance because it has lower ionic conductivity than the non-gelled electrolyte. It is presumed that such a difference was caused because the thickness of the gelled electrolyte existing between the anode and the cathode was larger than that in Example 1.
Further, in the zinc-air battery of Comparative Example 2, since the electrolyte solution that gelled after the discharge could not be easily replaced, a second discharge was attempted without replacing the electrolyte solution. In the second discharge, the battery characteristics were remarkably deteriorated and could not be discharged. This is because the electrolyte solution is not circulated, so that the homogeneous nucleation reaction that generates nuclei by collision of zinc-containing ions with each other hardly proceeds. This is presumably because the zinc-containing ion concentration in the gelled electrolyte solution was excessively increased. Thereby, in the discharge after the 2nd time, since the melt | dissolution reaction of zinc is suppressed, it is thought that a battery characteristic falls.
Further, unlike Example 1 in which zinc oxide is concentrated in the precipitation tank 18, in Comparative Example 2, zinc oxide only has to be deposited and accumulated in the gelled electrolyte. This is presumed to be a factor that further decreases the ionic conductivity. Furthermore, since zinc oxide is a semiconductor, it slightly passes electricity and causes a short circuit between the zinc electrode and the air electrode 9, which is unsafe.
 放電試験1における実施例1、比較例1及び比較例2の測定結果を表1に示す。
 空気極を介した電解液の漏洩は、比較例1の亜鉛空気電池では確認されたが、実施例1の亜鉛空気電池では確認されなかった。このことから、空気極9上にゲル層13を設けることにより、空気極を介した電解液の漏洩は抑制できることがわかった。実施例1の亜鉛空気電池は、比較例1、比較例2の亜鉛空気電池に比べ、放電電圧が高いことがわかった。この理由としては、実施例1の亜鉛空気電池では、アノード-カソード間のイオン伝導抵抗が低いこと、空気極への亜鉛酸化物の析出がほとんどないことなどが考えられる。
Table 1 shows the measurement results of Example 1, Comparative Example 1, and Comparative Example 2 in the discharge test 1.
Leakage of the electrolyte solution through the air electrode was confirmed in the zinc-air battery of Comparative Example 1, but was not confirmed in the zinc-air battery of Example 1. From this, it was found that by providing the gel layer 13 on the air electrode 9, leakage of the electrolyte solution through the air electrode can be suppressed. The zinc-air battery of Example 1 was found to have a higher discharge voltage than the zinc-air batteries of Comparative Examples 1 and 2. The reason for this is that in the zinc-air battery of Example 1, the ion conduction resistance between the anode and the cathode is low, and there is almost no precipitation of zinc oxide on the air electrode.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
放電試験2
 実施例2として、図7に示した金属空気電池30のような、4つのセル4を有する亜鉛空気電池を作製し、放電試験を行った。実施例2の亜鉛空気電池では、空気極9上にはゲル層13は設けてなく、電解液槽2に収容した電解液の液面上にゲル層13’を設けている。また、沈殿槽18の液面上にもゲル層13を設けた。また、電解液槽2内の電解液が流入できるように電解槽20を設けた。なお、作製した亜鉛空気電池は、各セルの側面は結合していない。また、空気流路12は設けてなく、空気極集電体10の開口を大気に開放とした。その他の構成および試験方法は、矛盾がない限り実施例1の亜鉛空気電池と同じである。
Discharge test 2
As Example 2, a zinc-air battery having four cells 4 such as the metal-air battery 30 shown in FIG. 7 was produced and a discharge test was performed. In the zinc-air battery of Example 2, the gel layer 13 is not provided on the air electrode 9, but the gel layer 13 ′ is provided on the surface of the electrolytic solution stored in the electrolytic solution tank 2. The gel layer 13 was also provided on the liquid surface of the precipitation tank 18. Moreover, the electrolytic cell 20 was provided so that the electrolytic solution in the electrolytic solution tank 2 could flow. In addition, as for the produced zinc air battery, the side surface of each cell is not couple | bonded. Moreover, the air flow path 12 was not provided and the opening of the air electrode current collector 10 was opened to the atmosphere. Other configurations and test methods are the same as those of the zinc-air battery of Example 1 unless there is a contradiction.
 ゲル層13’は、セル外で水にゲル化剤を添加することにより調製したものを電解液の液面に浮かべることによって形成した(ゲル層13’でフタをした)。
 また、実施例2の金属空気電池30を用いた放電試験では、各放電の終了後に電解液の交換は行わず、電解槽20の電解用電極21に電圧を印加することにより電解反応を促し、電解液の亜鉛含有イオン濃度を低下させた。また、各放電の終了後に亜鉛電極を新しいものに交換した。
The gel layer 13 ′ was formed by floating a solution prepared by adding a gelling agent to water outside the cell on the liquid surface of the electrolyte (covered with the gel layer 13 ′).
Further, in the discharge test using the metal-air battery 30 of Example 2, the electrolytic solution was not exchanged after the end of each discharge, and the electrolytic reaction was promoted by applying a voltage to the electrolysis electrode 21 of the electrolytic cell 20, The zinc-containing ion concentration of the electrolyte was reduced. In addition, the zinc electrode was replaced with a new one after the end of each discharge.
 実施例2の亜鉛空気電池では放電電圧が4.69V(単セルあたり1.17V)であり、前述の比較例1・比較例2よりも放電電圧が高かった。これは、液面上にゲル層13’を設けることにより電解液の蒸散や吸湿が抑えられ、また大気中の二酸化炭素と電解液が反応するのを抑えられたことにより電解液濃度の変化が小さかったためであると考えられる。
 実施例2の亜鉛空気電池では、4回目の放電の際に、空気極9を介した電解液の漏洩が確認された。また、実施例2の亜鉛空気電池では、電解液槽2に収容した電解液の液面と亜鉛電極との間にメニスカスは確認されなかった。これは、亜鉛電極の自己腐食による減肉、または強度低下が生じにくいことを示唆している。
In the zinc-air battery of Example 2, the discharge voltage was 4.69 V (1.17 V per unit cell), and the discharge voltage was higher than those of Comparative Example 1 and Comparative Example 2 described above. This is because the gel layer 13 'is provided on the liquid surface to suppress the transpiration and moisture absorption of the electrolytic solution, and the reaction between the carbon dioxide in the atmosphere and the electrolytic solution is suppressed, thereby changing the concentration of the electrolytic solution. This is probably because it was small.
In the zinc-air battery of Example 2, leakage of the electrolyte solution through the air electrode 9 was confirmed during the fourth discharge. Further, in the zinc-air battery of Example 2, no meniscus was observed between the surface of the electrolytic solution accommodated in the electrolytic solution tank 2 and the zinc electrode. This suggests that thinning due to self-corrosion of the zinc electrode or strength reduction is unlikely to occur.
 実施例2の亜鉛空気電池では、各放電の終了後に亜鉛電極を交換する際、比較例1のように使用済みの亜鉛電極から電解液が滴り落ちることはなく、交換作業が安全であった。使用済みの亜鉛電極を回収後、運搬する際にも安全であった。このことから電解液槽2に収容した電解液3の液面上にゲル層13’を設けることにより、亜鉛電極の表面上に残る電解液量を減らすことができることがわかった。このことにより、亜鉛電極の腐食を抑えることができる。また、残った電解液により使用済みの亜鉛電極が重くなることを防止することができ、運搬費用などを低減することができる。更に、電解液槽2内の電解液をほとんど減らすことが無いため、電解液の補充頻度も少なくすることができる。
 放電試験2における実施例2の測定結果を表2に示す。また、比較のために、上述の比較例1、2の測定結果も示している。
In the zinc-air battery of Example 2, when replacing the zinc electrode after completion of each discharge, the electrolyte did not drip from the used zinc electrode as in Comparative Example 1, and the replacement work was safe. It was safe to transport used zinc electrodes after collection. From this, it was found that the amount of the electrolyte remaining on the surface of the zinc electrode can be reduced by providing the gel layer 13 ′ on the surface of the electrolyte 3 accommodated in the electrolyte bath 2. Thereby, corrosion of the zinc electrode can be suppressed. Further, it is possible to prevent the used zinc electrode from becoming heavy due to the remaining electrolytic solution, and it is possible to reduce transportation costs and the like. Furthermore, since the electrolytic solution in the electrolytic solution tank 2 is hardly reduced, the replenishment frequency of the electrolytic solution can be reduced.
The measurement results of Example 2 in the discharge test 2 are shown in Table 2. For comparison, the measurement results of Comparative Examples 1 and 2 are also shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1、1a、1b、1c、1d:筐体  2、2a、2b、2c、2d:電解液槽  3:電解液  4、4a、4b、4c、4d:セル  5、5a、5b、5c、5d:金属電極  6:撥水層  7、7a、7b、7c、7d:空気極触媒層  8、8a、8b、8c、8d:ガス拡散層  9、9a、9b、9c、9d:空気極  10、10a、10b、10c、10d:空気極集電体  12、12a、12b、12c、12d:空気流路  13、13’、13a、13a’、13b、13b’、13c、13c’、13d、13d’、13e:ゲル層  15、15a、15b、15c、15d:排出口  17:析出物(使用済み活物質)  18:沈殿槽  20:電解槽  21:電解用電極  24:析出物  25:ポンプ  26:電解液流路  30:金属空気電池  32:多孔質体  34:第2の多孔質体  40:空気極端子  41:金属極端子 1, 1a, 1b, 1c, 1d: Case 2, 2a, 2b, 2c, 2d: Electrolyte tank 3: Electrolyte 4, 4a, 4b, 4c, 4d: Cell 5, 5a, 5b, 5c, 5d: Metal electrode 6: Water repellent layer 7, 7a, 7b, 7c, 7d: Air electrode catalyst layer 8, 8a, 8b, 8c, 8d: Gas diffusion layer 9, 9a, 9b, 9c, 9d: Air electrode 10, 10a, 10b, 10c, 10d: air electrode current collectors 12, 12a, 12b, 12c, 12d: air flow paths 13, 13 ′, 13a, 13a ′, 13b, 13b ′, 13c, 13c ′, 13d, 13d ′, 13e : Gel layer 15, 15a, 15b, 15c, 15d: Discharge port 17: Precipitate (used active material) 18: Precipitation tank 20: Electrolysis tank 21: Electrode for electrolysis 24: Precipitation 2 : Pump 26: electrolyte flow path 30: metal-air battery 32: porous body 34: second porous body 40: air electrode terminal 41: metal terminal

Claims (15)

  1.  電解液を収容する電解液槽と、
    前記電解液槽中に設けられ、少なくとも電極活物質を含む金属電極と、
    前記電解液槽の一部の壁部を形成する空気極とを備えた金属空気電池であって、
    前記空気極は、集電体と、少なくとも空気極触媒を含む空気極触媒層と、を有し、
    前記電解液と対向する前記空気極の第1主要面側、または前記空気極触媒層にゲル化剤を含むことを特徴とする金属空気電池。
    An electrolytic bath containing the electrolytic solution;
    A metal electrode provided in the electrolyte bath and containing at least an electrode active material;
    A metal-air battery comprising an air electrode that forms part of the wall of the electrolyte bath,
    The air electrode has a current collector and an air electrode catalyst layer containing at least an air electrode catalyst,
    A metal-air battery comprising a gelling agent in the first main surface side of the air electrode facing the electrolytic solution or in the air electrode catalyst layer.
  2.  前記空気極は、前記電解液と対向する第1主要面が多孔質体で形成されている請求項1に記載の金属空気電池。 2. The metal-air battery according to claim 1, wherein the air electrode is formed of a porous body on a first main surface facing the electrolyte solution.
  3.  前記集電体は、前記多孔質体と前記空気極触媒層との間に設けられている請求項2に記載の金属空気電池。 The metal-air battery according to claim 2, wherein the current collector is provided between the porous body and the air electrode catalyst layer.
  4.  前記空気極触媒層は、細孔を有する電子伝導性物質を含み、
    前記空気極触媒は、前記電子伝導性物質に担持され、前記ゲル化剤は前記電子伝導性物質の前記細孔に保持されている請求項1から請求項3のいずれか1つに記載の金属空気電池。
    The air electrode catalyst layer includes an electron conductive material having pores,
    The metal according to any one of claims 1 to 3, wherein the air electrode catalyst is supported on the electron conductive material, and the gelling agent is held in the pores of the electron conductive material. Air battery.
  5.  前記空気極は、前記電解液と前記集電体との間に、2つ以上の多孔質体が形成されており、
    少なくとも前記ゲル化剤と水を含むゲル層が、前記多孔質体に挟持されている請求項1から請求項4のいずれか1つに記載の金属空気電池。
    The air electrode has two or more porous bodies formed between the electrolyte and the current collector,
    The metal-air battery according to any one of claims 1 to 4, wherein a gel layer containing at least the gelling agent and water is sandwiched between the porous bodies.
  6.  前記空気極の第1主要面の反対に位置する第2の主要面に撥水性樹脂を含む撥水層を有する請求項1から請求項5のいずれか1つに記載の金属空気電池。 The metal-air battery according to any one of claims 1 to 5, further comprising a water-repellent layer containing a water-repellent resin on a second main surface located opposite to the first main surface of the air electrode.
  7.  前記空気極触媒層は、前記集電体と前記撥水層との間に設けられている請求項6に記載の金属空気電池。 The metal-air battery according to claim 6, wherein the air electrode catalyst layer is provided between the current collector and the water repellent layer.
  8.  前記ゲル化剤は、吸水性高分子である請求項1から請求項7のいずれか1つに記載の金属空気電池。 The metal-air battery according to any one of claims 1 to 7, wherein the gelling agent is a water-absorbing polymer.
  9.  電解液を収容する電解液槽と、
    前記電解液槽中に設けられ、少なくとも電極活物質を含む金属電極と、
    前記電解液槽の一部の壁部を形成する空気極とを備えた金属空気電池であって、
    前記空気極は、集電体と、少なくとも空気極触媒と含む空気極触媒層と、を有し、
    前記電解液と、対向する前記空気極との間に、少なくともゲル化剤と水を含むゲル層を有することを特徴とする金属空気電池。
    An electrolytic bath containing the electrolytic solution;
    A metal electrode provided in the electrolyte bath and containing at least an electrode active material;
    A metal-air battery comprising an air electrode that forms part of the wall of the electrolyte bath,
    The air electrode has a current collector and an air electrode catalyst layer including at least an air electrode catalyst,
    A metal-air battery comprising a gel layer containing at least a gelling agent and water between the electrolytic solution and the facing air electrode.
  10.  集電体と、少なくとも空気極触媒を含む空気極触媒層とを有する空気極であって、
    前記空気極の表面側の一部または前記空気極触媒層はゲル化剤を含むことを特徴とする空気極。
    An air electrode having a current collector and an air electrode catalyst layer including at least an air electrode catalyst,
    A part of the surface side of the air electrode or the air electrode catalyst layer contains a gelling agent.
  11.  前記空気極の形状は、第1主要面と第2主要面とを有するシート状であり、
    少なくとも前記第1主要面側に前記ゲル化剤が含まれている請求項10に記載の空気極。
    The shape of the air electrode is a sheet having a first main surface and a second main surface,
    The air electrode according to claim 10, wherein the gelling agent is contained at least on the first main surface side.
  12.  前記第1主要面には、少なくとも前記ゲル化剤と水が含まれているゲル層が形成されている請求項11に記載の空気極。 The air electrode according to claim 11, wherein a gel layer containing at least the gelling agent and water is formed on the first main surface.
  13.  前記第2主要面には、少なくとも撥水層樹脂が含まれている撥水層を有し、
    前記空気極触媒層は、前記集電体と前記撥水層の間に挟まれるように設けられた請求項11または請求項12に記載の空気極。
    The second main surface has a water-repellent layer containing at least a water-repellent layer resin,
    The air electrode according to claim 11 or 12, wherein the air electrode catalyst layer is provided so as to be sandwiched between the current collector and the water repellent layer.
  14.  前記空気極触媒層は、細孔を有する電子伝導性物質を含み、
    前記空気極触媒は、前記電子伝導性物質に担持され、前記ゲル化剤は前記電子伝導性物質の前記細孔に保持されている請求項10から請求項13のいずれか1つに記載の空気極。
    The air electrode catalyst layer includes an electron conductive material having pores,
    The air according to any one of claims 10 to 13, wherein the air electrode catalyst is supported on the electron conductive material, and the gelling agent is held in the pores of the electron conductive material. very.
  15.  前記ゲル化剤は、吸水性高分子である請求項10から14のいずれか1つに記載の空気極。 The air electrode according to any one of claims 10 to 14, wherein the gelling agent is a water-absorbing polymer.
PCT/JP2015/052551 2014-02-04 2015-01-29 Air electrode and metal air battery WO2015119041A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014019480 2014-02-04
JP2014019472 2014-02-04
JP2014-019480 2014-02-04
JP2014-019472 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015119041A1 true WO2015119041A1 (en) 2015-08-13

Family

ID=53777848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052551 WO2015119041A1 (en) 2014-02-04 2015-01-29 Air electrode and metal air battery

Country Status (1)

Country Link
WO (1) WO2015119041A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313101A (en) * 2017-02-03 2019-10-08 藤仓复合材料科技有限公司 Metal-air battery and its application method
CN113258173A (en) * 2021-05-14 2021-08-13 黄兴国 Integral type filled zinc-air battery for automobile
WO2022208993A1 (en) * 2021-03-30 2022-10-06 日本碍子株式会社 Air electrode/separator assembly and metal-air secondary battery
US11664547B2 (en) 2016-07-22 2023-05-30 Form Energy, Inc. Moisture and carbon dioxide management system in electrochemical cells
WO2023131972A1 (en) * 2022-01-04 2023-07-13 Chakr Innovation Private Limited Catalyst coated current collector for a metal-air battery, and a metal-air battery comprising the same
WO2024062496A1 (en) * 2022-09-21 2024-03-28 Neha Shailendra Yadav Aluminum air anode sediments cleanup system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158950A (en) * 1981-03-25 1982-09-30 Toshiba Corp Air battery
JPS60133658A (en) * 1983-12-22 1985-07-16 Toshiba Corp Air battery
JP2013243108A (en) * 2012-04-23 2013-12-05 Sharp Corp Metal air battery and energy system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158950A (en) * 1981-03-25 1982-09-30 Toshiba Corp Air battery
JPS60133658A (en) * 1983-12-22 1985-07-16 Toshiba Corp Air battery
JP2013243108A (en) * 2012-04-23 2013-12-05 Sharp Corp Metal air battery and energy system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11664547B2 (en) 2016-07-22 2023-05-30 Form Energy, Inc. Moisture and carbon dioxide management system in electrochemical cells
CN110313101A (en) * 2017-02-03 2019-10-08 藤仓复合材料科技有限公司 Metal-air battery and its application method
WO2022208993A1 (en) * 2021-03-30 2022-10-06 日本碍子株式会社 Air electrode/separator assembly and metal-air secondary battery
CN113258173A (en) * 2021-05-14 2021-08-13 黄兴国 Integral type filled zinc-air battery for automobile
WO2023131972A1 (en) * 2022-01-04 2023-07-13 Chakr Innovation Private Limited Catalyst coated current collector for a metal-air battery, and a metal-air battery comprising the same
WO2024062496A1 (en) * 2022-09-21 2024-03-28 Neha Shailendra Yadav Aluminum air anode sediments cleanup system

Similar Documents

Publication Publication Date Title
WO2015119041A1 (en) Air electrode and metal air battery
US10910674B2 (en) Additive for increasing lifespan of rechargeable zinc-anode batteries
TW580778B (en) Refuelable metal air electrochemical cell and refuelable anode structure for electrochemical cells
US4957826A (en) Rechargeable metal-air battery
EP1878072B1 (en) Nickel zinc battery design
JP6326272B2 (en) Battery case and metal-air battery
Chakkaravarthy et al. Zinc—air alkaline batteries—A review
CN101632188B (en) metallic zinc-based current collector
TW503598B (en) Catalytic air cathode for air-metal batteries
JP2005518644A (en) Metal air cell system
WO2015076299A1 (en) Metal electrode cartridge, metal-air battery and method for charging metal electrode cartridge
EP2824745A1 (en) Rechargeable zinc-air flow battery
US20150162571A1 (en) Concave cell design for an alkaline battery with a comb spacer
US20030099882A1 (en) Methods and materials for the preparation of a zinc anode useful for batteries and fuel cells
WO2015115480A1 (en) Metal air battery
JP6263371B2 (en) Metal air battery
US20150162601A1 (en) Cell design for an alkaline battery with channels in electrodes to remove gas
WO2015019845A1 (en) Metal electrode and metal-air battery
JP6353695B2 (en) Metal-air battery body and metal-air battery
US9774066B2 (en) Large-scale metal-air battery with slurry anode
WO2014175117A1 (en) Metal-air battery
KR20190069079A (en) Metal air battery and case for the same
JP2020170652A (en) Manufacturing method of negative electrode for zinc battery and negative electrode for zinc battery
US20150162570A1 (en) Beveled cell design for an alkaline battery to remove gas
US20020119368A1 (en) Anode structure for metal air electrochemical cells and method of manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP