WO2017104569A1 - Support for forming hydrogen discharge film, and laminated hydrogen discharge film - Google Patents

Support for forming hydrogen discharge film, and laminated hydrogen discharge film Download PDF

Info

Publication number
WO2017104569A1
WO2017104569A1 PCT/JP2016/086717 JP2016086717W WO2017104569A1 WO 2017104569 A1 WO2017104569 A1 WO 2017104569A1 JP 2016086717 W JP2016086717 W JP 2016086717W WO 2017104569 A1 WO2017104569 A1 WO 2017104569A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen discharge
hydrogen
support
film
forming
Prior art date
Application number
PCT/JP2016/086717
Other languages
French (fr)
Japanese (ja)
Inventor
原田 憲章
福岡 孝博
圭子 藤原
恭子 石井
俊輔 正木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016235989A external-priority patent/JP2017109202A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2017104569A1 publication Critical patent/WO2017104569A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a support for forming a hydrogen discharge film and a hydrogen discharge laminated film.
  • the hydrogen discharge laminated film is provided in an electrochemical element such as a battery, a capacitor, a capacitor, and a sensor.
  • Aluminum electrolytic capacitors have been used for applications such as inverters for wind power generation and solar power generation, large power sources such as storage batteries.
  • Aluminum electrolytic capacitors may generate hydrogen gas inside due to reverse voltage, overvoltage, and overcurrent, and if a large amount of hydrogen gas is generated, the outer case may burst due to an increase in internal pressure.
  • a general aluminum electrolytic capacitor is provided with a safety valve equipped with a special film.
  • the safety valve has a function to prevent the capacitor itself from bursting by self-destructing and reducing the internal pressure when the internal pressure of the capacitor suddenly increases. is there.
  • the following has been proposed as a special membrane that is a component of such a safety valve.
  • Patent Document 1 proposes a pressure adjusting film including a foil strip made of an alloy of paradium silver (Pd—Ag) containing 20 wt% (19.8 mol%) Ag in paradium.
  • Patent Document 1 is easily embrittled in an environment of about 50 to 60 ° C. or less, and has a problem that the function as a pressure adjusting film cannot be maintained for a long period of time.
  • lithium-ion batteries are widely used as batteries for mobile phones, notebook computers, and automobiles.
  • lithium-ion batteries have become increasingly interested in safety in addition to increasing capacity and improving cycle characteristics.
  • a lithium ion battery generates gas in the cell, and there is a concern about expansion and rupture of the battery pack accompanying an increase in internal pressure.
  • Patent Document 2 discloses an amorphous alloy (for example, 36Zr-64Ni alloy) made of an alloy of zirconium (Zr) and nickel (Ni) as a hydrogen selective permeable alloy film that selectively permeates hydrogen gas generated in a battery.
  • amorphous alloy for example, 36Zr-64Ni alloy
  • Zr zirconium
  • Ni nickel
  • the amorphous alloy forms a hydride (ZrH 2 ) and becomes brittle when exposed to hydrogen in a low temperature range (for example, 50 ° C.), so that the function as a pressure adjusting film cannot be maintained for a long time. There was a problem.
  • the hydrogen discharge membrane containing the Pd—Ag alloy has a support on one side or both sides, and the content of Ag in the Pd—Ag alloy is 20 mol% or more.
  • a hydrogen discharge laminated film is proposed.
  • Patent Document 4 in order to solve the above-mentioned problem, a support is provided on one side or both sides of a hydrogen discharge film containing a Pd—Cu alloy, and the Cu content in the Pd—Cu alloy is 30 mol% or more. A hydrogen discharge laminated film is proposed.
  • the thin hydrogen discharge film formed on the support by sputtering or the like may be easily broken when pressure is applied.
  • the present invention has been made in view of the above problems, a support for forming a hydrogen discharge film that is not easily damaged when pressure is applied, and has excellent pressure tightness, and hydrogen using the support.
  • An object is to provide a discharge laminated film. Moreover, it aims at providing the electrochemical element provided with the safety valve for electrochemical elements and the hydrogen discharge valve for electrochemical elements provided with the said hydrogen discharge
  • the present invention is a support for forming a hydrogen discharge film for forming a hydrogen discharge film including a metal layer
  • the support is a porous body,
  • the porous body has an average pore diameter of 30 to 100 nm in a cross-sectional portion from the surface on the side where the hydrogen discharge membrane is formed to a thickness direction of 4 ⁇ m,
  • the said porous body is related with the support body for hydrogen discharge film
  • the present inventor uses a support having the above structure, so that it is not easily damaged when pressure is applied, and has a pressure-resistant and air-tightness. It has been found that a hydrogen discharge membrane excellent in the above can be obtained.
  • the hydrogen gas discharge performance becomes insufficient.
  • the thickness exceeds 100 nm, it becomes difficult for the metal layer to completely block the pores on the surface of the porous body when forming a composite film by forming a metal layer on the porous body. It becomes easy.
  • the porous body has a porosity of 20 to 70% in a cross-sectional portion from the surface on the side where the hydrogen discharge film is formed to a thickness direction of 4 ⁇ m.
  • the porosity in the cross-sectional part from the surface of the porous body on the side where the hydrogen discharge film is formed to the thickness direction of 4 ⁇ m is less than 20%, the air permeability of the support itself is deteriorated, so The hydrogen permeability of the membrane tends to decrease.
  • the porosity exceeds 70% the resin density in the vicinity of the porous body surface tends to be small, and the mechanical strength in the vicinity of the porous body surface tends to decrease. Therefore, when a pressure is applied to the hydrogen discharge film formed on the porous body, the hydrogen discharge film is easily damaged, and the pressure-tightness of the hydrogen discharge film is reduced. As a result, the electrochemical element tends to deteriorate for the same reason as described above.
  • the porous body preferably has an average pore diameter of 50 to 500 nm in a cross-sectional portion from the surface on the side where the hydrogen exhaust film is formed to a thickness direction of 8 ⁇ m, and a porosity of 20 to 80%. It is preferable. Thereby, it is possible to further prevent the hydrogen discharge membrane from being damaged when pressure is applied to the hydrogen discharge membrane formed on the porous body.
  • the porous body preferably has a permeation time of 100 cc of air in the Gurley test of 30000 seconds or less. Thereby, a hydrogen discharge laminated film having excellent hydrogen permeability can be obtained.
  • the porous body preferably has a microporous film on a non-woven fabric.
  • the microporous membrane preferably includes a polymer having a glass transition temperature of 190 ° C. or higher or a melting point of 150 ° C. or higher, and the polymer includes thermosetting polyamideimide, thermosetting polyimide, polyvinylidene fluoride, polyphenylsulfone, and It is preferably at least one selected from the group consisting of polysulfone.
  • the present invention relates to a hydrogen discharge laminated film having a hydrogen discharge film including a metal layer on the hydrogen discharge film forming support.
  • the hydrogen discharge membrane must have a function as a safety valve that self-destructs when the internal pressure of the electrochemical element exceeds a predetermined value.
  • the mechanical strength of the hydrogen discharge film is low, so that the internal pressure of the electrochemical element may be destroyed before reaching a predetermined value, and the function as a safety valve cannot be performed. Therefore, when the hydrogen discharge film is a thin film, a support is laminated on one or both sides of the hydrogen discharge film in order to improve the mechanical strength.
  • the metal layer is preferably an alloy layer containing a Pd alloy from the viewpoint of excellent hydrogen permeability, oxidation resistance, and embrittlement resistance during hydrogen storage.
  • the Pd alloy preferably contains 20 to 65 mol% of a Group 11 element.
  • the Group 11 element is preferably at least one selected from the group consisting of Au, Ag, and Cu.
  • An alloy layer containing a Pd-Group 11 element alloy dissociates hydrogen molecules into hydrogen atoms on the film surface to solidify hydrogen atoms in the film, and diffuses the dissolved hydrogen atoms from the high pressure side to the low pressure side. It has the function of converting hydrogen atoms into hydrogen molecules again and discharging them on the low pressure side film surface.
  • the content of the Group 11 element is less than 20 mol%, the strength of the alloy tends to be insufficient or the function tends to be difficult to develop, and when it exceeds 65 mol%, the hydrogen permeation rate decreases. There is a tendency.
  • the metal layer preferably has a thickness of 0.01 to 5 ⁇ m. If the thickness is less than 0.01 ⁇ m, pinholes are likely to occur. In addition, when pressure is applied, the metal layer tends to be damaged, and the pressure-tightness of the hydrogen discharge film tends to decrease. On the other hand, when the thickness exceeds 5 ⁇ m, the brittleness of the metal layer becomes high, and the metal layer is easily damaged by pressure or stress caused by expansion during hydrogen occlusion, so that the pressure tightness of the hydrogen discharge film decreases. Moreover, it takes time to form the metal layer, which is not preferable because it is inferior in cost.
  • the present invention also relates to a safety valve for an electrochemical element provided with the hydrogen discharge laminated film, a hydrogen discharge valve for an electrochemical element provided with the hydrogen discharge laminated film, and an electrochemical element provided with the safety valve or the hydrogen discharge valve, About.
  • the electrochemical element include an aluminum electrolytic capacitor and a lithium ion battery.
  • the present invention also relates to a hydrogen discharge method using the hydrogen discharge laminated film, the safety valve, or the hydrogen discharge valve.
  • the hydrogen discharge method of the present invention it is preferable to discharge hydrogen under an environment of 150 ° C. or lower using the hydrogen discharge laminated film or the like.
  • a hydrogen discharge film that is not easily damaged when pressure is applied and has excellent pressure-tightness and airtightness can be formed on the support.
  • the hydrogen discharge laminated film of the present invention is less likely to deteriorate the hydrogen discharge performance even when the electrochemical element is used for a long period of time, and can stably discharge hydrogen.
  • the hydrogen discharge laminated film of the present invention can not only quickly discharge only hydrogen gas generated inside the electrochemical element to the outside, but also prevent impurities from entering the inside of the electrochemical element from the outside. it can.
  • the safety valve provided with the hydrogen discharge laminated film of the present invention can self-destruct and reduce the internal pressure when the internal pressure of the electrochemical element suddenly increases, thereby preventing the electrochemical element itself from bursting. .
  • the performance of the electrochemical element can be maintained for a long time, and the lifetime of the electrochemical element can be extended.
  • the support for forming a hydrogen exhaust film of the present invention is a porous body,
  • the porous body has an average pore diameter of 30 to 100 nm in a cross-sectional portion from the surface on the side where the hydrogen discharge membrane is formed to a thickness direction of 4 ⁇ m,
  • the porous body has a maximum pore diameter of 2 ⁇ m or less in a cross-sectional portion from the surface on the side where the hydrogen exhaust film is formed to a thickness direction of 8 ⁇ m.
  • the average pore diameter is preferably 40 to 90 nm, more preferably 50 to 85 nm.
  • the maximum pore diameter in the cross-sectional portion from the surface on the side where the hydrogen discharge film is formed to the thickness direction of 8 ⁇ m is preferably 1.9 ⁇ m or less, more preferably 1.8 ⁇ m or less.
  • the porous body preferably has a porosity of 20 to 70%, more preferably 25 to 60% in a cross-sectional portion from the surface on the side where the hydrogen discharge film is formed to the thickness direction of 4 ⁇ m. More preferably, it is 30 to 56%.
  • the porous body preferably has an average pore diameter of 50 to 500 nm, more preferably 100 to 400 nm, and still more preferably in a cross-sectional portion from the surface on the side where the hydrogen discharge membrane is formed to the thickness direction of 8 ⁇ m. Is 150 to 350 nm.
  • the porous body preferably has a porosity of 20 to 80%, more preferably 25 to 70% in a cross-sectional portion from the surface on the side where the hydrogen discharge film is formed to the thickness direction of 8 ⁇ m. More preferably, it is 30 to 51%.
  • the porous body preferably has a 100 cc permeation time in a Gurley test of 30000 seconds or less, more preferably 10,000 seconds or less, still more preferably 2000 seconds or less, and even more preferably 1000 seconds. Or less, particularly preferably 800 seconds or less.
  • the transmission time is preferably 100 seconds or longer.
  • the material for forming the porous body is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyaryl ether sulfones such as polysulfone and polyethersulfone, polytetrafluoroethylene and polyfluoride.
  • Fluorine resin such as vinylidene fluoride, epoxy resin, polyamide, polyimide, polyamideimide and the like.
  • the porous body can be produced by a known porous method using the forming material.
  • the porous body preferably has a microporous film on a nonwoven fabric.
  • a microporous film By forming a microporous film on the nonwoven fabric, it becomes easy to produce a porous body having the above structure.
  • the surface of the microporous membrane is the surface on the side where the hydrogen discharge membrane is formed.
  • the thickness of the nonwoven fabric is not particularly limited, but is usually about 50 to 200 ⁇ m, preferably 70 to 150 ⁇ m.
  • the basis weight of the nonwoven fabric is preferably 60 g / m 2 or more, more preferably 70 g / m 2 or more.
  • the material for forming the microporous film is not particularly limited, and examples thereof include polyaryl ether sulfones such as polysulfone and polyether sulfone, polyamide, polyimide, polyamideimide, and polyvinylidene fluoride. From the viewpoint of thermal stability, it is preferable to use a polymer having a glass transition temperature of 190 ° C or higher or a melting point of 150 ° C or higher, particularly from thermosetting polyamideimide, thermosetting polyimide, polyvinylidene fluoride, polyphenylsulfone, and polysulfone. It is preferable to use at least one selected from the group consisting of:
  • the formation method of the microporous film is not particularly limited, but is usually formed by a wet method or a dry wet method.
  • a polymer solution (dope) is applied onto a nonwoven fabric, and then the nonwoven fabric having the dope film is immersed in a coagulation bath to cause microphase separation in the dope film and immobilize the porous structure of the polymer.
  • a porous membrane is formed on the nonwoven fabric.
  • solvent for the polymer solution examples include dimethyl sulfoxide, dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, and dioxane.
  • the concentration of the base polymer for example, thermosetting polyamideimide, thermosetting polyimide, polyvinylidene fluoride, polyphenylsulfone, and polysulfone
  • the concentration of the base polymer in the polymer solution is 8 to 20% by weight.
  • the amount is preferably about 10 to 19% by weight.
  • additives such as polyalkylene glycols such as polypropylene glycol and polyethylene glycol, and water-soluble polymers such as polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) may be added to the polymer solution.
  • the concentration of the additive in the polymer solution is preferably about 5 to 33% by weight, more preferably 7 to 33% by weight.
  • the concentration of the additive is appropriately adjusted according to the type of the base polymer to be used.
  • the viscosity of the polymer solution is preferably about 1 to 3 Pa ⁇ s, more preferably 2 to 2.5 Pa ⁇ s.
  • the temperature of the coagulation bath is preferably about 35 to 55 ° C, more preferably 40 to 50 ° C.
  • the heat treatment temperature is preferably about 150 to 350 ° C., more preferably 150 to 300 ° C. Immersion is performed until the solvent or additive in the dope film is sufficiently replaced with the coagulation liquid. Note that if the solvent or additive extracted from the dope film immediately after immersing the dope film in the coagulation bath stays on the dope film surface, the concentration difference becomes smaller and the extraction speed of the solvent or additive becomes slower.
  • a flow of the coagulating liquid on the surface of the dope film it is preferable to create a flow of the coagulating liquid on the surface of the dope film.
  • a method of increasing the conveyance speed of the nonwoven fabric having the dope film for example, 5 m / min or more
  • a method of creating a flow with a circulation pump or the like so as not to cause the retention of the extraction solvent or the extraction additive.
  • the thickness of the microporous membrane is usually about 10 to 100 ⁇ m, preferably 20 to 80 ⁇ m, more preferably 30 to 60 ⁇ m.
  • the hydrogen discharge laminated film of the present invention has a hydrogen discharge film including a metal layer on the support.
  • the hydrogen discharge film has at least a metal layer.
  • the metal forming the metal layer is not particularly limited as long as it is a single substance or a metal having a hydrogen permeation function by alloying, for example, Pd, Nb, V, Ta, Ni, Fe, Al, Cu, Ru, Examples thereof include Re, Rh, Au, Pt, Ag, Cr, Co, Sn, Zr, Y, Ce, Ti, Ir, Mo, and an alloy containing two or more of these metals.
  • the metal layer is preferably an alloy layer containing a Pd alloy.
  • the other metal forming the Pd alloy is not particularly limited, but a group 11 element is preferably used, and more preferably at least one selected from the group consisting of Au, Ag, and Cu.
  • a Pd—Au alloy is preferable because it is excellent in corrosion resistance against gas components generated from the electrolyte solution or constituent members inside the electrochemical element.
  • the Pd alloy preferably contains a Group 11 element in an amount of 20 to 65 mol%, more preferably 30 to 65 mol%, and still more preferably 30 to 60 mol%.
  • the Pd alloy may contain a group IB and / or group IIIA metal as long as the effects of the present invention are not impaired.
  • the alloy layer containing the Pd alloy is not limited to the alloy containing the two components containing Pd, but may be an alloy containing, for example, the three components of Pd—Au—Ag, and includes the three components of Pd—Au—Cu.
  • An alloy may be used.
  • an alloy containing four components of Pd—Au—Ag—Cu may be used.
  • the total content of Au and the other metal in the Pd—Au alloy is preferably 55 mol% or less, more preferably 50 mol%. Or less, more preferably 45 mol% or less, and particularly preferably 40 mol% or less.
  • the metal layer can be formed on the support by, for example, a sputtering method, a vacuum deposition method, an ion plating method, a plating method, etc., but particularly when a thin metal layer is manufactured. It is preferable to use a sputtering method.
  • the sputtering method is not particularly limited, and can be performed using a sputtering apparatus such as a parallel plate type, a single wafer type, a passing type, DC sputtering, and RF sputtering.
  • a sputtering apparatus such as a parallel plate type, a single wafer type, a passing type, DC sputtering, and RF sputtering.
  • the sputtering apparatus is evacuated, the Ar gas pressure is adjusted to a predetermined value, a predetermined sputtering current is applied to the metal target, and the support is A metal layer is formed on the body.
  • a target a single target or a some target can be used according to the metal layer to manufacture.
  • the thickness of the metal layer is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • the area of the metal layer can be appropriately adjusted in consideration of the hydrogen permeation amount and thickness, but is usually about 0.01 to 100 mm 2 when used as a safety valve component.
  • another support may be laminated on the hydrogen discharge membrane including the metal layer.
  • the shape of the hydrogen discharge laminated film of the present invention may be a substantially circular shape or a polygon such as a triangle, a quadrangle, or a pentagon. It can be made into arbitrary shapes according to the use mentioned later.
  • the hydrogen discharge laminated film of the present invention is particularly useful as a component for a safety valve of an aluminum electrolytic capacitor or a lithium ion battery. Moreover, the hydrogen discharge
  • the method for discharging the hydrogen generated inside the electrochemical device using the hydrogen discharge laminated film of the present invention is not particularly limited.
  • the hydrogen discharge stacked film of the present invention may be applied to a part of an exterior portion of an aluminum electrolytic capacitor or a lithium ion battery. And can be used as an outer and inner diaphragm.
  • the inside and outside of the exterior are separated by the hydrogen discharge laminated film, and the hydrogen discharge laminated film does not permeate gases other than hydrogen.
  • Hydrogen generated inside the exterior is discharged to the outside through the hydrogen discharge laminated film due to an increase in pressure, and the interior of the exterior does not rise above a predetermined pressure.
  • the hydrogen-exhausting laminated film of the present invention has an advantage that it can be used at a temperature of, for example, 150 ° C. or lower, further 110 ° C. or lower because it does not become brittle at low temperatures by appropriately adjusting the alloy composition. That is, the hydrogen discharge laminated film of the present invention is particularly preferably used in a hydrogen discharge method in an aluminum electrolytic capacitor or a lithium ion battery that is not used at a high temperature (for example, 400 to 500 ° C.) depending on its application.
  • a high temperature for example, 400 to 500 ° C.
  • Example 1 (Production of support) Polyamideimide (Toyobo Co., Ltd., Viromax HR-22BL, solid content 20% by weight) 12.8 g, polypropylene glycol (Adeka Polyether P-400) 1.1 g, and N-methyl-2-pyrrolidone (Wako Pure Chemical Industries, Ltd.) 1.2g in a screw bottle and stirred for 5 minutes at 2000rpm using a planetary stirring and defoaming device (manufactured by Shinky Corp., Foaming Netaro ARE-310), and then stirred at 2200rpm for 3 minutes. Then, defoaming was performed to prepare a polyamideimide solution (dope). RO membrane permeated water adjusted to 45 ° C.
  • Example 2 (Production of support) Polyamideimide (Toyobo Co., Ltd., Viromax HR-22BL, solid content 20% by weight) 12.8 g, Polypropylene glycol (Adeka Polyether P-400) 1.1 g, Polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG400) 0. 4 g and N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd., special grade) using 0.8 g of polyamideimide solution (dope) was prepared on the aramid nonwoven fabric in the same manner as in Example 1. A support having a porous membrane (thickness 42 ⁇ m) was produced. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
  • Example 3 (Production of support) Polyamideimide (Toyobo Co., Ltd., Viromax HR-20NN, solid content 17.5% by weight) 10.05 g, Polypropylene glycol (Adeka Polyether P-400) 1.8 g, and Polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG400 )
  • a polyamideimide solution (dope) was prepared using 3.15 g, and a microporous membrane (thickness 40 ⁇ m) was formed on the aramid nonwoven fabric in the same manner as in Example 1 except that it was heat-treated in an oven at 250 ° C. for 30 minutes. The support which has was produced. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
  • Example 4 (Production of support) Polyamideimide (Toyobo Co., Ltd., Viromax HR-20NN, solid content 17.5% by weight) 10.2 g, Polypropylene glycol (Adeka Polyether P-400) 2.25 g, and Polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG400 )
  • a support having a microporous membrane (thickness: 45 ⁇ m) on an aramid nonwoven fabric was prepared in the same manner as in Example 1 except that 2.25 g was used to prepare a polyamideimide solution (dope).
  • the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
  • Example 5 Polyvinylidene fluoride (Kureha KF Polymer W # 1100) 14.4 g, N, N-dimethylacetamide (DMAc) 45.6 g, N-methyl-2-pyrrolidone (NMP) 8.0 g, lithium chloride (LiCl) Weigh 4.0 g of Wako Pure Chemical Industries, Ltd. (special grade) and 8.0 g of polypropylene glycol (Adeka P-400) in a beaker and stir with a three-one propeller blade on a hot plate at 80 ° C. The mixture was stirred for 3 hours or longer to dissolve everything, left to stand, cooled and degassed to prepare a PVDF solution (dope).
  • DMAc N, N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • LiCl lithium chloride
  • the dope film is formed by uniformly applying the PVDF solution on an aramid nonwoven fabric (Glasspar APT-72, thickness 130 ⁇ m) fixed on a glass plate with an applicator, and immediately after that, RO membrane permeated water adjusted to 50 ° C. Immerse in the bathtub. After soaking until the solvent contained in the dope membrane is sufficiently substituted with RO membrane permeate, remove from the bath, dry in an oven at 100 ° C. for 5 minutes, heat-treat in an oven at 150 ° C. for 30 minutes, and on the aramid nonwoven fabric A support having a microporous membrane (thickness: 40 ⁇ m) was prepared. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
  • aramid nonwoven fabric Glasspar APT-72, thickness 130 ⁇ m
  • Example 6 (Production of support) 9.5 g of polyphenylsulfone (Solvay, RADEL R-5000NT) and 40.5 g of N, N-dimethylformamide (DMF) were weighed in a beaker and stirred on a hot plate with a three-one motor propeller blade. The mixture was heated to 0 ° C. and stirred for 3 hours or longer to dissolve everything, left to stand, cooled and degassed to prepare a PPS solution (dope). The dope film was formed by applying the PPS solution uniformly on an aramid nonwoven fabric (Glasspar APT-72, thickness 130 ⁇ m) fixed on a glass plate with an applicator, and then immediately adjusted to 50 ° C.
  • aramid nonwoven fabric Glasspar APT-72, thickness 130 ⁇ m
  • RO membrane permeated water Immerse in the bathtub. After soaking until the solvent contained in the dope membrane is sufficiently substituted with RO membrane permeate, remove from the bath, dry in an oven at 100 ° C. for 5 minutes, heat-treat in an oven at 150 ° C. for 30 minutes, and on the aramid nonwoven fabric A support having a microporous membrane (thickness: 40 ⁇ m) was prepared. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
  • Example 7 (Production of support) 9.2 g of polysulfone (Solvay, UDEL P-3500) and 40.8 g of N, N-dimethylformamide (DMF) were weighed in a beaker and stirred at 90 ° C. on a hot plate while stirring with a propeller blade of a three-one motor. The mixture was heated and stirred for 3 hours or longer to dissolve everything, left to stand, cooled and degassed to prepare a PS solution (dope). The PS solution is uniformly coated with an applicator on an aramid non-woven fabric (Glasspar APT-72, thickness 130 ⁇ m) fixed on a glass plate to form a dope film, and immediately thereafter RO membrane permeate adjusted to 45 ° C.
  • aramid non-woven fabric Glasspar APT-72, thickness 130 ⁇ m
  • a support having a microporous membrane (thickness: 40 ⁇ m) was prepared.
  • the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
  • Comparative Example 1 (Production of support) A polyamideimide solution (dope) is prepared using 13.5 g of polyamideimide (manufactured by Toyobo Co., Ltd., Viromax HR-20NN, solid content 17.5% by weight) and 1.5 g of polypropylene glycol (ADEKA polyether P-400). A support having a microporous membrane (thickness 40 ⁇ m) on an aramid nonwoven fabric was prepared in the same manner as in Example 1 except that heat treatment was performed in an oven at 250 ° C. for 30 minutes. When the cross section of the produced support was observed with an FE-SEM, the microporous membrane had a structure having large finger voids in the thickness direction.
  • Gurley value measurement According to the ventilation resistance measurement method described in JIS 8117: 2009, the Gurley value (second) was measured using an Oken type air permeability measuring device (EG02, manufactured by Asahi Seiko Co., Ltd.).
  • the produced hydrogen discharge membrane was attached to a VCR connector (space volume: 12.0 ml) manufactured by Swagelok.
  • a SUS tube space volume: 56 ml filled with hydrogen gas at 0.155 MPa (at 105 ° C. atmosphere) is attached to one side of the VCR connector, and a sealed space (68 ml) with an internal pressure of 0.150 MPa. ) was produced. Under a 105 ° C. atmosphere, the pressure change in the sealed space was monitored. Since the number of moles (volume) of hydrogen permeated through the hydrogen discharge membrane was found by the pressure change, this was converted into the permeation amount per day, and the hydrogen permeation amount was calculated.
  • the effective membrane area of the hydrogen discharge membrane used for the measurement is 60.8 ⁇ 10 ⁇ 6 m 2 ( ⁇ 8.8 mm).
  • the hydrogen discharge laminated films of Examples 1 to 7 have excellent barrier properties and selectively permeate hydrogen gas. This is presumably because the hydrogen discharge film was not damaged even when pressure was applied, and the pressure resistance and airtightness of the hydrogen discharge film was excellent.
  • the hydrogen discharge laminated films of Comparative Examples 1 and 2 have poor barrier properties and cannot selectively permeate hydrogen gas. This is considered to be because the pressure was applied to the hydrogen discharge membrane, resulting in damage and the pressure tightness of the hydrogen discharge membrane was reduced.
  • the hydrogen discharge laminated film of the present invention is suitably used as a component of a safety valve or a hydrogen discharge valve provided in electrochemical elements such as batteries, capacitors, capacitors, and sensors.

Abstract

The purpose of the present invention is to provide: a support for forming a hydrogen discharge film, which does not easily break when pressure is applied, and which exhibits excellent pressure-resistant airtightness; and a laminated hydrogen discharge film which uses said support. This support for forming a hydrogen discharge film is used in order to form a hydrogen discharge film including a metal layer, and is characterized in that: the support is a porous body; the porous body has an average pore size in a cross-sectional portion extending 4 µm in the thickness direction from the surface at the side where the hydrogen discharge film is formed of 30-100 nm; and the porous body has a maximum pore size in a cross-sectional portion extending 8 µm in the thickness direction from the surface at the side where the hydrogen discharge film is formed of not more than 2 µm.

Description

水素排出膜形成用支持体及び水素排出積層膜Hydrogen discharge film forming support and hydrogen discharge laminated film
 本発明は、水素排出膜形成用支持体及び水素排出積層膜に関する。前記水素排出積層膜は、電池、コンデンサ、キャパシタ、及びセンサなどの電気化学素子に設けられる。 The present invention relates to a support for forming a hydrogen discharge film and a hydrogen discharge laminated film. The hydrogen discharge laminated film is provided in an electrochemical element such as a battery, a capacitor, a capacitor, and a sensor.
 近年、風力発電及び太陽光発電などのインバータ、蓄電池などの大型電源などの用途にアルミ電解コンデンサが使用されている。アルミ電解コンデンサは、逆電圧、過電圧、及び過電流によって内部に水素ガスが発生する場合があり、水素ガスが大量に発生すると内部圧力の上昇によって外装ケースが破裂する恐れがある。 In recent years, aluminum electrolytic capacitors have been used for applications such as inverters for wind power generation and solar power generation, large power sources such as storage batteries. Aluminum electrolytic capacitors may generate hydrogen gas inside due to reverse voltage, overvoltage, and overcurrent, and if a large amount of hydrogen gas is generated, the outer case may burst due to an increase in internal pressure.
 そのため、一般のアルミ電解コンデンサには、特殊膜を備えた安全弁が設けられている。安全弁は、コンデンサ内部の水素ガスを外部に排出する機能に加え、コンデンサの内部圧力が急激に上昇した場合には自壊して内部圧力を低下させ、コンデンサ自体の破裂を防止する機能を有するものである。このような安全弁の構成部材である特殊膜としては、例えば、以下のものが提案されている。 Therefore, a general aluminum electrolytic capacitor is provided with a safety valve equipped with a special film. In addition to the function of discharging the hydrogen gas inside the capacitor to the outside, the safety valve has a function to prevent the capacitor itself from bursting by self-destructing and reducing the internal pressure when the internal pressure of the capacitor suddenly increases. is there. For example, the following has been proposed as a special membrane that is a component of such a safety valve.
 特許文献1では、パラジュームに20wt%(19.8mol%)Agを含有させたパラジューム銀(Pd-Ag)の合金で構成された箔帯を備えた圧力調整膜が提案されている。 Patent Document 1 proposes a pressure adjusting film including a foil strip made of an alloy of paradium silver (Pd—Ag) containing 20 wt% (19.8 mol%) Ag in paradium.
 しかし、特許文献1の箔帯は、50~60℃程度以下の環境下で脆化しやすく、圧力調整膜としての機能を長期間維持することができないという問題があり、実用化には至っていない。 However, the foil strip of Patent Document 1 is easily embrittled in an environment of about 50 to 60 ° C. or less, and has a problem that the function as a pressure adjusting film cannot be maintained for a long period of time.
 一方、携帯電話、ノートパソコン、及び自動車等のバッテリーとして、リチウムイオン電池が幅広く使用されている。また近年、リチウムイオン電池は高容量化やサイクル特性向上に加えて、安全性への関心が高まっている。特に、リチウムイオン電池はセル内でガスが発生することが知られており、内圧上昇に伴う電池パックの膨張や破裂が懸念されている。 On the other hand, lithium-ion batteries are widely used as batteries for mobile phones, notebook computers, and automobiles. In recent years, lithium-ion batteries have become increasingly interested in safety in addition to increasing capacity and improving cycle characteristics. In particular, it is known that a lithium ion battery generates gas in the cell, and there is a concern about expansion and rupture of the battery pack accompanying an increase in internal pressure.
 特許文献2には、電池内で発生した水素ガスを選択的に透過する水素選択透過性合金膜として、ジルコニウム(Zr)とニッケル(Ni)の合金からなるアモルファス合金(例えば、36Zr-64Ni合金)膜を用いることが開示されている。 Patent Document 2 discloses an amorphous alloy (for example, 36Zr-64Ni alloy) made of an alloy of zirconium (Zr) and nickel (Ni) as a hydrogen selective permeable alloy film that selectively permeates hydrogen gas generated in a battery. The use of a membrane is disclosed.
 しかし、前記アモルファス合金は、低温域(例えば、50℃)で水素に触れると水素化物(ZrH)を形成して脆化するため、圧力調整膜としての機能を長時間維持することができないという問題があった。 However, the amorphous alloy forms a hydride (ZrH 2 ) and becomes brittle when exposed to hydrogen in a low temperature range (for example, 50 ° C.), so that the function as a pressure adjusting film cannot be maintained for a long time. There was a problem.
 特許文献3では、上記問題を解決するために、Pd-Ag合金を含む水素排出膜の片面又は両面に支持体を有しており、前記Pd-Ag合金中のAgの含有量が20mol%以上である水素排出積層膜が提案されている。 In Patent Document 3, in order to solve the above-described problem, the hydrogen discharge membrane containing the Pd—Ag alloy has a support on one side or both sides, and the content of Ag in the Pd—Ag alloy is 20 mol% or more. A hydrogen discharge laminated film is proposed.
 特許文献4では、上記問題を解決するために、Pd-Cu合金を含む水素排出膜の片面又は両面に支持体を有しており、前記Pd-Cu合金中のCuの含有量が30mol%以上である水素排出積層膜が提案されている。 In Patent Document 4, in order to solve the above-mentioned problem, a support is provided on one side or both sides of a hydrogen discharge film containing a Pd—Cu alloy, and the Cu content in the Pd—Cu alloy is 30 mol% or more. A hydrogen discharge laminated film is proposed.
特許第4280014号明細書Japanese Patent No. 4280014 特開2003-297325号公報JP 2003-297325 A 国際公開第2014/098038号International Publication No. 2014/098038 国際公開第2015/019906号International Publication No. 2015/019906
 しかし、スパッタリング法などによって支持体上に形成された薄い水素排出膜は、圧力が加わった際に容易に破損する場合があった。 However, the thin hydrogen discharge film formed on the support by sputtering or the like may be easily broken when pressure is applied.
 本発明は、上記問題点に鑑みてなされたものであり、圧力が加わった際に破損しにくく、耐圧気密性に優れる水素排出膜を形成するための支持体、及び当該支持体を用いた水素排出積層膜を提供することを目的とする。また、当該水素排出積層膜を備えた電気化学素子用安全弁及び電気化学素子用水素排出弁、並びに当該安全弁又は水素排出弁を備えた電気化学素子を提供することを目的とする。 The present invention has been made in view of the above problems, a support for forming a hydrogen discharge film that is not easily damaged when pressure is applied, and has excellent pressure tightness, and hydrogen using the support. An object is to provide a discharge laminated film. Moreover, it aims at providing the electrochemical element provided with the safety valve for electrochemical elements and the hydrogen discharge valve for electrochemical elements provided with the said hydrogen discharge | release laminated film, and the said safety valve or hydrogen discharge valve.
 本発明は、金属層を含む水素排出膜を形成するための水素排出膜形成用支持体であって、
 前記支持体は、多孔質体であり、
 前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向4μmまでの断面部分における平均孔径が30~100nmであり、
 前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向8μmまでの断面部分における最大孔径が2μm以下であることを特徴とする水素排出膜形成用支持体、に関する。
The present invention is a support for forming a hydrogen discharge film for forming a hydrogen discharge film including a metal layer,
The support is a porous body,
The porous body has an average pore diameter of 30 to 100 nm in a cross-sectional portion from the surface on the side where the hydrogen discharge membrane is formed to a thickness direction of 4 μm,
The said porous body is related with the support body for hydrogen discharge film | membrane formation characterized by the maximum pore diameter in the cross-sectional part from the surface of the side which forms the said hydrogen discharge film | membrane to 8 micrometers in thickness direction being 2 micrometers or less.
 本発明者は、スパッタリング法などによって支持体上に薄い金属層を含む水素排出膜を形成する場合において、上記構造の支持体を用いることにより、圧力が加わった際に破損しにくく、耐圧気密性に優れる水素排出膜が得られることを見出した。 In the case where a hydrogen discharge film including a thin metal layer is formed on a support by a sputtering method or the like, the present inventor uses a support having the above structure, so that it is not easily damaged when pressure is applied, and has a pressure-resistant and air-tightness. It has been found that a hydrogen discharge membrane excellent in the above can be obtained.
 前記多孔質体の水素排出膜を形成する側の表面から厚さ方向4μmまでの断面部分における平均孔径が30nm未満の場合には、水素ガスの排出性が不十分になる。一方、100nmを超える場合には、多孔質体上に金属層を形成して複合膜化する際に、金属層が多孔質体表面の孔を完全に塞ぐことが難しくなるため、ピンホールが生じやすくなる。 When the average pore diameter in the cross-sectional portion from the surface on the side of forming the hydrogen discharge membrane of the porous body to the thickness direction of 4 μm is less than 30 nm, the hydrogen gas discharge performance becomes insufficient. On the other hand, when the thickness exceeds 100 nm, it becomes difficult for the metal layer to completely block the pores on the surface of the porous body when forming a composite film by forming a metal layer on the porous body. It becomes easy.
 また、前記多孔質体の水素排出膜を形成する側の表面から厚さ方向8μmまでの断面部分に、最大孔径が2μmを超える孔(空隙)が存在すると、表面からの圧力に対して孔(空隙)がクッションの役割を果たすため、弾性変形量が大きくなりやすい。そのため、多孔質体上に形成した水素排出膜に圧力が加わると水素排出膜が破損しやすくなり、水素排出膜の耐圧気密性が低下する。その結果、電気化学素子内部で発生した水素ガスだけでなく、電気化学素子内部の必要成分も外部に漏れたり、あるいは外部から電気化学素子内部へ不純物が侵入することにより、電気化学素子が劣化しやすくなる。 Further, when a hole (void) having a maximum pore diameter exceeding 2 μm is present in a cross-sectional portion from the surface on the side of forming the hydrogen discharge membrane of the porous body to a thickness direction of 8 μm, the pore ( Since the air gap) serves as a cushion, the amount of elastic deformation tends to increase. Therefore, when a pressure is applied to the hydrogen discharge film formed on the porous body, the hydrogen discharge film is easily damaged, and the pressure-tightness of the hydrogen discharge film is reduced. As a result, not only the hydrogen gas generated inside the electrochemical element, but also necessary components inside the electrochemical element leak to the outside, or impurities enter the inside of the electrochemical element, causing the electrochemical element to deteriorate. It becomes easy.
 前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向4μmまでの断面部分における空孔率が20~70%であることが好ましい。 It is preferable that the porous body has a porosity of 20 to 70% in a cross-sectional portion from the surface on the side where the hydrogen discharge film is formed to a thickness direction of 4 μm.
 前記多孔質体の水素排出膜を形成する側の表面から厚さ方向4μmまでの断面部分における空孔率が20%未満の場合には、支持体自体の通気性が悪くなるため、水素排出積層膜の水素透過性が低下する傾向にある。一方、空孔率が70%を超える場合には、多孔質体表面近傍の樹脂密度が小さくなり、多孔質体表面近傍の機械強度が低下する傾向にある。そのため、多孔質体上に形成した水素排出膜に圧力が加わると水素排出膜が破損しやすくなり、水素排出膜の耐圧気密性が低下する。その結果、上記と同様の理由により、電気化学素子が劣化しやすくなる。 When the porosity in the cross-sectional part from the surface of the porous body on the side where the hydrogen discharge film is formed to the thickness direction of 4 μm is less than 20%, the air permeability of the support itself is deteriorated, so The hydrogen permeability of the membrane tends to decrease. On the other hand, when the porosity exceeds 70%, the resin density in the vicinity of the porous body surface tends to be small, and the mechanical strength in the vicinity of the porous body surface tends to decrease. Therefore, when a pressure is applied to the hydrogen discharge film formed on the porous body, the hydrogen discharge film is easily damaged, and the pressure-tightness of the hydrogen discharge film is reduced. As a result, the electrochemical element tends to deteriorate for the same reason as described above.
 前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向8μmまでの断面部分における平均孔径が50~500nmであることが好ましく、また、空孔率が20~80%であることが好ましい。それにより、多孔質体上に形成した水素排出膜に圧力が加わった際に、水素排出膜が破損することをさらに防止することができる。 The porous body preferably has an average pore diameter of 50 to 500 nm in a cross-sectional portion from the surface on the side where the hydrogen exhaust film is formed to a thickness direction of 8 μm, and a porosity of 20 to 80%. It is preferable. Thereby, it is possible to further prevent the hydrogen discharge membrane from being damaged when pressure is applied to the hydrogen discharge membrane formed on the porous body.
 また、前記多孔質体は、ガーレー試験における空気100ccの透過時間が30000秒以下であることが好ましい。それにより、水素透過性に優れる水素排出積層膜が得られる。 The porous body preferably has a permeation time of 100 cc of air in the Gurley test of 30000 seconds or less. Thereby, a hydrogen discharge laminated film having excellent hydrogen permeability can be obtained.
 また、前記多孔質体は、不織布上に微多孔質膜を有するものであることが好ましい。 The porous body preferably has a microporous film on a non-woven fabric.
 前記微多孔質膜は、ガラス転移温度190℃以上又は融点150℃以上のポリマーを含むことが好ましく、前記ポリマーは、熱硬化性ポリアミドイミド、熱硬化性ポリイミド、ポリフッ化ビニリデン、ポリフェニルスルホン、及びポリスルホンからなる群より選択される少なくとも1種であることが好ましい。 The microporous membrane preferably includes a polymer having a glass transition temperature of 190 ° C. or higher or a melting point of 150 ° C. or higher, and the polymer includes thermosetting polyamideimide, thermosetting polyimide, polyvinylidene fluoride, polyphenylsulfone, and It is preferably at least one selected from the group consisting of polysulfone.
 また、本発明は、前記水素排出膜形成用支持体上に、金属層を含む水素排出膜を有する水素排出積層膜、に関する。 Further, the present invention relates to a hydrogen discharge laminated film having a hydrogen discharge film including a metal layer on the hydrogen discharge film forming support.
 水素排出膜は、電気化学素子の内部圧力が所定値以上になった時に自壊する安全弁としての機能を有する必要がある。水素排出膜が薄膜である場合には、水素排出膜の機械的強度が低いため、電気化学素子の内部圧力が所定値になる前に自壊するおそれがあり、安全弁としての機能を果たせない。そのため、水素排出膜が薄膜である場合には、機械的強度を向上させるために水素排出膜の片面又は両面に支持体を積層する。 The hydrogen discharge membrane must have a function as a safety valve that self-destructs when the internal pressure of the electrochemical element exceeds a predetermined value. When the hydrogen discharge film is a thin film, the mechanical strength of the hydrogen discharge film is low, so that the internal pressure of the electrochemical element may be destroyed before reaching a predetermined value, and the function as a safety valve cannot be performed. Therefore, when the hydrogen discharge film is a thin film, a support is laminated on one or both sides of the hydrogen discharge film in order to improve the mechanical strength.
 前記金属層は、水素透過性、耐酸化性、及び水素吸蔵時の耐脆化に優れるという観点から、Pd合金を含む合金層であることが好ましい。 The metal layer is preferably an alloy layer containing a Pd alloy from the viewpoint of excellent hydrogen permeability, oxidation resistance, and embrittlement resistance during hydrogen storage.
 前記Pd合金は、第11族元素を20~65mol%含むことが好ましい。また、前記第11族元素は、Au、Ag、及びCuからなる群より選択される少なくとも1種であることが好ましい。 The Pd alloy preferably contains 20 to 65 mol% of a Group 11 element. The Group 11 element is preferably at least one selected from the group consisting of Au, Ag, and Cu.
 Pd-第11族元素合金を含む合金層は、膜表面で水素分子を水素原子に解離して水素原子を膜内に固溶し、固溶した水素原子を高圧側から低圧側に拡散させ、低圧側の膜表面で再び水素原子を水素分子に変換して排出する機能を有する。第11族元素の含有量が20mol%未満の場合には、合金の強度が不十分になったり、前記機能が発現し難くなる傾向にあり、65mol%を超える場合には水素透過速度が低下する傾向にある。 An alloy layer containing a Pd-Group 11 element alloy dissociates hydrogen molecules into hydrogen atoms on the film surface to solidify hydrogen atoms in the film, and diffuses the dissolved hydrogen atoms from the high pressure side to the low pressure side. It has the function of converting hydrogen atoms into hydrogen molecules again and discharging them on the low pressure side film surface. When the content of the Group 11 element is less than 20 mol%, the strength of the alloy tends to be insufficient or the function tends to be difficult to develop, and when it exceeds 65 mol%, the hydrogen permeation rate decreases. There is a tendency.
 前記金属層は、厚さが0.01~5μmであることが好ましい。厚さが0.01μm未満の場合には、ピンホールが生じやすくなる。また、圧力が加わると金属層が破損しやすくなり、水素排出膜の耐圧気密性が低下する傾向にある。一方、厚さが5μmを超えると、金属層の脆性が高くなり、圧力又は水素吸蔵時の膨張による応力で金属層が破損しやすくなるため、水素排出膜の耐圧気密性が低下する。また、金属層を形成するのに時間を要し、コスト面で劣るため好ましくない。 The metal layer preferably has a thickness of 0.01 to 5 μm. If the thickness is less than 0.01 μm, pinholes are likely to occur. In addition, when pressure is applied, the metal layer tends to be damaged, and the pressure-tightness of the hydrogen discharge film tends to decrease. On the other hand, when the thickness exceeds 5 μm, the brittleness of the metal layer becomes high, and the metal layer is easily damaged by pressure or stress caused by expansion during hydrogen occlusion, so that the pressure tightness of the hydrogen discharge film decreases. Moreover, it takes time to form the metal layer, which is not preferable because it is inferior in cost.
 また、本発明は、前記水素排出積層膜を備えた電気化学素子用安全弁、前記水素排出積層膜を備えた電気化学素子用水素排出弁、及び当該安全弁又は水素排出弁を備えた電気化学素子、に関する。電気化学素子としては、例えば、アルミ電解コンデンサ及びリチウムイオン電池などが挙げられる。 The present invention also relates to a safety valve for an electrochemical element provided with the hydrogen discharge laminated film, a hydrogen discharge valve for an electrochemical element provided with the hydrogen discharge laminated film, and an electrochemical element provided with the safety valve or the hydrogen discharge valve, About. Examples of the electrochemical element include an aluminum electrolytic capacitor and a lithium ion battery.
 また、本発明は、前記水素排出積層膜、前記安全弁、又は前記水素排出弁を用いた水素排出方法、に関する。 The present invention also relates to a hydrogen discharge method using the hydrogen discharge laminated film, the safety valve, or the hydrogen discharge valve.
 本発明の水素排出方法においては、前記水素排出積層膜等を用いて150℃以下の環境下で水素を排出させることが好ましい。 In the hydrogen discharge method of the present invention, it is preferable to discharge hydrogen under an environment of 150 ° C. or lower using the hydrogen discharge laminated film or the like.
 本発明の水素排出膜形成用支持体を用いることにより、圧力が加わった際に破損しにくく、耐圧気密性に優れる水素排出膜を前記支持体上に形成することができる。本発明の水素排出積層膜は、電気化学素子を長期間使用した場合でも水素排出性が低下しにくく、水素を安定的に排出することができる。また、本発明の水素排出積層膜は、電気化学素子内部で発生した水素ガスのみを速やかに外部に排出することができるだけでなく、外部から電気化学素子内部への不純物の侵入を防止することができる。また、本発明の水素排出積層膜を備えた安全弁は、電気化学素子の内部圧力が急激に上昇した場合には自壊して内部圧力を低下させ、電気化学素子自体の破裂を防止することができる。これら効果により、電気化学素子の性能を長期間維持することができ、電気化学素子の長寿命化を図ることができる。 By using the support for forming a hydrogen discharge film of the present invention, a hydrogen discharge film that is not easily damaged when pressure is applied and has excellent pressure-tightness and airtightness can be formed on the support. The hydrogen discharge laminated film of the present invention is less likely to deteriorate the hydrogen discharge performance even when the electrochemical element is used for a long period of time, and can stably discharge hydrogen. In addition, the hydrogen discharge laminated film of the present invention can not only quickly discharge only hydrogen gas generated inside the electrochemical element to the outside, but also prevent impurities from entering the inside of the electrochemical element from the outside. it can. In addition, the safety valve provided with the hydrogen discharge laminated film of the present invention can self-destruct and reduce the internal pressure when the internal pressure of the electrochemical element suddenly increases, thereby preventing the electrochemical element itself from bursting. . By these effects, the performance of the electrochemical element can be maintained for a long time, and the lifetime of the electrochemical element can be extended.
 以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明の水素排出膜形成用支持体は、多孔質体であり、
 前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向4μmまでの断面部分における平均孔径が30~100nmであり、
 前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向8μmまでの断面部分における最大孔径が2μm以下であることを特徴とする。
The support for forming a hydrogen exhaust film of the present invention is a porous body,
The porous body has an average pore diameter of 30 to 100 nm in a cross-sectional portion from the surface on the side where the hydrogen discharge membrane is formed to a thickness direction of 4 μm,
The porous body has a maximum pore diameter of 2 μm or less in a cross-sectional portion from the surface on the side where the hydrogen exhaust film is formed to a thickness direction of 8 μm.
 前記平均孔径は40~90nmであることが好ましく、より好ましくは50~85nmである。 The average pore diameter is preferably 40 to 90 nm, more preferably 50 to 85 nm.
 また、水素排出膜を形成する側の表面から厚さ方向8μmまでの断面部分における最大孔径は1.9μm以下であることが好ましく、より好ましくは1.8μm以下である。 Further, the maximum pore diameter in the cross-sectional portion from the surface on the side where the hydrogen discharge film is formed to the thickness direction of 8 μm is preferably 1.9 μm or less, more preferably 1.8 μm or less.
 また、前記多孔質体は、水素排出膜を形成する側の表面から厚さ方向4μmまでの断面部分における空孔率が20~70%であることが好ましく、より好ましくは25~60%であり、さらに好ましくは30~56%である。 The porous body preferably has a porosity of 20 to 70%, more preferably 25 to 60% in a cross-sectional portion from the surface on the side where the hydrogen discharge film is formed to the thickness direction of 4 μm. More preferably, it is 30 to 56%.
 また、前記多孔質体は、水素排出膜を形成する側の表面から厚さ方向8μmまでの断面部分における平均孔径が50~500nmであることが好ましく、より好ましくは100~400nmであり、さらに好ましくは150~350nmである。 In addition, the porous body preferably has an average pore diameter of 50 to 500 nm, more preferably 100 to 400 nm, and still more preferably in a cross-sectional portion from the surface on the side where the hydrogen discharge membrane is formed to the thickness direction of 8 μm. Is 150 to 350 nm.
 また、前記多孔質体は、水素排出膜を形成する側の表面から厚さ方向8μmまでの断面部分における空孔率が20~80%であることが好ましく、より好ましくは25~70%であり、さらに好ましくは30~51%である。 Further, the porous body preferably has a porosity of 20 to 80%, more preferably 25 to 70% in a cross-sectional portion from the surface on the side where the hydrogen discharge film is formed to the thickness direction of 8 μm. More preferably, it is 30 to 51%.
 また、前記多孔質体は、ガーレー試験における空気100ccの透過時間が30000秒以下であることが好ましく、より好ましくは10000秒以下であり、さらに好ましくは2000秒以下であり、よりさらに好ましくは1000秒以下であり、特に好ましくは800秒以下である。また、前記透過時間は100秒以上であることが好ましい。 Further, the porous body preferably has a 100 cc permeation time in a Gurley test of 30000 seconds or less, more preferably 10,000 seconds or less, still more preferably 2000 seconds or less, and even more preferably 1000 seconds. Or less, particularly preferably 800 seconds or less. The transmission time is preferably 100 seconds or longer.
 前記多孔質体の形成材料は特に制限されず、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン、ポリエチレンテレフタレート及びポリエチレンナフタレートなどのポリエステル、ポリスルホン及びポリエーテルスルホンなどのポリアリールエーテルスルホン、ポリテトラフルオロエチレン及びポリフッ化ビニリデンなどのフッ素樹脂、エポキシ樹脂、ポリアミド、ポリイミド、ポリアミドイミドなどが挙げられる。 The material for forming the porous body is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyaryl ether sulfones such as polysulfone and polyethersulfone, polytetrafluoroethylene and polyfluoride. Fluorine resin such as vinylidene fluoride, epoxy resin, polyamide, polyimide, polyamideimide and the like.
 前記多孔質体は、前記形成材料を用いて公知の多孔化法によって製造することができる。 The porous body can be produced by a known porous method using the forming material.
 前記多孔質体は、特に、不織布上に微多孔質膜を有するものであることが好ましい。不織布上に微多孔質膜を形成することにより、前記構造の多孔質体を製造しやすくなる。この場合、微多孔質膜の表面が、水素排出膜を形成する側の表面となる。 The porous body preferably has a microporous film on a nonwoven fabric. By forming a microporous film on the nonwoven fabric, it becomes easy to produce a porous body having the above structure. In this case, the surface of the microporous membrane is the surface on the side where the hydrogen discharge membrane is formed.
 不織布は公知のものを特に制限なく使用することができる。不織布の厚さは特に制限されないが、通常、50~200μm程度であり、好ましくは70~150μmである。不織布の目付量は、60g/m以上であることが好ましく、より好ましくは70g/m以上である。 A well-known thing can be especially used for a nonwoven fabric without a restriction | limiting. The thickness of the nonwoven fabric is not particularly limited, but is usually about 50 to 200 μm, preferably 70 to 150 μm. The basis weight of the nonwoven fabric is preferably 60 g / m 2 or more, more preferably 70 g / m 2 or more.
 微多孔質膜の形成材料は特に制限されず、例えば、ポリスルホン、ポリエーテルスルホンなどのポリアリールエーテルスルホン、ポリアミド、ポリイミド、ポリアミドイミド、及びポリフッ化ビニリデンなどが挙げられる。熱的安定性の観点からガラス転移温度190℃以上又は融点150℃以上のポリマーを用いることが好ましく、特に、熱硬化性ポリアミドイミド、熱硬化性ポリイミド、ポリフッ化ビニリデン、ポリフェニルスルホン、及びポリスルホンからなる群より選択される少なくとも1種を用いることが好ましい。 The material for forming the microporous film is not particularly limited, and examples thereof include polyaryl ether sulfones such as polysulfone and polyether sulfone, polyamide, polyimide, polyamideimide, and polyvinylidene fluoride. From the viewpoint of thermal stability, it is preferable to use a polymer having a glass transition temperature of 190 ° C or higher or a melting point of 150 ° C or higher, particularly from thermosetting polyamideimide, thermosetting polyimide, polyvinylidene fluoride, polyphenylsulfone, and polysulfone. It is preferable to use at least one selected from the group consisting of:
 微多孔質膜の形成方法は特に制限されないが、通常、湿式法または乾湿式法により形成する。例えば、ポリマー溶液(ドープ)を不織布上に塗布し、その後、ドープ膜を有する不織布を凝固浴に浸漬してドープ膜にミクロ相分離を生じさせ、そしてポリマーの多孔構造を固定化することにより微多孔質膜を不織布上に形成する。 The formation method of the microporous film is not particularly limited, but is usually formed by a wet method or a dry wet method. For example, a polymer solution (dope) is applied onto a nonwoven fabric, and then the nonwoven fabric having the dope film is immersed in a coagulation bath to cause microphase separation in the dope film and immobilize the porous structure of the polymer. A porous membrane is formed on the nonwoven fabric.
 ポリマー溶液の溶媒としては、例えば、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン、及びジオキサンなどが挙げられる。 Examples of the solvent for the polymer solution include dimethyl sulfoxide, dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone, γ-butyrolactone, and dioxane.
 前記構造の多孔質体を得るために、ポリマー溶液中のベースポリマー(例えば、熱硬化性ポリアミドイミド、熱硬化性ポリイミド、ポリフッ化ビニリデン、ポリフェニルスルホン、及びポリスルホンなど)濃度は8~20重量%程度であることが好ましく、より好ましくは10~19重量%である。また、ポリプロピレングリコール、ポリエチレングリコールなどのポリアルキレングリコール、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)などの水溶性ポリマーなどの添加剤をポリマー溶液に加えてもよい。ポリマー溶液中の添加剤の濃度は5~33重量%程度であることが好ましく、より好ましくは7~33重量%である。また、添加剤の濃度は、使用するベースポリマーの種類に応じて適宜調整する。また、ポリマー溶液の粘度は1~3Pa・s程度であることが好ましく、より好ましくは2~2.5Pa・sである。また、凝固浴の温度は35~55℃程度であることが好ましく、より好ましくは40~50℃である。また、熱処理温度は150~350℃程度であることが好ましく、より好ましくは150~300℃である。浸漬はドープ膜内部の溶媒又は添加剤と凝固液とが十分に置換するまで行う。なお、凝固浴にドープ膜を浸漬した直後にドープ膜内部から抽出される溶媒又は添加剤がドープ膜表面に滞留すると、濃度差が小さくなって溶媒又は添加剤の抽出速度が遅くなるため、相分離が適切に起こり難くなる。そのため、ドープ膜表面に凝固液の流れを作ることが好ましい。具体的には、ドープ膜を有する不織布の搬送速度を大きくする方法(例えば、5m/min以上)、あるいは抽出溶媒又は抽出添加剤の滞留が起こらないように循環ポンプなどで流れを作る方法などが挙げられる。 In order to obtain the porous body having the above structure, the concentration of the base polymer (for example, thermosetting polyamideimide, thermosetting polyimide, polyvinylidene fluoride, polyphenylsulfone, and polysulfone) in the polymer solution is 8 to 20% by weight. The amount is preferably about 10 to 19% by weight. Further, additives such as polyalkylene glycols such as polypropylene glycol and polyethylene glycol, and water-soluble polymers such as polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) may be added to the polymer solution. The concentration of the additive in the polymer solution is preferably about 5 to 33% by weight, more preferably 7 to 33% by weight. Further, the concentration of the additive is appropriately adjusted according to the type of the base polymer to be used. The viscosity of the polymer solution is preferably about 1 to 3 Pa · s, more preferably 2 to 2.5 Pa · s. The temperature of the coagulation bath is preferably about 35 to 55 ° C, more preferably 40 to 50 ° C. The heat treatment temperature is preferably about 150 to 350 ° C., more preferably 150 to 300 ° C. Immersion is performed until the solvent or additive in the dope film is sufficiently replaced with the coagulation liquid. Note that if the solvent or additive extracted from the dope film immediately after immersing the dope film in the coagulation bath stays on the dope film surface, the concentration difference becomes smaller and the extraction speed of the solvent or additive becomes slower. Separation is less likely to occur properly. Therefore, it is preferable to create a flow of the coagulating liquid on the surface of the dope film. Specifically, a method of increasing the conveyance speed of the nonwoven fabric having the dope film (for example, 5 m / min or more) or a method of creating a flow with a circulation pump or the like so as not to cause the retention of the extraction solvent or the extraction additive. Can be mentioned.
 微多孔質膜の厚さは、通常、10~100μm程度であり、好ましくは20~80μmであり、より好ましくは30~60μmである。 The thickness of the microporous membrane is usually about 10 to 100 μm, preferably 20 to 80 μm, more preferably 30 to 60 μm.
 本発明の水素排出積層膜は、前記支持体上に、金属層を含む水素排出膜を有するものである。 The hydrogen discharge laminated film of the present invention has a hydrogen discharge film including a metal layer on the support.
 前記水素排出膜は、金属層を少なくとも有する。金属層を形成する金属は、単体、又は合金化することで水素透過機能を有する金属であれば特に制限されず、例えば、Pd、Nb、V、Ta、Ni、Fe、Al、Cu、Ru、Re、Rh、Au、Pt、Ag、Cr、Co、Sn、Zr、Y、Ce、Ti、Ir、Mo及びこれらの金属を2種以上含む合金などが挙げられる。 The hydrogen discharge film has at least a metal layer. The metal forming the metal layer is not particularly limited as long as it is a single substance or a metal having a hydrogen permeation function by alloying, for example, Pd, Nb, V, Ta, Ni, Fe, Al, Cu, Ru, Examples thereof include Re, Rh, Au, Pt, Ag, Cr, Co, Sn, Zr, Y, Ce, Ti, Ir, Mo, and an alloy containing two or more of these metals.
 前記金属層は、Pd合金を含む合金層であることが好ましい。Pd合金を形成する他の金属は特に制限されないが、第11族元素を用いることが好ましく、より好ましくはAu、Ag、及びCuからなる群より選択される少なくとも1種である。特に、Pd-Au合金は、電気化学素子内部の電解液又は構成部材から発生するガス成分に対する耐腐食性が優れるため好ましい。Pd合金は、第11族元素を20~65mol%含むことが好ましく、より好ましくは30~65mol%であり、さらに好ましくは30~60mol%である。また、Ag含有量が20mol%以上であるPd-Ag合金、Cu含有量が30mol%以上であるPd-Cu合金、又はAu含有量が20mol%以上であるPd-Au合金を含む合金層は、50~60℃程度以下の低温域であっても水素によって脆化しにくいので好ましい。また、Pd合金は、本発明の効果を損なわない範囲でIB族及び/又はIIIA族の金属を含んでいてもよい。 The metal layer is preferably an alloy layer containing a Pd alloy. The other metal forming the Pd alloy is not particularly limited, but a group 11 element is preferably used, and more preferably at least one selected from the group consisting of Au, Ag, and Cu. In particular, a Pd—Au alloy is preferable because it is excellent in corrosion resistance against gas components generated from the electrolyte solution or constituent members inside the electrochemical element. The Pd alloy preferably contains a Group 11 element in an amount of 20 to 65 mol%, more preferably 30 to 65 mol%, and still more preferably 30 to 60 mol%. An alloy layer containing a Pd—Ag alloy having an Ag content of 20 mol% or more, a Pd—Cu alloy having a Cu content of 30 mol% or more, or a Pd—Au alloy having an Au content of 20 mol% or more, Even in a low temperature range of about 50 to 60 ° C. or less, hydrogen is not easily embrittled, which is preferable. The Pd alloy may contain a group IB and / or group IIIA metal as long as the effects of the present invention are not impaired.
 Pd合金を含む合金層は、上記したPdを含む2成分を含む合金だけでなく、例えばPd-Au-Agの3成分を含む合金であってもよく、Pd-Au-Cuの3成分を含む合金であってもよい。さらに、Pd-Au-Ag-Cuの4成分を含む合金であってもよい。例えば、PdとAuと他の金属を含む多成分系合金の場合、Pd-Au合金中のAuと他の金属との合計含有量は、55mol%以下であることが好ましく、より好ましくは50mol%以下であり、さらに好ましくは45mol%以下であり、特に好ましくは40mol%以下である。 The alloy layer containing the Pd alloy is not limited to the alloy containing the two components containing Pd, but may be an alloy containing, for example, the three components of Pd—Au—Ag, and includes the three components of Pd—Au—Cu. An alloy may be used. Further, an alloy containing four components of Pd—Au—Ag—Cu may be used. For example, in the case of a multicomponent alloy containing Pd, Au, and another metal, the total content of Au and the other metal in the Pd—Au alloy is preferably 55 mol% or less, more preferably 50 mol%. Or less, more preferably 45 mol% or less, and particularly preferably 40 mol% or less.
 前記金属層は、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、及びメッキ法などにより前記支持体上に形成することができるが、膜厚の薄い金属層を製造する場合には、特にスパッタリング法を用いることが好ましい。 The metal layer can be formed on the support by, for example, a sputtering method, a vacuum deposition method, an ion plating method, a plating method, etc., but particularly when a thin metal layer is manufactured. It is preferable to use a sputtering method.
 スパッタリング法は特に限定されず、平行平板型、枚葉型、通過型、DCスパッタ、及びRFスパッタなどのスパッタリング装置を用いて行うことができる。例えば、金属ターゲットを設置したスパッタリング装置に前記支持体を取り付けた後、スパッタリング装置内を真空排気し、Arガス圧を所定値に調整し、金属ターゲットに所定のスパッタ電流を投入して、前記支持体上に金属層を形成する。なお、ターゲットとしては、製造する金属層に応じて、単一又は複数のターゲットを用いることができる。 The sputtering method is not particularly limited, and can be performed using a sputtering apparatus such as a parallel plate type, a single wafer type, a passing type, DC sputtering, and RF sputtering. For example, after attaching the support to a sputtering apparatus in which a metal target is installed, the sputtering apparatus is evacuated, the Ar gas pressure is adjusted to a predetermined value, a predetermined sputtering current is applied to the metal target, and the support is A metal layer is formed on the body. In addition, as a target, a single target or a some target can be used according to the metal layer to manufacture.
 前記金属層の厚さは、0.01~5μmであることが好ましく、より好ましくは0.05~2μmである。 The thickness of the metal layer is preferably 0.01 to 5 μm, more preferably 0.05 to 2 μm.
 前記金属層の面積は、水素透過量と厚さを考慮して適宜調整することができるが、安全弁の構成部材として用いる場合には、通常、0.01~100mm程度である。 The area of the metal layer can be appropriately adjusted in consideration of the hydrogen permeation amount and thickness, but is usually about 0.01 to 100 mm 2 when used as a safety valve component.
 機械的強度を向上させるために、金属層を含む水素排出膜の上に別の支持体を積層してもよい。 In order to improve the mechanical strength, another support may be laminated on the hydrogen discharge membrane including the metal layer.
 本発明の水素排出積層膜の形状は、略円形状であってもよく、三角形、四角形、五角形等の多角形であってもよい。後述する用途に応じた任意の形状にすることができる。 The shape of the hydrogen discharge laminated film of the present invention may be a substantially circular shape or a polygon such as a triangle, a quadrangle, or a pentagon. It can be made into arbitrary shapes according to the use mentioned later.
 本発明の水素排出積層膜は、特にアルミ電解コンデンサ又はリチウムイオン電池の安全弁の構成部材として有用である。また、本発明の水素排出積層膜は、安全弁とは別に水素排出弁として電気化学素子に設けることも可能である。 The hydrogen discharge laminated film of the present invention is particularly useful as a component for a safety valve of an aluminum electrolytic capacitor or a lithium ion battery. Moreover, the hydrogen discharge | release laminated film of this invention can also be provided in an electrochemical element as a hydrogen discharge valve separately from a safety valve.
 本発明の水素排出積層膜を用いて電気化学素子内部で発生した水素を排出する方法は特に限定されないが、例えばアルミ電解コンデンサ又はリチウムイオン電池の外装部分の一部に本発明の水素排出積層膜を設け、これを外装内部と外部の隔膜として用いることができる。この場合、外装内部と外部は水素排出積層膜によって隔離され、水素排出積層膜は水素以外の気体を透過しない。外装内部で発生した水素は圧力の上昇により水素排出積層膜を介して外部に排出され、外装内部は所定圧力以上に上昇することはない。 The method for discharging the hydrogen generated inside the electrochemical device using the hydrogen discharge laminated film of the present invention is not particularly limited. For example, the hydrogen discharge stacked film of the present invention may be applied to a part of an exterior portion of an aluminum electrolytic capacitor or a lithium ion battery. And can be used as an outer and inner diaphragm. In this case, the inside and outside of the exterior are separated by the hydrogen discharge laminated film, and the hydrogen discharge laminated film does not permeate gases other than hydrogen. Hydrogen generated inside the exterior is discharged to the outside through the hydrogen discharge laminated film due to an increase in pressure, and the interior of the exterior does not rise above a predetermined pressure.
 本発明の水素排出積層膜は、その合金組成を適宜調整することにより、低温で脆化しないため、例えば150℃以下の温度、さらには110℃以下の温度で使用できるという利点がある。すなわち、その用途により、高温(例えば400~500℃)で使用されないアルミ電解コンデンサ又はリチウムイオン電池における水素排出方法において、本発明の水素排出積層膜は特に好適に用いられる。 The hydrogen-exhausting laminated film of the present invention has an advantage that it can be used at a temperature of, for example, 150 ° C. or lower, further 110 ° C. or lower because it does not become brittle at low temperatures by appropriately adjusting the alloy composition. That is, the hydrogen discharge laminated film of the present invention is particularly preferably used in a hydrogen discharge method in an aluminum electrolytic capacitor or a lithium ion battery that is not used at a high temperature (for example, 400 to 500 ° C.) depending on its application.
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 実施例1
 〔支持体の作製〕
 ポリアミドイミド(東洋紡社製、バイロマックスHR-22BL、固形分20重量%)12.8g、ポリプロピレングリコール(アデカポリエーテルP-400)1.1g、及びN-メチル-2-ピロリドン(和光純薬工業社製、特級)1.2gをスクリュー菅瓶に入れ、遊星撹拌脱泡装置(シンキー社製、泡取り練太郎ARE-310)を用いて2000rpmで5分間撹拌し、その後、2200rpmで3分間撹拌して脱泡してポリアミドイミド溶液(ドープ)を調製した。前記ポリアミドイミド溶液をガラス板上に固定したアラミド不織布(グラスパーAPT-72、厚さ130μm)上にアプリケーターで均一に塗布してドープ膜を形成し、その後すぐに45℃に調整したRO膜透過水の浴槽に浸漬した。ドープ膜に含まれる溶媒が十分にRO膜透過水と置換するまで浸漬した後、浴槽から取り出し、120℃のオーブンで5分間乾燥した後、300℃のオーブンで30分間熱処理して、アラミド不織布上に微多孔質膜(厚さ38μm)を有する支持体を作製した。作製した支持体の断面をFE-SEMで観察したところ、微多孔質膜は、表面から厚さ方向に徐々に孔径が大きくなる非対称多孔質構造であった。
Example 1
(Production of support)
Polyamideimide (Toyobo Co., Ltd., Viromax HR-22BL, solid content 20% by weight) 12.8 g, polypropylene glycol (Adeka Polyether P-400) 1.1 g, and N-methyl-2-pyrrolidone (Wako Pure Chemical Industries, Ltd.) 1.2g in a screw bottle and stirred for 5 minutes at 2000rpm using a planetary stirring and defoaming device (manufactured by Shinky Corp., Foaming Netaro ARE-310), and then stirred at 2200rpm for 3 minutes. Then, defoaming was performed to prepare a polyamideimide solution (dope). RO membrane permeated water adjusted to 45 ° C. immediately after the polyamideimide solution is uniformly coated with an applicator on an aramid nonwoven fabric (Glasspar APT-72, thickness 130 μm) fixed on a glass plate. Soaked in a bathtub. After dipping until the solvent contained in the dope membrane is sufficiently replaced with the RO membrane permeate, remove from the bath, dry in a 120 ° C oven for 5 minutes, and then heat-treat in a 300 ° C oven for 30 minutes to form an aramid nonwoven fabric. A support having a microporous membrane (thickness: 38 μm) was prepared. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 Au含有量が40mol%であるPd-Au合金ターゲットを装着したRFマグネトロンスパッタリング装置(サンユー電子社製)に、前記支持体を取り付けた。その後、スパッタリング装置内を1×10-5Pa以下に真空排気し、Arガス圧1.0Paにおいて、Pd-Au合金ターゲットに4.8Aのスパッタ電流を投入して、前記支持体上に厚さ100nmのPd-Au合金膜(Au含有量40mol%)を形成して水素排出積層膜を作製した。
[Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)]
The support was attached to an RF magnetron sputtering apparatus (manufactured by Sanyu Electronics Co., Ltd.) equipped with a Pd—Au alloy target having an Au content of 40 mol%. Thereafter, the inside of the sputtering apparatus is evacuated to 1 × 10 −5 Pa or less, and at a Ar gas pressure of 1.0 Pa, a sputtering current of 4.8 A is applied to the Pd—Au alloy target to form a thickness on the support. A 100-nm Pd—Au alloy film (Au content 40 mol%) was formed to produce a hydrogen discharge laminated film.
 実施例2
 〔支持体の作製〕
 ポリアミドイミド(東洋紡社製、バイロマックスHR-22BL、固形分20重量%)12.8g、ポリプロピレングリコール(アデカポリエーテルP-400)1.1g、ポリエチレングリコール(東京化成工業社製、PEG400)0.4g、及びN-メチル-2-ピロリドン(和光純薬工業社製、特級)0.8gを用いてポリアミドイミド溶液(ドープ)を調製した以外は実施例1と同様の方法でアラミド不織布上に微多孔質膜(厚さ42μm)を有する支持体を作製した。作製した支持体の断面をFE-SEMで観察したところ、微多孔質膜は、表面から厚さ方向に徐々に孔径が大きくなる非対称多孔質構造であった。
Example 2
(Production of support)
Polyamideimide (Toyobo Co., Ltd., Viromax HR-22BL, solid content 20% by weight) 12.8 g, Polypropylene glycol (Adeka Polyether P-400) 1.1 g, Polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG400) 0. 4 g and N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd., special grade) using 0.8 g of polyamideimide solution (dope) was prepared on the aramid nonwoven fabric in the same manner as in Example 1. A support having a porous membrane (thickness 42 μm) was produced. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 前記支持体を用いた以外は実施例1と同様の方法で水素排出積層膜を作製した。
[Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)]
A hydrogen discharge laminated film was produced in the same manner as in Example 1 except that the support was used.
 実施例3
 〔支持体の作製〕
 ポリアミドイミド(東洋紡社製、バイロマックスHR-20NN、固形分17.5重量%)10.05g、ポリプロピレングリコール(アデカポリエーテルP-400)1.8g、及びポリエチレングリコール(東京化成工業社製、PEG400)3.15gを用いてポリアミドイミド溶液(ドープ)を調製し、250℃のオーブンで30分間熱処理した以外は実施例1と同様の方法でアラミド不織布上に微多孔質膜(厚さ40μm)を有する支持体を作製した。作製した支持体の断面をFE-SEMで観察したところ、微多孔質膜は、表面から厚さ方向に徐々に孔径が大きくなる非対称多孔質構造であった。
Example 3
(Production of support)
Polyamideimide (Toyobo Co., Ltd., Viromax HR-20NN, solid content 17.5% by weight) 10.05 g, Polypropylene glycol (Adeka Polyether P-400) 1.8 g, and Polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG400 ) A polyamideimide solution (dope) was prepared using 3.15 g, and a microporous membrane (thickness 40 μm) was formed on the aramid nonwoven fabric in the same manner as in Example 1 except that it was heat-treated in an oven at 250 ° C. for 30 minutes. The support which has was produced. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 前記支持体を用いた以外は実施例1と同様の方法で水素排出積層膜を作製した。
[Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)]
A hydrogen discharge laminated film was produced in the same manner as in Example 1 except that the support was used.
 実施例4
 〔支持体の作製〕
 ポリアミドイミド(東洋紡社製、バイロマックスHR-20NN、固形分17.5重量%)10.2g、ポリプロピレングリコール(アデカポリエーテルP-400)2.25g、及びポリエチレングリコール(東京化成工業社製、PEG400)2.25gを用いてポリアミドイミド溶液(ドープ)を調製した以外は実施例1と同様の方法でアラミド不織布上に微多孔質膜(厚さ45μm)を有する支持体を作製した。作製した支持体の断面をFE-SEMで観察したところ、微多孔質膜は、表面から厚さ方向に徐々に孔径が大きくなる非対称多孔質構造であった。
Example 4
(Production of support)
Polyamideimide (Toyobo Co., Ltd., Viromax HR-20NN, solid content 17.5% by weight) 10.2 g, Polypropylene glycol (Adeka Polyether P-400) 2.25 g, and Polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG400 ) A support having a microporous membrane (thickness: 45 μm) on an aramid nonwoven fabric was prepared in the same manner as in Example 1 except that 2.25 g was used to prepare a polyamideimide solution (dope). When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 前記支持体を用いた以外は実施例1と同様の方法で水素排出積層膜を作製した。
[Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)]
A hydrogen discharge laminated film was produced in the same manner as in Example 1 except that the support was used.
 実施例5
 〔支持体の作製〕
 ポリフッ化ビニリデン(クレハ社製、KFポリマーW#1100)14.4g、N,N-ジメチルアセトアミド(DMAc)45.6g、N-メチル-2-ピロリドン(NMP)8.0g、塩化リチウム(LiCl)(和光純薬工業社製、特級)4.0g、及びポリプロピレングリコール(アデカ社製、P-400)8.0gをビーカーに計量し、スリーワンモーターのプロペラ翼で撹拌しながらホットプレート上で80℃に加熱し、3時間以上撹拌してすべてを溶解し、静置して冷却・脱泡を行ってPVDF溶液(ドープ)を調整した。前記PVDF溶液をガラス板上に固定したアラミド不織布(グラスパーAPT-72、厚さ130μm)上にアプリケーターで均一に塗布してドープ膜を形成し、その後すぐに50℃に調整したRO膜透過水の浴槽に浸漬した。ドープ膜に含まれる溶媒が十分にRO膜透過水と置換するまで浸漬した後、浴槽から取り出し、100℃のオーブンで5分間乾燥した後、150℃のオーブンで30分間熱処理して、アラミド不織布上に微多孔質膜(厚さ40μm)を有する支持体を作製した。作製した支持体の断面をFE-SEMで観察したところ、微多孔質膜は、表面から厚さ方向に徐々に孔径が大きくなる非対称多孔質構造であった。
Example 5
(Production of support)
Polyvinylidene fluoride (Kureha KF Polymer W # 1100) 14.4 g, N, N-dimethylacetamide (DMAc) 45.6 g, N-methyl-2-pyrrolidone (NMP) 8.0 g, lithium chloride (LiCl) Weigh 4.0 g of Wako Pure Chemical Industries, Ltd. (special grade) and 8.0 g of polypropylene glycol (Adeka P-400) in a beaker and stir with a three-one propeller blade on a hot plate at 80 ° C. The mixture was stirred for 3 hours or longer to dissolve everything, left to stand, cooled and degassed to prepare a PVDF solution (dope). The dope film is formed by uniformly applying the PVDF solution on an aramid nonwoven fabric (Glasspar APT-72, thickness 130 μm) fixed on a glass plate with an applicator, and immediately after that, RO membrane permeated water adjusted to 50 ° C. Immerse in the bathtub. After soaking until the solvent contained in the dope membrane is sufficiently substituted with RO membrane permeate, remove from the bath, dry in an oven at 100 ° C. for 5 minutes, heat-treat in an oven at 150 ° C. for 30 minutes, and on the aramid nonwoven fabric A support having a microporous membrane (thickness: 40 μm) was prepared. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 前記支持体を用いた以外は実施例1と同様の方法で水素排出積層膜を作製した。
[Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)]
A hydrogen discharge laminated film was produced in the same manner as in Example 1 except that the support was used.
 実施例6
 〔支持体の作製〕
 ポリフェニルスルホン(ソルベイ社製、RADEL R-5000NT)9.5g、及びN,N-ジメチルホルムアミド(DMF)40.5gをビーカーに計量し、スリーワンモーターのプロペラ翼で撹拌しながらホットプレート上で90℃に加熱し、3時間以上撹拌してすべてを溶解し、静置して冷却・脱泡を行ってPPS溶液(ドープ)を調整した。前記PPS溶液をガラス板上に固定したアラミド不織布(グラスパーAPT-72、厚さ130μm)上にアプリケーターで均一に塗布してドープ膜を形成し、その後すぐに50℃に調整したRO膜透過水の浴槽に浸漬した。ドープ膜に含まれる溶媒が十分にRO膜透過水と置換するまで浸漬した後、浴槽から取り出し、100℃のオーブンで5分間乾燥した後、150℃のオーブンで30分間熱処理して、アラミド不織布上に微多孔質膜(厚さ40μm)を有する支持体を作製した。作製した支持体の断面をFE-SEMで観察したところ、微多孔質膜は、表面から厚さ方向に徐々に孔径が大きくなる非対称多孔質構造であった。
Example 6
(Production of support)
9.5 g of polyphenylsulfone (Solvay, RADEL R-5000NT) and 40.5 g of N, N-dimethylformamide (DMF) were weighed in a beaker and stirred on a hot plate with a three-one motor propeller blade. The mixture was heated to 0 ° C. and stirred for 3 hours or longer to dissolve everything, left to stand, cooled and degassed to prepare a PPS solution (dope). The dope film was formed by applying the PPS solution uniformly on an aramid nonwoven fabric (Glasspar APT-72, thickness 130 μm) fixed on a glass plate with an applicator, and then immediately adjusted to 50 ° C. RO membrane permeated water. Immerse in the bathtub. After soaking until the solvent contained in the dope membrane is sufficiently substituted with RO membrane permeate, remove from the bath, dry in an oven at 100 ° C. for 5 minutes, heat-treat in an oven at 150 ° C. for 30 minutes, and on the aramid nonwoven fabric A support having a microporous membrane (thickness: 40 μm) was prepared. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 前記支持体を用いた以外は実施例1と同様の方法で水素排出積層膜を作製した。
[Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)]
A hydrogen discharge laminated film was produced in the same manner as in Example 1 except that the support was used.
 実施例7
 〔支持体の作製〕
 ポリスルホン(ソルベイ社製、UDEL P-3500)9.2g、及びN,N-ジメチルホルムアミド(DMF)40.8gをビーカーに計量し、スリーワンモーターのプロペラ翼で撹拌しながらホットプレート上で90℃に加熱し、3時間以上撹拌してすべてを溶解し、静置して冷却・脱泡を行ってPS溶液(ドープ)を調整した。前記PS溶液をガラス板上に固定したアラミド不織布(グラスパーAPT-72、厚さ130μm)上にアプリケーターで均一に塗布してドープ膜を形成し、その後すぐに45℃に調整したRO膜透過水の浴槽に浸漬した。ドープ膜に含まれる溶媒が十分にRO膜透過水と置換するまで浸漬した後、浴槽から取り出し、100℃のオーブンで5分間乾燥した後、150℃のオーブンで30分間熱処理して、アラミド不織布上に微多孔質膜(厚さ40μm)を有する支持体を作製した。作製した支持体の断面をFE-SEMで観察したところ、微多孔質膜は、表面から厚さ方向に徐々に孔径が大きくなる非対称多孔質構造であった。
Example 7
(Production of support)
9.2 g of polysulfone (Solvay, UDEL P-3500) and 40.8 g of N, N-dimethylformamide (DMF) were weighed in a beaker and stirred at 90 ° C. on a hot plate while stirring with a propeller blade of a three-one motor. The mixture was heated and stirred for 3 hours or longer to dissolve everything, left to stand, cooled and degassed to prepare a PS solution (dope). The PS solution is uniformly coated with an applicator on an aramid non-woven fabric (Glasspar APT-72, thickness 130 μm) fixed on a glass plate to form a dope film, and immediately thereafter RO membrane permeate adjusted to 45 ° C. Immerse in the bathtub. After soaking until the solvent contained in the dope membrane is sufficiently substituted with RO membrane permeate, remove from the bath, dry in an oven at 100 ° C. for 5 minutes, heat-treat in an oven at 150 ° C. for 30 minutes, and on the aramid nonwoven fabric A support having a microporous membrane (thickness: 40 μm) was prepared. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 前記支持体を用いた以外は実施例1と同様の方法で水素排出積層膜を作製した。
[Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)]
A hydrogen discharge laminated film was produced in the same manner as in Example 1 except that the support was used.
 比較例1
 〔支持体の作製〕
 ポリアミドイミド(東洋紡社製、バイロマックスHR-20NN、固形分17.5重量%)13.5g、及びポリプロピレングリコール(アデカポリエーテルP-400)1.5gを用いてポリアミドイミド溶液(ドープ)を調製し、250℃のオーブンで30分間熱処理した以外は実施例1と同様の方法でアラミド不織布上に微多孔質膜(厚さ40μm)を有する支持体を作製した。作製した支持体の断面をFE-SEMで観察したところ、微多孔質膜は、厚さ方向にフィンガーボイド状の大きなボイドを有する構造であった。
Comparative Example 1
(Production of support)
A polyamideimide solution (dope) is prepared using 13.5 g of polyamideimide (manufactured by Toyobo Co., Ltd., Viromax HR-20NN, solid content 17.5% by weight) and 1.5 g of polypropylene glycol (ADEKA polyether P-400). A support having a microporous membrane (thickness 40 μm) on an aramid nonwoven fabric was prepared in the same manner as in Example 1 except that heat treatment was performed in an oven at 250 ° C. for 30 minutes. When the cross section of the produced support was observed with an FE-SEM, the microporous membrane had a structure having large finger voids in the thickness direction.
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 前記支持体を用いた以外は実施例1と同様の方法で水素排出積層膜を作製した。
[Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)]
A hydrogen discharge laminated film was produced in the same manner as in Example 1 except that the support was used.
 比較例2
 〔支持体の作製〕
 ポリアミドイミド(東洋紡社製、バイロマックスHR-20NN、固形分17.5重量%)9.75g、ポリプロピレングリコール(アデカポリエーテルP-400)2.25g、及びポリエチレングリコール(東京化成工業社製、PEG400)3gを用いてポリアミドイミド溶液(ドープ)を調製し、250℃のオーブンで30分間熱処理した以外は実施例1と同様の方法でアラミド不織布上に微多孔質膜(厚さ38μm)を有する支持体を作製した。作製した支持体の断面をFE-SEMで観察したところ、微多孔質膜は、表面から厚さ方向に徐々に孔径が大きくなる非対称多孔質構造であった。
Comparative Example 2
(Production of support)
Polyamideimide (Toyobo Co., Ltd., Bilomax HR-20NN, solid content 17.5% by weight) 9.75 g, Polypropylene glycol (Adeka Polyether P-400) 2.25 g, and Polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG400 ) A support having a microporous membrane (thickness 38 μm) on an aramid nonwoven fabric in the same manner as in Example 1 except that a polyamideimide solution (dope) was prepared using 3 g and heat-treated in an oven at 250 ° C. for 30 minutes. The body was made. When the cross section of the produced support was observed with FE-SEM, the microporous membrane had an asymmetric porous structure in which the pore diameter gradually increased from the surface in the thickness direction.
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 前記支持体を用いた以外は実施例1と同様の方法で水素排出積層膜を作製した。
[Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)]
A hydrogen discharge laminated film was produced in the same manner as in Example 1 except that the support was used.
 〔測定及び評価方法〕
 (空孔率の測定)
 作製した支持体の断面の画像をFE-SEMを用いて観察し、5,000倍、20,000倍の画像を得た。その画像を二値化し画像解析を行って画像中の孔の面積を算出し、支持体表面から厚さ方向4μm又は8μmまでの断面部分における空孔率(%)を得た。
[Measurement and evaluation method]
(Measurement of porosity)
A cross-sectional image of the produced support was observed using an FE-SEM, and images at 5,000 times and 20,000 times were obtained. The image was binarized and image analysis was performed to calculate the area of the pores in the image, and the porosity (%) in the cross-sectional portion from the support surface to the thickness direction of 4 μm or 8 μm was obtained.
 (平均孔径及び最大孔径の測定)
 前記空孔率の測定で得られた画像解析結果から孔径及び孔径分布を解析し、平均孔径(nm)及び最大孔径(μm)を算出した。
(Measurement of average pore size and maximum pore size)
From the image analysis result obtained by the measurement of the porosity, the pore diameter and the pore diameter distribution were analyzed, and the average pore diameter (nm) and the maximum pore diameter (μm) were calculated.
 (ガーレー値の測定)
 JIS8117:2009に記載の通気抵抗測定法に従って、王研式透気度測定装置(旭精工製、EG02)を用いてガーレー値(秒)を測定した。
(Gurley value measurement)
According to the ventilation resistance measurement method described in JIS 8117: 2009, the Gurley value (second) was measured using an Oken type air permeability measuring device (EG02, manufactured by Asahi Seiko Co., Ltd.).
 (水素透過量の測定)
 作製した水素排出膜をスウェージロック社製のVCRコネクター(空間体積:12.0ml)に取り付けた。VCRコネクターの片側に0.155MPa(105℃雰囲気下)となるように水素ガスを封入したSUSチューブ(空間体積:56ml)を取り付け、内部圧力が0.150MPaとなるように密封された空間(68ml)を作製した。105℃雰囲気下にて、密閉された空間の圧力変化をモニターした。圧力変化により水素排出膜を透過した水素モル数(体積)がわかるため、これを1日当たりの透過量に換算して水素透過量を算出した。なお、測定に用いた水素排出膜の有効膜面積は60.8×10-6(φ8.8mm)である。 
 例えば、2時間で圧力が0.150MPaから0.100MPaに変化した場合(変化量0.050MPa)、水素排出膜を透過した水素体積は34mlになる。よって、1日当たりの水素透過量は34×24/2=408ml/dayとなる。
(Measurement of hydrogen permeation)
The produced hydrogen discharge membrane was attached to a VCR connector (space volume: 12.0 ml) manufactured by Swagelok. A SUS tube (space volume: 56 ml) filled with hydrogen gas at 0.155 MPa (at 105 ° C. atmosphere) is attached to one side of the VCR connector, and a sealed space (68 ml) with an internal pressure of 0.150 MPa. ) Was produced. Under a 105 ° C. atmosphere, the pressure change in the sealed space was monitored. Since the number of moles (volume) of hydrogen permeated through the hydrogen discharge membrane was found by the pressure change, this was converted into the permeation amount per day, and the hydrogen permeation amount was calculated. The effective membrane area of the hydrogen discharge membrane used for the measurement is 60.8 × 10 −6 m 2 (φ8.8 mm).
For example, when the pressure changes from 0.150 MPa to 0.100 MPa in 2 hours (change amount: 0.050 MPa), the hydrogen volume permeated through the hydrogen discharge membrane becomes 34 ml. Therefore, the hydrogen permeation amount per day is 34 × 24/2 = 408 ml / day.
 (窒素透過量の測定)
 SUSチューブに封入したガスを窒素ガスにした以外は、上記の水素透過量の測定と同様の方法で窒素透過量を測定し、バリア性を評価した。
(Measurement of nitrogen permeation)
Except that the gas sealed in the SUS tube was changed to nitrogen gas, the nitrogen permeation amount was measured by the same method as the measurement of the hydrogen permeation amount, and the barrier property was evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~7の水素排出積層膜は、バリア性に優れ、水素ガスを選択的に透過していることがわかる。これは、水素排出膜に圧力が加わっても破損せず、水素排出膜の耐圧気密性が優れていたためと考えられる。一方、比較例1及び2の水素排出積層膜は、バリア性が悪く、水素ガスを選択的に透過できていないことがわかる。これは、水素排出膜に圧力が加わったことで破損し、水素排出膜の耐圧気密性が低下したためと考えられる。 From Table 1, it can be seen that the hydrogen discharge laminated films of Examples 1 to 7 have excellent barrier properties and selectively permeate hydrogen gas. This is presumably because the hydrogen discharge film was not damaged even when pressure was applied, and the pressure resistance and airtightness of the hydrogen discharge film was excellent. On the other hand, it can be seen that the hydrogen discharge laminated films of Comparative Examples 1 and 2 have poor barrier properties and cannot selectively permeate hydrogen gas. This is considered to be because the pressure was applied to the hydrogen discharge membrane, resulting in damage and the pressure tightness of the hydrogen discharge membrane was reduced.
 本発明の水素排出積層膜は、電池、コンデンサ、キャパシタ、及びセンサなどの電気化学素子に設けられる安全弁又は水素排出弁の構成部材として好適に用いられる。 The hydrogen discharge laminated film of the present invention is suitably used as a component of a safety valve or a hydrogen discharge valve provided in electrochemical elements such as batteries, capacitors, capacitors, and sensors.

Claims (19)

  1.  金属層を含む水素排出膜を形成するための水素排出膜形成用支持体であって、
     前記支持体は、多孔質体であり、
     前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向4μmまでの断面部分における平均孔径が30~100nmであり、
     前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向8μmまでの断面部分における最大孔径が2μm以下であることを特徴とする水素排出膜形成用支持体。
    A hydrogen discharge film forming support for forming a hydrogen discharge film including a metal layer,
    The support is a porous body,
    The porous body has an average pore diameter of 30 to 100 nm in a cross-sectional portion from the surface on the side where the hydrogen discharge membrane is formed to a thickness direction of 4 μm,
    The porous body has a maximum pore diameter of 2 μm or less in a cross-sectional portion from the surface on the side on which the hydrogen exhaust film is formed to a thickness direction of 8 μm, and is a support for forming a hydrogen exhaust film.
  2.  前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向4μmまでの断面部分における空孔率が20~70%である請求項1記載の水素排出膜形成用支持体。 2. The support for forming a hydrogen discharge film according to claim 1, wherein the porous body has a porosity of 20 to 70% in a cross-sectional portion from the surface on the side where the hydrogen discharge film is formed to a thickness direction of 4 μm.
  3.  前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向8μmまでの断面部分における平均孔径が50~500nmである請求項1又は2記載の水素排出膜形成用支持体。 3. The support for forming a hydrogen exhaust film according to claim 1, wherein the porous body has an average pore diameter of 50 to 500 nm in a cross-sectional portion from the surface on the side where the hydrogen exhaust film is formed to a thickness direction of 8 μm.
  4.  前記多孔質体は、前記水素排出膜を形成する側の表面から厚さ方向8μmまでの断面部分における空孔率が20~80%である請求項1~3のいずれかに記載の水素排出膜形成用支持体。 The hydrogen discharge membrane according to any one of claims 1 to 3, wherein the porous body has a porosity of 20 to 80% in a cross-sectional portion from the surface on the side where the hydrogen discharge membrane is formed to a thickness direction of 8 µm. Forming support.
  5.  前記多孔質体は、ガーレー試験における空気100ccの透過時間が30000秒以下である請求項1~4のいずれかに記載の水素排出膜形成用支持体。 The support for forming a hydrogen discharge film according to any one of claims 1 to 4, wherein the porous body has a permeation time of 100 cc of air in a Gurley test of 30000 seconds or less.
  6.  前記多孔質体は、不織布上に微多孔質膜を有するものである請求項1~5のいずれかに記載の水素排出膜形成用支持体。 6. The support for forming a hydrogen discharge film according to claim 1, wherein the porous body has a microporous film on a nonwoven fabric.
  7.  前記微多孔質膜は、ガラス転移温度190℃以上又は融点150℃以上のポリマーを含む請求項6記載の水素排出膜形成用支持体。 The support for forming a hydrogen discharge membrane according to claim 6, wherein the microporous membrane contains a polymer having a glass transition temperature of 190 ° C or higher or a melting point of 150 ° C or higher.
  8.  前記ポリマーは、熱硬化性ポリアミドイミド、熱硬化性ポリイミド、ポリフッ化ビニリデン、ポリフェニルスルホン、及びポリスルホンからなる群より選択される少なくとも1種である請求項7記載の水素排出膜形成用支持体。 The support for forming a hydrogen discharge film according to claim 7, wherein the polymer is at least one selected from the group consisting of thermosetting polyamideimide, thermosetting polyimide, polyvinylidene fluoride, polyphenylsulfone, and polysulfone.
  9.  請求項1~8のいずれかに記載の水素排出膜形成用支持体上に、金属層を含む水素排出膜を有する水素排出積層膜。 A hydrogen discharge laminated film having a hydrogen discharge film including a metal layer on the support for forming a hydrogen discharge film according to any one of claims 1 to 8.
  10.  前記金属層は、Pd合金を含む合金層である請求項9記載の水素排出積層膜。 The hydrogen discharge laminated film according to claim 9, wherein the metal layer is an alloy layer containing a Pd alloy.
  11.  前記Pd合金は、第11族元素を20~65mol%含む請求項10記載の水素排出積層膜。 11. The hydrogen discharge laminated film according to claim 10, wherein the Pd alloy contains 20 to 65 mol% of a Group 11 element.
  12.  前記第11族元素は、Au、Ag、及びCuからなる群より選択される少なくとも1種である請求項11記載の水素排出積層膜。 12. The hydrogen discharge laminated film according to claim 11, wherein the Group 11 element is at least one selected from the group consisting of Au, Ag, and Cu.
  13.  前記金属層は、厚さが0.01~5μmである請求項9~12のいずれかに記載の水素排出積層膜。 13. The hydrogen discharge laminated film according to claim 9, wherein the metal layer has a thickness of 0.01 to 5 μm.
  14.  請求項9~13のいずれかに記載の水素排出積層膜を備えた電気化学素子用安全弁。 A safety valve for an electrochemical device comprising the hydrogen discharge laminated film according to any one of claims 9 to 13.
  15.  請求項9~13のいずれかに記載の水素排出積層膜を備えた電気化学素子用水素排出弁。 A hydrogen discharge valve for an electrochemical element, comprising the hydrogen discharge laminated film according to any one of claims 9 to 13.
  16.  請求項14記載の電気化学素子用安全弁、又は請求項15記載の電気化学素子用水素排出弁を備えた電気化学素子。 An electrochemical element comprising the electrochemical element safety valve according to claim 14 or the electrochemical element hydrogen discharge valve according to claim 15.
  17.  前記電気化学素子が、アルミ電解コンデンサ又はリチウムイオン電池である請求項16記載の電気化学素子。 The electrochemical element according to claim 16, wherein the electrochemical element is an aluminum electrolytic capacitor or a lithium ion battery.
  18.  請求項9~13のいずれかに記載の水素排出積層膜、請求項14記載の電気化学素子用安全弁、又は請求項15記載の電気化学素子用水素排出弁を用いた水素排出方法。 A hydrogen discharge method using the hydrogen discharge laminated film according to any one of claims 9 to 13, the electrochemical element safety valve according to claim 14, or the electrochemical element hydrogen discharge valve according to claim 15.
  19.  150℃以下の環境下で水素を排出させる請求項18記載の水素排出方法。
     
    The hydrogen discharging method according to claim 18, wherein hydrogen is discharged under an environment of 150 ° C. or lower.
PCT/JP2016/086717 2015-12-14 2016-12-09 Support for forming hydrogen discharge film, and laminated hydrogen discharge film WO2017104569A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015243346 2015-12-14
JP2015-243346 2015-12-14
JP2016-235989 2016-12-05
JP2016235989A JP2017109202A (en) 2015-12-14 2016-12-05 Support for hydrogen discharge membrane and hydrogen discharge lamination membrane

Publications (1)

Publication Number Publication Date
WO2017104569A1 true WO2017104569A1 (en) 2017-06-22

Family

ID=59056719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086717 WO2017104569A1 (en) 2015-12-14 2016-12-09 Support for forming hydrogen discharge film, and laminated hydrogen discharge film

Country Status (1)

Country Link
WO (1) WO2017104569A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127124A (en) * 1979-03-22 1980-10-01 Mitsubishi Rayon Co Ltd Hydrogen permeable combined filter and hydrogen gas separator
JPS59209610A (en) * 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane
JPH06254361A (en) * 1993-03-01 1994-09-13 Nok Corp Production of hydrogen separation membrane
JP2000005580A (en) * 1998-06-19 2000-01-11 Nippon Metal Ind Co Ltd Composite hydrogen permeation membrane having pressure resistance and its production and repairing method thereof
JP2001029760A (en) * 1998-08-28 2001-02-06 Toray Ind Inc Permeable membrane, electrolytic capacitor, method for treating permeable membrane and separating method
JP2003297325A (en) * 2002-03-29 2003-10-17 Sanyo Electric Co Ltd Sealed battery
JP2005502158A (en) * 2000-11-21 2005-01-20 ザ ジレット カンパニー Battery vent
JP2005254191A (en) * 2004-03-15 2005-09-22 Noritake Co Ltd Method for producing hydrogen separation metal film using printing and hydrogen separation metal film
JP2008012495A (en) * 2006-07-10 2008-01-24 Sumitomo Metal Mining Co Ltd Hydrogen permeation alloy membrane
JP2014058433A (en) * 2012-09-19 2014-04-03 Mitsubishi Chemicals Corp Method for separating ammonia
JP2015053475A (en) * 2013-08-06 2015-03-19 日東電工株式会社 Hydrogen discharge membrane

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127124A (en) * 1979-03-22 1980-10-01 Mitsubishi Rayon Co Ltd Hydrogen permeable combined filter and hydrogen gas separator
JPS59209610A (en) * 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane
JPH06254361A (en) * 1993-03-01 1994-09-13 Nok Corp Production of hydrogen separation membrane
JP2000005580A (en) * 1998-06-19 2000-01-11 Nippon Metal Ind Co Ltd Composite hydrogen permeation membrane having pressure resistance and its production and repairing method thereof
JP2001029760A (en) * 1998-08-28 2001-02-06 Toray Ind Inc Permeable membrane, electrolytic capacitor, method for treating permeable membrane and separating method
JP2005502158A (en) * 2000-11-21 2005-01-20 ザ ジレット カンパニー Battery vent
JP2003297325A (en) * 2002-03-29 2003-10-17 Sanyo Electric Co Ltd Sealed battery
JP2005254191A (en) * 2004-03-15 2005-09-22 Noritake Co Ltd Method for producing hydrogen separation metal film using printing and hydrogen separation metal film
JP2008012495A (en) * 2006-07-10 2008-01-24 Sumitomo Metal Mining Co Ltd Hydrogen permeation alloy membrane
JP2014058433A (en) * 2012-09-19 2014-04-03 Mitsubishi Chemicals Corp Method for separating ammonia
JP2015053475A (en) * 2013-08-06 2015-03-19 日東電工株式会社 Hydrogen discharge membrane

Similar Documents

Publication Publication Date Title
RU2418623C2 (en) Method of producing microporous polyethylene membrane and storage battery separator
JP2015053475A (en) Hydrogen discharge membrane
JP2015120786A (en) Microporous film and separator using the same
JP7181324B2 (en) Hydrogen drain membrane
JP2017109202A (en) Support for hydrogen discharge membrane and hydrogen discharge lamination membrane
JP2018050037A (en) Hydrogen discharge component
WO2017104570A1 (en) Support for forming hydrogen discharge film, and laminated hydrogen discharge film
WO2017104569A1 (en) Support for forming hydrogen discharge film, and laminated hydrogen discharge film
WO2017208723A1 (en) Electrolytic capacitor
WO2017098930A1 (en) Hydrogen discharge membrane
JP6688245B2 (en) Hydrogen discharge method
JP2009149710A (en) Microporous polyolefin membrane
JP2017112368A (en) Support for forming hydrogen discharge film and hydrogen discharge laminated film
JP2017112355A (en) Hydrogen discharge film
KR101296109B1 (en) Menufacturing Method of Meta-Aramid Based Porous Membrane for Secondary Battery and Porous Membrane thereby
JP2021132223A (en) Electrolytic capacitor
KR101377476B1 (en) Menufacturing Method of Meta-Aramid Based Porous Membrane for Secondary Battery and Porous Membrane thereby
JPWO2019151220A1 (en) Polyolefin microporous film, coating film and battery, and method for producing polyolefin microporous film
CN110556491B (en) Separator for nonaqueous electrolyte secondary battery
JP6180487B2 (en) Electrochemical element
WO2016143658A1 (en) Hydrogen discharge membrane
WO2018051882A1 (en) Hydrogen discharge component
JP2004224915A (en) Fine porous film
JPWO2015194471A1 (en) Hydrogen discharge membrane
JP2023161496A (en) Polyolefin microporous film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875549

Country of ref document: EP

Kind code of ref document: A1