WO2017208723A1 - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
WO2017208723A1
WO2017208723A1 PCT/JP2017/017155 JP2017017155W WO2017208723A1 WO 2017208723 A1 WO2017208723 A1 WO 2017208723A1 JP 2017017155 W JP2017017155 W JP 2017017155W WO 2017208723 A1 WO2017208723 A1 WO 2017208723A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic capacitor
hydrogen
film
hydrogen gas
alloy
Prior art date
Application number
PCT/JP2017/017155
Other languages
French (fr)
Japanese (ja)
Inventor
知洋 中村
福岡 孝博
圭子 藤原
原田 憲章
恭子 石井
俊輔 正木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017078155A external-priority patent/JP7020792B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2017208723A1 publication Critical patent/WO2017208723A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion

Definitions

  • the present invention relates to an electrolytic capacitor provided with a hydrogen discharge film.
  • electrolytic capacitors such as aluminum electrolytic capacitors have been used for applications such as inverters for wind power generation and solar power generation, and large power supplies such as storage batteries.
  • the anode of an aluminum electrolytic capacitor has an aluminum oxide film generated electrochemically on the surface of an aluminum electrode.
  • an aluminum electrolytic capacitor uses an electrolytic solution excellent in film repairability, and an aluminum oxide film is quickly formed by the reaction between the electrolytic solution and aluminum of the anode, and the defective portion is repaired.
  • oxidation occurs on the anode side and reduction occurs on the cathode side, generating hydrogen gas. If a large number of defective portions occur in the aluminum oxide film, a large amount of hydrogen gas is generated due to the film repairing action, and the outer case may expand or rupture due to an increase in the internal pressure of the aluminum electrolytic capacitor.
  • a general electrolytic capacitor is provided with a safety valve with a special membrane.
  • the safety valve has a function to prevent the capacitor itself from bursting by self-destructing and reducing the internal pressure when the internal pressure of the capacitor suddenly increases. is there.
  • the following has been proposed as a special membrane that is a component of such a safety valve.
  • Patent Document 1 proposes a pressure adjusting film including a foil strip made of an alloy of paradium silver (Pd—Ag) containing 20 wt% (19.8 mol%) Ag in paradium.
  • Patent Document 1 is easily embrittled in an environment of about 50 to 60 ° C. or less, and has a problem that the function as a pressure adjusting film cannot be maintained for a long period of time.
  • Patent Document 2 proposes a hydrogen discharge film containing a Pd—Ag alloy, wherein the content of Ag in the Pd—Ag alloy is 20 mol% or more.
  • Patent Document 3 proposes a hydrogen discharge film containing a Pd—Cu alloy and having a Cu content of 30 mol% or more in the Pd—Cu alloy.
  • the thickness of the oxide film is increased in order to suppress the occurrence of a defective portion in the oxide film.
  • increasing the film thickness of the oxide film has a demerit that much energy and manufacturing time are required.
  • increasing the thickness of the oxide film reduces the capacitance of the capacitor, so it is necessary to increase the surface area of the oxide film to compensate for the decrease in capacitance, making it difficult to reduce the size of the electrolytic capacitor. was there.
  • An object of the present invention is to provide an electrolytic capacitor capable of performing
  • the present invention is an electrolytic capacitor comprising a hydrogen discharge membrane,
  • the hydrogen discharge membrane includes a hydrogen gas permeable layer that selectively permeates 99% by mole or more of hydrogen gas when contacting a mixed gas containing equimolar amounts of hydrogen gas and nitrogen gas,
  • the present invention relates to an electrolytic capacitor characterized in that the ratio (average thickness / rated voltage) between the average thickness of the oxide film on the anode and the rated voltage of the capacitor is 1.2 to 2.9 (nm / V).
  • the electrolytic capacitor of the present invention has a ratio (average thickness / rated voltage) of the average thickness of the oxide film of the anode to the rated voltage of the capacitor of 1.2 to 2.9 (nm / V), and the conventional electrolytic capacitor The value of the ratio is smaller than that of (that is, the average thickness of the oxide film is thinner than that of a conventional electrolytic capacitor).
  • the electrolytic capacitor of the present invention includes a hydrogen discharge membrane including a hydrogen gas permeable layer that selectively permeates hydrogen gas by 99 mol% or more when contacting a mixed gas containing equimolar amounts of hydrogen gas and nitrogen gas. Therefore, even if a large amount of hydrogen gas is generated inside the electrolytic capacitor, only the hydrogen gas can be quickly discharged to the outside, and the outer case can be effectively prevented from expanding or bursting.
  • the ratio between the average thickness of the oxide film on the anode and the rated voltage of the capacitor is less than 1.2 (nm / V)
  • a large amount of hydrogen gas exceeding the hydrogen discharge capacity of the hydrogen discharge film can be quickly removed from the electrolytic capacitor.
  • it exceeds 2.9 (nm / V) it will be difficult to increase the capacitance of the electrolytic capacitor, and it will be difficult to reduce the size of the electrolytic capacitor.
  • the hydrogen gas permeable layer is preferably a metal layer, and more preferably a Pd alloy layer.
  • the Pd alloy which is a material for forming the Pd alloy layer, preferably contains 20 to 65 mol% of a Group 11 element from the viewpoint of excellent hydrogen permeability, oxidation resistance, and embrittlement resistance during hydrogen storage.
  • the Group 11 element is preferably at least one selected from the group consisting of Au, Ag, and Cu, and Au is particularly preferable from the viewpoint of excellent chemical resistance.
  • a Pd alloy layer containing a Pd-Group 11 element alloy dissociates hydrogen molecules into hydrogen atoms on the film surface, so that the hydrogen atoms are dissolved in the film, and the dissolved hydrogen atoms are diffused from the high pressure side to the low pressure side. In addition, it has a function of converting hydrogen atoms into hydrogen molecules again and discharging them on the low pressure side film surface.
  • the content of the Group 11 element is less than 20 mol%, the strength of the Pd alloy tends to be insufficient, or the function tends to be hardly exhibited.
  • the content exceeds 65 mol% the hydrogen permeation rate decreases. Tend to.
  • the metal layer preferably has a support on one side or both sides.
  • the support is provided to prevent the metal layer from falling into the electrolytic capacitor when the metal layer falls off the safety valve or the hydrogen discharge valve.
  • the metal layer has a function as a safety valve that self-destructs when the internal pressure of the electrolytic capacitor becomes a predetermined value or more
  • the metal layer is a thin film, the mechanical strength of the metal layer is low, There is a risk of self-destruction before the internal pressure of the electrolytic capacitor reaches a predetermined value, and the function as a safety valve cannot be performed. Therefore, when a metal layer is a thin film, it is preferable to laminate
  • Examples of the electrolytic capacitor include an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, and a niobium electrolytic capacitor.
  • the average thickness of the oxide film is thinner than that of the conventional electrolytic capacitor. Therefore, the electrolytic capacitor of the present invention has an advantage that the capacitance is large while being the same size as the conventional electrolytic capacitor. In addition, the electrolytic capacitor of the present invention has an advantage that it can be downsized or have a high withstand voltage while having the same capacitance as a conventional electrolytic capacitor. In addition, the electrolytic capacitor of the present invention has an average oxide film thickness that is smaller than that of a conventional electrolytic capacitor, so that it can be manufactured with less energy and manufacturing time than the conventional electrolytic capacitor, and is excellent in terms of cost.
  • the electrolytic capacitor of the present invention is provided with a hydrogen discharge membrane that can hardly discharge hydrogen even when used for a long period of time and can discharge hydrogen stably.
  • the hydrogen discharge film can quickly discharge only the hydrogen gas generated inside the electrolytic capacitor to the outside, and can prevent impurities from entering the electrolytic capacitor from the outside.
  • the hydrogen discharge membrane may have a function of preventing destruction of the electrolytic capacitor itself by self-destructing and lowering the internal pressure when the internal pressure of the electrolytic capacitor suddenly increases.
  • the electrolytic capacitor of the present invention includes a hydrogen discharge membrane, and the hydrogen discharge membrane selectively permeates hydrogen gas by 99 mol% or more when contacting a mixed gas containing equimolar amounts of hydrogen gas and nitrogen gas.
  • a hydrogen gas permeable layer A hydrogen gas permeable layer.
  • the electrolytic capacitor of the present invention is characterized in that the ratio (average thickness / rated voltage) of the average thickness of the oxide film on the anode to the rated voltage of the capacitor is 1.2 to 2.9 (nm / V).
  • the electrolytic capacitor examples include an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, and a niobium electrolytic capacitor, and an aluminum electrolytic capacitor is particularly preferable.
  • Conventional components other than the hydrogen discharge membrane and the anode can be used without particular limitation.
  • the electrolytic capacitor of the present invention can be manufactured by a conventional method except that the following hydrogen discharge membrane and anode are used. Hereinafter, the hydrogen discharge film and the anode will be described in detail.
  • the hydrogen discharge membrane includes a hydrogen gas permeable layer that selectively permeates hydrogen gas by 99 mol% or more when contacting a mixed gas containing equimolar amounts of hydrogen gas and nitrogen gas.
  • a hydrogen gas permeable layer that selectively transmits 99.9 mol% or more of hydrogen gas.
  • the hydrogen discharge membrane has a hydrogen permeation amount of 10 ml / day or more (4.03 ⁇ 10 ⁇ 4 mol / day or more: calculated according to SATP (temperature) when the square root of pressure is 76.81 Pa 1/2 (0.059 bar).
  • the volume of 1 mol ideal gas at 25 ° C. and 1 bar pressure is preferably 24.8 L)).
  • the hydrogen discharge membrane preferably has a hydrogen permeability coefficient at 50 ° C. of 1 ⁇ 10 ⁇ 12 (mol ⁇ m ⁇ 1 ⁇ sec ⁇ 1 ⁇ Pa ⁇ 1/2 ) or more, more preferably 1 ⁇ 10 10.
  • Examples of the layer having the characteristics include a metal layer such as a Pd alloy layer.
  • the other metal forming the Pd alloy that is the material of the Pd alloy layer is not particularly limited.
  • Nb, V, Ta, Ni, Fe, Al, Cu, Ru, Re, Rh, Au, Pt, Ag examples thereof include Cr, Co, Sn, Zr, Y, Ce, Ti, Ir, and Mo.
  • a Group 11 element more preferably at least one selected from the group consisting of Au, Ag, and Cu.
  • a Pd—Au alloy is preferable because it is excellent in corrosion resistance against gas components generated from the electrolyte solution or constituent members inside the electrolytic capacitor.
  • the Pd alloy preferably contains a Group 11 element in an amount of 20 to 65 mol%, more preferably 30 to 65 mol%, and still more preferably 30 to 60 mol%. Further, a Pd-Ag alloy having an Ag content of 20 mol% or more, a Pd-Cu alloy having a Cu content of 30 mol% or more, or a Pd alloy layer containing a Pd-Au alloy having an Au content of 20 mol% or more is provided. Even in a low temperature range of about 50 to 60 ° C. or less, it is preferable because it is difficult to be embrittled by hydrogen.
  • the Pd alloy may contain a group IB and / or group IIIA metal as long as the effects of the present invention are not impaired.
  • the Pd alloy is not limited to a two-component alloy containing Pd, but may be, for example, a three-component alloy of Pd—Au—Ag or a three-component alloy of Pd—Au—Cu. Further, a Pd—Au—Ag—Cu four-component alloy may be used.
  • the total content of Au and other metals in the Pd alloy is preferably 55 mol% or less, more preferably 50 mol% or less. Yes, more preferably 45 mol% or less, particularly preferably 40 mol% or less.
  • the Pd alloy layer can be manufactured, for example, by a rolling method, a sputtering method, a vacuum deposition method, an ion plating method, a plating method, or the like.
  • a rolling method is used. It is preferable to use a sputtering method when manufacturing a thin Pd alloy layer.
  • the rolling method may be hot rolling or any method of cold rolling.
  • the rolling method is a method of processing a film by rotating a pair or a plurality of pairs of rollers (rollers) and passing a metal as a raw material between the rolls while applying pressure.
  • the film thickness of the Pd alloy layer obtained by the rolling method is preferably 5 to 50 ⁇ m, more preferably 10 to 30 ⁇ m.
  • the film thickness is less than 5 ⁇ m, pinholes or cracks are likely to occur during production, or deformation occurs when hydrogen is occluded.
  • the film thickness exceeds 50 ⁇ m, it takes time to allow hydrogen to pass therethrough, so that the hydrogen permeability is lowered or the cost is inferior.
  • the sputtering method is not particularly limited, and can be performed using a sputtering apparatus such as a parallel plate type, a single wafer type, a passing type, DC sputtering, and RF sputtering.
  • a sputtering apparatus such as a parallel plate type, a single wafer type, a passing type, DC sputtering, and RF sputtering.
  • the inside of the sputtering apparatus is evacuated, an Ar gas pressure is adjusted to a predetermined value, a predetermined sputtering current is supplied to the metal target, and Pd is formed on the substrate.
  • An alloy film is formed. Thereafter, the Pd alloy film is peeled from the substrate to obtain a Pd alloy layer.
  • a target a single target or a some target can be used according to the Pd alloy layer to manufacture.
  • Examples of the substrate include glass plates, ceramic plates, silicon wafers, metal plates such as aluminum and stainless steel.
  • the film thickness of the Pd alloy layer obtained by sputtering is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • the film thickness is less than 0.01 ⁇ m, not only pinholes may be formed, but it is difficult to obtain the required mechanical strength. Moreover, it is easy to break when peeling from the substrate, and handling after peeling becomes difficult.
  • the film thickness exceeds 5 ⁇ m, it takes time to produce the Pd alloy layer, which is not preferable because of inferior cost.
  • the film area of the Pd alloy layer can be appropriately adjusted in consideration of the hydrogen permeation amount and the film thickness, but is about 0.01 to 100 mm 2 when used as a component of a safety valve.
  • the film area is the area of the portion where hydrogen is actually discharged in the Pd alloy layer, and does not include the portion where a ring-shaped adhesive described later is applied.
  • the metal layer preferably has a coating layer on one side or both sides.
  • a coating layer on one or both sides of the metal layer, pinholes or cracks existing in the metal layer can be closed. Thereby, it can suppress that the required components (electrolyte etc.) inside an electrochemical element leak outside.
  • the raw material of the coating layer is not particularly limited, and examples thereof include fluorine compounds, rubber polymers, silicone polymers, urethane polymers, and polyester polymers. Among these, it is preferable to use at least one compound selected from the group consisting of a fluorine-based compound, a rubber-based polymer, and a silicone-based polymer from the viewpoint that it is difficult to inhibit the hydrogen permeability of the hydrogen discharge membrane.
  • fluorine-based compound examples include a fluoroalkyl carboxylate, a fluoroalkyl quaternary ammonium salt, and a fluoroalkyl group-containing compound such as a fluoroalkylethylene oxide adduct; a perfluoroalkyl carboxylate, a perfluoroalkyl quaternary ammonium salt, And perfluoroalkyl group-containing compounds such as perfluoroalkylethylene oxide adducts; fluorocarbon group-containing compounds such as tetrafluoroethylene / hexafluoropropylene copolymers and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymers; tetrafluoroethylene polymers; Copolymer of vinylidene fluoride and tetrafluoroethylene; copolymer of vinylidene fluoride and hexafluoropropylene; fluorine-containing (meth)
  • Examples of rubber polymers include natural rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, chloroprene rubber, polyisoprene rubber, polybutadiene rubber, ethylene propylene rubber, ethylene-propylene-diene terpolymer rubber, chlorosulfonated polyethylene rubber, And ethylene-vinyl acetate copolymer rubber.
  • Rubber-based polymer that is a raw material for the coating layer
  • “Elep Coat” series manufactured by Nitto Shinko Co., Ltd. may be used as a rubber-based polymer that is a raw material for the coating layer.
  • silicone polymer examples include polydimethylsiloxane, alkyl-modified polydimethylsiloxane, carboxyl-modified polydimethylsiloxane, amino-modified polydimethylsiloxane, epoxy-modified polydimethylsiloxane, fluorine-modified polydimethylsiloxane, and (meth) acrylate-modified polydimethyl.
  • silicone polymer examples include siloxane.
  • the coating layer can be formed, for example, by applying a coating layer raw material composition on a metal layer and curing it.
  • the coating method is not particularly limited, and examples thereof include a roll coating method, a spin coating method, a dip coating method, a spray coating method, a bar coating method, a knife coating method, a die coating method, an ink jet method, and a gravure coating method.
  • the solvent may be appropriately selected according to the raw material of the coat layer.
  • solvents such as a fluorine-type solvent, an alcohol solvent, an ether solvent, an ester solvent, and a hydrocarbon solvent, can be used individually or in mixture, for example.
  • a fluorine-based solvent which is not flammable and volatilizes rapidly, either alone or mixed with another solvent.
  • fluorine-based solvent examples include hydrofluoroether, perfluoropolyether, perfluoroalkane, hydrofluoropolyether, hydrofluorocarbon, perfluorocycloether, perfluorocycloalkane, hydrofluorocycloalkane, xylene hexafluoride, hydro Examples thereof include fluorochlorocarbon and perfluorocarbon.
  • the thickness of the coating layer is not particularly limited, but is preferably 0.1 to 40 ⁇ m, more preferably 0.2 to 10 ⁇ m, and further preferably 0.3 to 5 ⁇ m.
  • a support may be provided on one side or both sides of the metal layer.
  • the Pd alloy layer obtained by sputtering is thin, it is preferable to laminate a support on one side or both sides of the Pd alloy layer in order to improve mechanical strength.
  • FIG. 1 and 2 are schematic cross-sectional views showing the structure of the hydrogen discharge membrane 1.
  • a support 4 may be laminated on one or both sides of the Pd alloy layer 2 using a ring-shaped adhesive 3, and FIG. 2 (a) or (b ), The support 4 may be laminated on one side or both sides of the Pd alloy layer 2 using the jig 5.
  • the support 4 is not particularly limited as long as it is hydrogen permeable and can support the Pd alloy layer 2, and may be a non-porous material or a porous material.
  • the support 4 may be a woven fabric or a non-woven fabric.
  • the material for forming the support 4 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyaryl ether sulfones such as polysulfone and polyethersulfone, polytetrafluoroethylene, and polyvinylidene fluoride. Fluorine resin, epoxy resin, polyamide, polyimide and the like can be mentioned. Of these, polysulfone or polytetrafluoroethylene which is chemically and thermally stable is preferably used.
  • the support 4 is preferably a porous body having an average pore diameter of 100 ⁇ m or less.
  • the average pore diameter exceeds 100 ⁇ m, the surface smoothness of the porous body is lowered. Therefore, when a Pd alloy layer is produced by sputtering or the like, it is difficult to form a Pd alloy layer having a uniform thickness on the porous body. Or pinholes or cracks are likely to occur in the Pd alloy layer.
  • the thickness of the support 4 is not particularly limited, but is usually about 5 to 1000 ⁇ m, preferably 10 to 300 ⁇ m.
  • the support body 4 is used as a substrate, the Pd alloy layer 2 can be directly formed on the support body 4 without using the adhesive 3 or the jig 5. Since the exhaust film 1 can be manufactured, it is preferable from the viewpoint of physical properties and manufacturing efficiency of the hydrogen exhaust film 1.
  • the support 4 is preferably a porous body having an average pore diameter of 100 ⁇ m or less, more preferably a porous body having an average pore diameter of 5 ⁇ m or less, and particularly an ultrafiltration membrane (UF membrane). preferable.
  • the shape of the hydrogen discharge membrane may be a substantially circular shape or a polygon such as a triangle, a quadrangle, or a pentagon. It can be made into arbitrary shapes according to the use mentioned later.
  • the hydrogen discharge membrane is useful as a component for a safety valve of an electrolytic capacitor. Further, the hydrogen discharge membrane can be provided in the electrolytic capacitor as a hydrogen discharge valve separately from the safety valve.
  • the hydrogen discharge membrane does not become brittle at a low temperature, there is an advantage that it can be used at a temperature of, for example, 150 ° C. or lower, further 110 ° C. or lower. That is, it is preferably used as a safety valve or hydrogen discharge valve for electrolytic capacitors that are not used at high temperatures (eg, 400 to 500 ° C.).
  • the anode used in the electrolytic capacitor of the present invention has a ratio (average thickness / rated voltage) of the average thickness of the oxide film to the rated voltage of the capacitor of 1.2 to 2.9 (nm / V), preferably It is 1.3 to 2.4 (nm / V), more preferably 1.4 to 2.0 (nm / V).
  • the average thickness of the aluminum oxide film is about 1200 nm, and the average thickness / rated voltage is about 3 (nm / V). Therefore, when the rated voltage is the same, the average thickness of the oxide film of the anode used in the electrolytic capacitor of the present invention is only 40 to 95% of the average thickness of the conventional oxide film and is very thin.
  • an anode having such a very thin oxide film is used as the anode of a conventional electrolytic capacitor, many defects occur in the oxide film due to mechanical stress or electrical stress, and a large amount of hydrogen gas is generated due to the film repairing action.
  • the outer case expands or bursts due to an increase in the internal pressure of the electrolytic capacitor.
  • the outer case since the hydrogen discharge film is provided in the electrolytic capacitor, the outer case does not expand or rupture even when such an anode having a very thin oxide film is used.
  • the average thickness of the oxide film can be adjusted to a desired thickness by arbitrarily adjusting the formation voltage in the formation process (oxide film formation process).
  • the sheet material is cold-rolled to a thickness of 100 ⁇ m using a two-stage rolling mill with a roll diameter of 100 mm, and further the sheet material is cold-rolled to a thickness of 20 ⁇ m using a two-stage rolling mill with a roll diameter of 20 mm. did. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 ⁇ 10 ⁇ 4 Pa at room temperature, then heated to 500 ° C. and allowed to stand for 1 hour, and then cooled to room temperature.
  • Production Example 2 [Preparation of Pd—Au alloy layer by sputtering method (Au content 50 mol%)]
  • a polysulfone porous sheet (manufactured by Nitto Denko Corporation, pore size: 0.001 to 0.02 ⁇ m) is mounted on an RF magnetron sputtering apparatus (manufactured by Sanyu Electronics Co., Ltd.) equipped with a Pd—Au alloy target having an Au content of 50 mol%. ) was attached.
  • the inside of the sputtering apparatus is evacuated to 1 ⁇ 10 ⁇ 5 Pa or less, and a sputtering current of 4.8 A is applied to the Pd—Au alloy target at an Ar gas pressure of 1.0 Pa to form a thick film on the polysulfone porous sheet.
  • a 100 nm thick Pd—Au alloy layer (Au content 50 mol%) was formed.
  • a coating layer raw material composition (manufactured by Harves, Durasurf DS-3302TH) was applied on the Pd—Au alloy layer by a dip coating method and dried to form a coating layer having a thickness of 0.3 ⁇ m.
  • a discharge membrane was prepared.
  • Example 1 [Production of aluminum electrolytic capacitors] Thickness of 30 ⁇ m with a 90 ⁇ m rated 200-450V rated high-voltage chemical foil (manufactured by Nihon Denki Kogyo Kogyo Co., Ltd.) slit into a square (45 x 45mm) with protrusions for drawing out the electrodes Of cathode foil (manufactured by Nippon Denshi Kogyo Kogyo Co., Ltd.) slit into a square (45 x 45 mm) provided with a protruding part for electrode lead-out, and a hemp paper with a thickness of 70 ⁇ m (manufactured by Nippon Kogyo Paper Industries Co., Ltd.) Was slit into a square (50 ⁇ 50 mm) that was slightly larger than the electrode foil to obtain electrolytic paper.
  • cathode foil manufactured by Nippon Denshi Kogyo Kogyo Co., Ltd.
  • the exterior case that houses the elements is formed by laminating a nylon resin film with a thickness of 40 ⁇ m, an aluminum foil with a thickness of about 50 ⁇ m, and a heat-sealable polypropylene resin film with a thickness of 30 ⁇ m in this order.
  • Two aluminum laminate films (Dai Nippon Printing Co., Ltd.) slit into squares (65 ⁇ 130 mm) were used.
  • an opening of ⁇ 10 was provided at the center of one aluminum laminate film, and the hydrogen discharge film of ⁇ 20 produced in Production Example 1 was attached with an adhesive from the polypropylene resin film surface so as to cover the opening.
  • These two aluminum laminate films were overlapped so that the polypropylene resin surfaces of the respective films were aligned, and the three sides were heat-sealed (200 ° C.) with a width of 10 mm to prepare an outer case.
  • Example 2 [Production of aluminum electrolytic capacitors]
  • an aluminum electrolytic capacitor was obtained in the same manner as in Example 1 except that instead of the ⁇ 20 hydrogen discharge film produced in Production Example 1, the ⁇ 20 hydrogen discharge film produced in Production Example 2 was used. .
  • Example 3 [Production of aluminum electrolytic capacitors]
  • an aluminum electrolytic capacitor was obtained in the same manner as in Example 1 except that the sizes of the anode and the cathode were changed to 39 ⁇ 39 mm.
  • Example 4 [Production of aluminum electrolytic capacitors]
  • an aluminum electrolytic capacitor was obtained in the same manner as in Example 3 except that instead of the ⁇ 20 hydrogen discharge film produced in Production Example 1, the ⁇ 20 hydrogen discharge film produced in Production Example 2 was used. .
  • Example 1 An aluminum electrolytic capacitor was obtained in the same manner as in Example 1 except that the opening of ⁇ 10 was not provided in the center of the aluminum laminate film and the hydrogen discharge film of ⁇ 20 produced in Production Example 1 was not used. It was.
  • Example 3 An aluminum electrolytic capacitor was obtained in the same manner as in Example 3 except that the opening of ⁇ 10 was not provided in the center of the aluminum laminate film and the hydrogen discharge film of ⁇ 20 produced in Production Example 1 was not used. It was.
  • the hydrogen permeation amount of the hydrogen discharge membrane is preferably 10 ml / day or more, and more preferably 100 ml / day or more.
  • the hydrogen permeation amount of the hydrogen discharge membrane of Production Example 1 was 600 ml / day, and the hydrogen permeation amount of the hydrogen discharge membrane of Production Example 2 was 250 ml / day.
  • the produced hydrogen discharge membrane was attached to a VCR connector manufactured by Swagelok, and a SUS tube was attached to one side to produce a sealed space (63.5 ml). After depressurizing the inside of the tube with a vacuum pump, the pressure of nitrogen gas was adjusted to 150 kPa, and the pressure change under an environment of 105 ° C. was monitored. Since the number of moles (volume) of nitrogen that permeated through the hydrogen discharge membrane was found due to the pressure change, this was converted into the permeation amount per day, and the nitrogen permeation amount was calculated.
  • the nitrogen permeation amount of the hydrogen discharge membrane of Production Example 1 was 0 ml / day, and the nitrogen permeation amount of the hydrogen discharge membrane of Production Example 2 was 0 ml / day. Therefore, the hydrogen gas selective permeability of the hydrogen discharge membrane of Production Example 1 is 100%, and the hydrogen gas selective permeability of the hydrogen discharge membrane of Production Example 2 is 100%.
  • the aluminum electrolytic capacitors of Comparative Examples 1 and 2 do not have a special hydrogen discharge film, so that the hydrogen gas generated inside the capacitor cannot be discharged quickly and the internal pressure of the capacitor is reduced. This is thought to be due to a large increase.
  • the aluminum electrolytic capacitor produced with the anode foil of the rated voltage 200V of Examples 1 and 2 has a higher capacitance than the aluminum electrolytic capacitor produced with the anode foil of the rated voltage 250V when a voltage exceeding 200V is applied. Therefore, it can be seen that by using a special hydrogen discharge film, it is possible to increase the withstand voltage and the capacitance of the aluminum electrolytic capacitor without changing the appearance.
  • the aluminum electrolytic capacitors of Examples 3 and 4 are provided with a special hydrogen discharge film, and the hydrogen gas generated inside the capacitor is quickly discharged to the outside by this hydrogen discharge film, and the internal pressure of the capacitor is reduced. This is probably because the rise was effectively suppressed.
  • the aluminum electrolytic capacitor produced with the anode foil of the rated voltage 200V of Examples 3 and 4 is equivalent to the capacitor produced with the anode foil of the rated voltage 250V of Examples 1 and 2 when a voltage exceeding 200V is applied. Therefore, it can be seen that by using a special hydrogen discharge film, the aluminum electrolytic capacitor can be miniaturized without any change in appearance.
  • the electrolytic capacitor of the present invention is suitably used for various power sources.

Abstract

The purpose of the present invention is to provide an electrolytic capacitor which raises no concerns regarding an outer case swelling or rupturing even in cases where a large quantity of hydrogen gas is generated, has a large capacitance, and can enable a reduction in size and an increase in withstand voltage. This electrolytic capacitor is provided with a hydrogen discharge film, with the hydrogen discharge film including a hydrogen gas-permeable layer that selectively allows permeation of 99 mol.% of hydrogen gas when in contact with a mixed gas containing equimolar quantities of hydrogen gas and nitrogen gas, and the electrolytic capacitor is characterized in that the ratio of the average thickness of an oxide film on an anode to the rated voltage of the capacitor (average thickness/rated voltage) is 1.2-2.9 (nm/V).

Description

電解コンデンサElectrolytic capacitor
 本発明は、水素排出膜を備えた電解コンデンサに関する。 The present invention relates to an electrolytic capacitor provided with a hydrogen discharge film.
 近年、風力発電及び太陽光発電などのインバータ、蓄電池などの大型電源などの用途にアルミ電解コンデンサなどの電解コンデンサが使用されている。 In recent years, electrolytic capacitors such as aluminum electrolytic capacitors have been used for applications such as inverters for wind power generation and solar power generation, and large power supplies such as storage batteries.
 例えば、アルミ電解コンデンサの陽極は、アルミニウム電極の表面に電気化学的に生成させた酸化アルミ皮膜を有している。アルミ電解コンデンサの使用時に、過度の応力、振動、及び衝撃などの機械的ストレス、あるいは逆電圧、過電圧、及び過電流などの電気的ストレスが陽極に掛かると、酸化アルミ皮膜に欠陥部が生じる。アルミ電解コンデンサは皮膜修復性に優れた電解液を用いており、電解液と陽極のアルミニウムとの反応により速やかに酸化アルミ皮膜が生成され、欠陥部が修復される。しかし、その際、陽極側で酸化が起こると共に陰極側で還元が起こり、水素ガスが発生する。酸化アルミ皮膜に欠陥部が大量に生じると、皮膜修復作用により水素ガスが大量に発生し、アルミ電解コンデンサの内部圧力の上昇によって外装ケースが膨張又は破裂する恐れがある。 For example, the anode of an aluminum electrolytic capacitor has an aluminum oxide film generated electrochemically on the surface of an aluminum electrode. When an aluminum electrolytic capacitor is used, if a mechanical stress such as excessive stress, vibration, and shock, or an electrical stress such as reverse voltage, overvoltage, and overcurrent is applied to the anode, a defective portion is generated in the aluminum oxide film. The aluminum electrolytic capacitor uses an electrolytic solution excellent in film repairability, and an aluminum oxide film is quickly formed by the reaction between the electrolytic solution and aluminum of the anode, and the defective portion is repaired. However, at that time, oxidation occurs on the anode side and reduction occurs on the cathode side, generating hydrogen gas. If a large number of defective portions occur in the aluminum oxide film, a large amount of hydrogen gas is generated due to the film repairing action, and the outer case may expand or rupture due to an increase in the internal pressure of the aluminum electrolytic capacitor.
 そのため、一般の電解コンデンサには、特殊膜を備えた安全弁が設けられている。安全弁は、コンデンサ内部の水素ガスを外部に排出する機能に加え、コンデンサの内部圧力が急激に上昇した場合には自壊して内部圧力を低下させ、コンデンサ自体の破裂を防止する機能を有するものである。このような安全弁の構成部材である特殊膜としては、例えば、以下のものが提案されている。 Therefore, a general electrolytic capacitor is provided with a safety valve with a special membrane. In addition to the function of discharging the hydrogen gas inside the capacitor to the outside, the safety valve has a function to prevent the capacitor itself from bursting by self-destructing and reducing the internal pressure when the internal pressure of the capacitor suddenly increases. is there. For example, the following has been proposed as a special membrane that is a component of such a safety valve.
 特許文献1では、パラジュームに20wt%(19.8mol%)Agを含有させたパラジューム銀(Pd-Ag)の合金で構成された箔帯を備えた圧力調整膜が提案されている。 Patent Document 1 proposes a pressure adjusting film including a foil strip made of an alloy of paradium silver (Pd—Ag) containing 20 wt% (19.8 mol%) Ag in paradium.
 しかし、特許文献1の箔帯は、50~60℃程度以下の環境下で脆化しやすく、圧力調整膜としての機能を長期間維持することができないという問題があり、実用化には至っていない。 However, the foil strip of Patent Document 1 is easily embrittled in an environment of about 50 to 60 ° C. or less, and has a problem that the function as a pressure adjusting film cannot be maintained for a long period of time.
 上記問題を解決するために、特許文献2では、Pd-Ag合金を含む水素排出膜であって、Pd-Ag合金中のAgの含有量が20mol%以上である水素排出膜が提案されている。また、特許文献3では、Pd-Cu合金を含む水素排出膜であって、Pd-Cu合金中のCuの含有量が30mol%以上である水素排出膜が提案されている。 In order to solve the above-mentioned problem, Patent Document 2 proposes a hydrogen discharge film containing a Pd—Ag alloy, wherein the content of Ag in the Pd—Ag alloy is 20 mol% or more. . Patent Document 3 proposes a hydrogen discharge film containing a Pd—Cu alloy and having a Cu content of 30 mol% or more in the Pd—Cu alloy.
 また、一般の電解コンデンサは、酸化皮膜に欠陥部が生じることを抑制するために、酸化皮膜の膜厚を厚くしている。しかし、酸化皮膜は電気化学的に形成するため、酸化皮膜の膜厚を厚くすることは、多くのエネルギーや製造時間が必要になるというデメリットがある。また、酸化皮膜の膜厚を大きくするとコンデンサの静電容量が低下するため、静電容量の低下を補うために酸化皮膜の表面積を大きくする必要があり、電解コンデンサの小型化が難しくなるという問題があった。 Further, in general electrolytic capacitors, the thickness of the oxide film is increased in order to suppress the occurrence of a defective portion in the oxide film. However, since the oxide film is formed electrochemically, increasing the film thickness of the oxide film has a demerit that much energy and manufacturing time are required. In addition, increasing the thickness of the oxide film reduces the capacitance of the capacitor, so it is necessary to increase the surface area of the oxide film to compensate for the decrease in capacitance, making it difficult to reduce the size of the electrolytic capacitor. was there.
特許第4280014号明細書Japanese Patent No. 4280014 国際公開第2014/098038号International Publication No. 2014/098038 国際公開第2015/019906号International Publication No. 2015/019906
 本発明は、上記問題点に鑑みてなされたものであり、水素ガスが大量に発生した場合でも外装ケースが膨張又は破裂する恐れがなく、しかも静電容量が大きく、小型化又は高耐電圧化が可能な電解コンデンサを提供することを目的とする。 The present invention has been made in view of the above problems, and even when a large amount of hydrogen gas is generated, there is no risk of the outer case expanding or rupturing, and the capacitance is large, miniaturization or high withstand voltage. An object of the present invention is to provide an electrolytic capacitor capable of performing
 本発明は、水素排出膜を備えている電解コンデンサであって、
 前記水素排出膜は、水素ガスと窒素ガスを等モル含む混合ガスを接触させたときに、水素ガスを99モル%以上選択的に透過する水素ガス透過層を含み、
 陽極の酸化皮膜の平均厚さとコンデンサの定格電圧との比(平均厚さ/定格電圧)が1.2~2.9(nm/V)であることを特徴とする電解コンデンサ、に関する。
The present invention is an electrolytic capacitor comprising a hydrogen discharge membrane,
The hydrogen discharge membrane includes a hydrogen gas permeable layer that selectively permeates 99% by mole or more of hydrogen gas when contacting a mixed gas containing equimolar amounts of hydrogen gas and nitrogen gas,
The present invention relates to an electrolytic capacitor characterized in that the ratio (average thickness / rated voltage) between the average thickness of the oxide film on the anode and the rated voltage of the capacitor is 1.2 to 2.9 (nm / V).
 本発明の電解コンデンサは、陽極の酸化皮膜の平均厚さとコンデンサの定格電圧との比(平均厚さ/定格電圧)が1.2~2.9(nm/V)であり、従来の電解コンデンサに比べて前記比の値が小さい(つまり、従来の電解コンデンサに比べて酸化皮膜の平均厚さが薄い)。 The electrolytic capacitor of the present invention has a ratio (average thickness / rated voltage) of the average thickness of the oxide film of the anode to the rated voltage of the capacitor of 1.2 to 2.9 (nm / V), and the conventional electrolytic capacitor The value of the ratio is smaller than that of (that is, the average thickness of the oxide film is thinner than that of a conventional electrolytic capacitor).
 本発明のように、陽極の酸化皮膜の平均厚さとコンデンサの定格電圧との比を小さくすると、機械的ストレス又は電気的ストレスによって酸化皮膜に欠陥部が生じやすくなり、皮膜修復作用により水素ガスが大量に発生し、電解コンデンサの内部圧力の上昇によって外装ケースが膨張又は破裂する可能性が高くなる。しかし、本発明の電解コンデンサは、水素ガスと窒素ガスを等モル含む混合ガスを接触させたときに、水素ガスを99モル%以上選択的に透過する水素ガス透過層を含む水素排出膜を備えているため、仮に電解コンデンサ内部に水素ガスが大量に発生したとしても水素ガスのみを速やかに外部に排出することができ、外装ケースが膨張又は破裂することを効果的に防止することができる。 If the ratio between the average thickness of the oxide film of the anode and the rated voltage of the capacitor is reduced as in the present invention, a defect portion is likely to be generated in the oxide film due to mechanical stress or electrical stress, and hydrogen gas is generated by the film repairing action. It is generated in large quantities, and the possibility that the outer case expands or ruptures due to an increase in the internal pressure of the electrolytic capacitor increases. However, the electrolytic capacitor of the present invention includes a hydrogen discharge membrane including a hydrogen gas permeable layer that selectively permeates hydrogen gas by 99 mol% or more when contacting a mixed gas containing equimolar amounts of hydrogen gas and nitrogen gas. Therefore, even if a large amount of hydrogen gas is generated inside the electrolytic capacitor, only the hydrogen gas can be quickly discharged to the outside, and the outer case can be effectively prevented from expanding or bursting.
 陽極の酸化皮膜の平均厚さとコンデンサの定格電圧との比が1.2(nm/V)未満の場合には、前記水素排出膜の水素排出能力を超える大量の水素ガスが短時間で電解コンデンサ内部に発生する恐れがあり、外装ケースが膨張又は破裂する危険性が大きくなったり、電解コンデンサの高耐電圧化が困難になる。一方、2.9(nm/V)を超えると電解コンデンサの静電容量を大きくすることが困難になったり、電解コンデンサの小型化が困難になる。 When the ratio between the average thickness of the oxide film on the anode and the rated voltage of the capacitor is less than 1.2 (nm / V), a large amount of hydrogen gas exceeding the hydrogen discharge capacity of the hydrogen discharge film can be quickly removed from the electrolytic capacitor. There is a risk that it may occur inside, and there is a greater risk of the outer case expanding or rupturing, and it becomes difficult to increase the withstand voltage of the electrolytic capacitor. On the other hand, if it exceeds 2.9 (nm / V), it will be difficult to increase the capacitance of the electrolytic capacitor, and it will be difficult to reduce the size of the electrolytic capacitor.
 前記水素ガス透過層は、金属層であることが好ましく、Pd合金層であることがより好ましい。 The hydrogen gas permeable layer is preferably a metal layer, and more preferably a Pd alloy layer.
 前記Pd合金層の形成材料であるPd合金は、水素透過性、耐酸化性、及び水素吸蔵時の耐脆化に優れるという観点から、第11族元素を20~65mol%含むことが好ましい。また、前記第11族元素は、Au、Ag、及びCuからなる群より選択される少なくとも1種であることが好ましく、特に化学耐性に優れるという観点から、Auであることが好ましい。 The Pd alloy, which is a material for forming the Pd alloy layer, preferably contains 20 to 65 mol% of a Group 11 element from the viewpoint of excellent hydrogen permeability, oxidation resistance, and embrittlement resistance during hydrogen storage. The Group 11 element is preferably at least one selected from the group consisting of Au, Ag, and Cu, and Au is particularly preferable from the viewpoint of excellent chemical resistance.
 Pd-第11族元素合金を含むPd合金層は、膜表面で水素分子を水素原子に解離して水素原子を膜内に固溶し、固溶した水素原子を高圧側から低圧側に拡散させ、低圧側の膜表面で再び水素原子を水素分子に変換して排出する機能を有する。第11族元素の含有量が20mol%未満の場合には、Pd合金の強度が不十分になったり、前記機能が発現し難くなる傾向にあり、65mol%を超える場合には水素透過速度が低下する傾向にある。 A Pd alloy layer containing a Pd-Group 11 element alloy dissociates hydrogen molecules into hydrogen atoms on the film surface, so that the hydrogen atoms are dissolved in the film, and the dissolved hydrogen atoms are diffused from the high pressure side to the low pressure side. In addition, it has a function of converting hydrogen atoms into hydrogen molecules again and discharging them on the low pressure side film surface. When the content of the Group 11 element is less than 20 mol%, the strength of the Pd alloy tends to be insufficient, or the function tends to be hardly exhibited. When the content exceeds 65 mol%, the hydrogen permeation rate decreases. Tend to.
 前記金属層は、片面又は両面に支持体を有することが好ましい。支持体は、金属層が安全弁又は水素排出弁から脱落した場合に、電解コンデンサ内に落下することを防止するために設けられる。また、金属層が、電解コンデンサの内部圧力が所定値以上になった時に自壊する安全弁としての機能を有する場合において、金属層が薄膜である場合には、金属層の機械的強度が低いため、電解コンデンサの内部圧力が所定値になる前に自壊するおそれがあり、安全弁としての機能を果たせない。そのため、金属層が薄膜である場合には、機械的強度を向上させるために金属層の片面又は両面に支持体を積層することが好ましい。 The metal layer preferably has a support on one side or both sides. The support is provided to prevent the metal layer from falling into the electrolytic capacitor when the metal layer falls off the safety valve or the hydrogen discharge valve. In addition, when the metal layer has a function as a safety valve that self-destructs when the internal pressure of the electrolytic capacitor becomes a predetermined value or more, when the metal layer is a thin film, the mechanical strength of the metal layer is low, There is a risk of self-destruction before the internal pressure of the electrolytic capacitor reaches a predetermined value, and the function as a safety valve cannot be performed. Therefore, when a metal layer is a thin film, it is preferable to laminate | stack a support body on the single side | surface or both surfaces of a metal layer, in order to improve mechanical strength.
 電解コンデンサとしては、例えば、アルミ電解コンデンサ、タンタル電解コンデンサ、及びニオブ電解コンデンサなどが挙げられる。 Examples of the electrolytic capacitor include an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, and a niobium electrolytic capacitor.
 本発明の電解コンデンサは、従来の電解コンデンサに比べて酸化皮膜の平均厚さが薄い。そのため、本発明の電解コンデンサは、従来の電解コンデンサに比べて同程度の大きさでありながら静電容量が大きいという利点がある。また、本発明の電解コンデンサは、従来の電解コンデンサに比べて同程度の静電容量を持ちながら小型化又は高耐電圧化できるという利点がある。また、本発明の電解コンデンサは、従来の電解コンデンサに比べて酸化皮膜の平均厚さが薄いため、従来に比べて少ないエネルギー及び製造時間で製造することができ、コスト面で優れている。 In the electrolytic capacitor of the present invention, the average thickness of the oxide film is thinner than that of the conventional electrolytic capacitor. Therefore, the electrolytic capacitor of the present invention has an advantage that the capacitance is large while being the same size as the conventional electrolytic capacitor. In addition, the electrolytic capacitor of the present invention has an advantage that it can be downsized or have a high withstand voltage while having the same capacitance as a conventional electrolytic capacitor. In addition, the electrolytic capacitor of the present invention has an average oxide film thickness that is smaller than that of a conventional electrolytic capacitor, so that it can be manufactured with less energy and manufacturing time than the conventional electrolytic capacitor, and is excellent in terms of cost.
 本発明の電解コンデンサは、長期間使用した場合でも水素排出性が低下しにくく、水素を安定的に排出することができる水素排出膜を備えている。また、前記水素排出膜は、電解コンデンサ内部で発生した水素ガスのみを速やかに外部に排出することができるだけでなく、外部から電解コンデンサ内部への不純物の侵入を防止することができる。また、前記水素排出膜は、電解コンデンサの内部圧力が急激に上昇した場合には自壊して内部圧力を低下させ、電解コンデンサ自体の破裂を防止する機能を有していてもよい。これら効果により、電解コンデンサの初期性能を長期間維持することができ、電解コンデンサの長寿命化を図ることができる。 The electrolytic capacitor of the present invention is provided with a hydrogen discharge membrane that can hardly discharge hydrogen even when used for a long period of time and can discharge hydrogen stably. In addition, the hydrogen discharge film can quickly discharge only the hydrogen gas generated inside the electrolytic capacitor to the outside, and can prevent impurities from entering the electrolytic capacitor from the outside. In addition, the hydrogen discharge membrane may have a function of preventing destruction of the electrolytic capacitor itself by self-destructing and lowering the internal pressure when the internal pressure of the electrolytic capacitor suddenly increases. By these effects, the initial performance of the electrolytic capacitor can be maintained for a long time, and the life of the electrolytic capacitor can be extended.
本発明の水素排出膜の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the hydrogen discharge film | membrane of this invention. 本発明の水素排出膜の他の構造を示す概略断面図である。It is a schematic sectional drawing which shows the other structure of the hydrogen discharge film | membrane of this invention.
 以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明の電解コンデンサは、水素排出膜を備えており、前記水素排出膜は、水素ガスと窒素ガスを等モル含む混合ガスを接触させたときに、水素ガスを99モル%以上選択的に透過する水素ガス透過層を含む。また、本発明の電解コンデンサは、陽極の酸化皮膜の平均厚さとコンデンサの定格電圧との比(平均厚さ/定格電圧)が1.2~2.9(nm/V)であることを特徴とする。 The electrolytic capacitor of the present invention includes a hydrogen discharge membrane, and the hydrogen discharge membrane selectively permeates hydrogen gas by 99 mol% or more when contacting a mixed gas containing equimolar amounts of hydrogen gas and nitrogen gas. A hydrogen gas permeable layer. The electrolytic capacitor of the present invention is characterized in that the ratio (average thickness / rated voltage) of the average thickness of the oxide film on the anode to the rated voltage of the capacitor is 1.2 to 2.9 (nm / V). And
 電解コンデンサとしては、アルミ電解コンデンサ、タンタル電解コンデンサ、及びニオブ電解コンデンサなどが挙げられるが、特にアルミ電解コンデンサであることが好ましい。水素排出膜及び陽極以外の構成部材は、従来のものを特に制限なく使用できる。また、本発明の電解コンデンサは、下記の水素排出膜及び陽極を用いる以外は従来の方法により製造することができる。以下、水素排出膜及び陽極について詳しく述べる。 Examples of the electrolytic capacitor include an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, and a niobium electrolytic capacitor, and an aluminum electrolytic capacitor is particularly preferable. Conventional components other than the hydrogen discharge membrane and the anode can be used without particular limitation. The electrolytic capacitor of the present invention can be manufactured by a conventional method except that the following hydrogen discharge membrane and anode are used. Hereinafter, the hydrogen discharge film and the anode will be described in detail.
 前記水素排出膜は、水素ガスと窒素ガスを等モル含む混合ガスを接触させたときに、水素ガスを99モル%以上選択的に透過する水素ガス透過層を含む。好ましくは、水素ガスを99.9モル%以上選択的に透過する水素ガス透過層である。 The hydrogen discharge membrane includes a hydrogen gas permeable layer that selectively permeates hydrogen gas by 99 mol% or more when contacting a mixed gas containing equimolar amounts of hydrogen gas and nitrogen gas. Preferably, it is a hydrogen gas permeable layer that selectively transmits 99.9 mol% or more of hydrogen gas.
 また、前記水素排出膜は、圧力の平方根が76.81Pa1/2(0.059bar)における水素透過量が10ml/day以上(4.03×10-4mol/day以上:SATPに従い計算(温度25℃、気圧1barにおける1molの理想気体の体積は24.8L))であることが好ましい。また、前記水素排出膜は、50℃における水素透過係数が1×10-12(mol・m-1・sec-1・Pa-1/2)以上であることが好ましく、より好ましくは1×10-10(mol・m-1・sec-1・Pa-1/2)以上であり、さらに好ましくは1×10-9(mol・m-1・sec-1・Pa-1/2)以上である。 The hydrogen discharge membrane has a hydrogen permeation amount of 10 ml / day or more (4.03 × 10 −4 mol / day or more: calculated according to SATP (temperature) when the square root of pressure is 76.81 Pa 1/2 (0.059 bar). The volume of 1 mol ideal gas at 25 ° C. and 1 bar pressure is preferably 24.8 L)). The hydrogen discharge membrane preferably has a hydrogen permeability coefficient at 50 ° C. of 1 × 10 −12 (mol · m −1 · sec −1 · Pa −1/2 ) or more, more preferably 1 × 10 10. −10 (mol · m −1 · sec −1 · Pa −1/2 ) or more, more preferably 1 × 10 −9 (mol · m −1 · sec −1 · Pa −1/2 ) or more. is there.
 当該特性を有する層としては、例えば、Pd合金層などの金属層が挙げられる。 Examples of the layer having the characteristics include a metal layer such as a Pd alloy layer.
 前記Pd合金層の材料であるPd合金を形成する他の金属は特に制限されないが、例えば、Nb、V、Ta、Ni、Fe、Al、Cu、Ru、Re、Rh、Au、Pt、Ag、Cr、Co、Sn、Zr、Y、Ce、Ti、Ir、及びMoなどが挙げられる。これら他の金属は1種用いてもよく、2種以上を併用してもよい。これらのうち、第11族元素を用いることが好ましく、より好ましくはAu、Ag、及びCuからなる群より選択される少なくとも1種である。特に、Pd-Au合金は、電解コンデンサ内部の電解液又は構成部材から発生するガス成分に対する耐腐食性が優れるため好ましい。Pd合金は、第11族元素を20~65mol%含むことが好ましく、より好ましくは30~65mol%であり、さらに好ましくは30~60mol%である。また、Ag含有量が20mol%以上であるPd-Ag合金、Cu含有量が30mol%以上であるPd-Cu合金、又はAu含有量が20mol%以上であるPd-Au合金を含むPd合金層は、50~60℃程度以下の低温域であっても水素によって脆化しにくいので好ましい。また、Pd合金は、本発明の効果を損なわない範囲でIB族及び/又はIIIA族の金属を含んでいてもよい。 The other metal forming the Pd alloy that is the material of the Pd alloy layer is not particularly limited. For example, Nb, V, Ta, Ni, Fe, Al, Cu, Ru, Re, Rh, Au, Pt, Ag, Examples thereof include Cr, Co, Sn, Zr, Y, Ce, Ti, Ir, and Mo. These other metals may be used alone or in combination of two or more. Among these, it is preferable to use a Group 11 element, more preferably at least one selected from the group consisting of Au, Ag, and Cu. In particular, a Pd—Au alloy is preferable because it is excellent in corrosion resistance against gas components generated from the electrolyte solution or constituent members inside the electrolytic capacitor. The Pd alloy preferably contains a Group 11 element in an amount of 20 to 65 mol%, more preferably 30 to 65 mol%, and still more preferably 30 to 60 mol%. Further, a Pd-Ag alloy having an Ag content of 20 mol% or more, a Pd-Cu alloy having a Cu content of 30 mol% or more, or a Pd alloy layer containing a Pd-Au alloy having an Au content of 20 mol% or more is provided. Even in a low temperature range of about 50 to 60 ° C. or less, it is preferable because it is difficult to be embrittled by hydrogen. The Pd alloy may contain a group IB and / or group IIIA metal as long as the effects of the present invention are not impaired.
 Pd合金は、Pdを含む2成分の合金だけでなく、例えばPd-Au-Agの3成分の合金であってもよく、Pd-Au-Cuの3成分の合金であってもよい。さらに、Pd-Au-Ag-Cuの4成分の合金であってもよい。例えば、PdとAuと他の金属を含む多成分系合金の場合、Pd合金中のAuと他の金属との合計含有量は、55mol%以下であることが好ましく、より好ましくは50mol%以下であり、さらに好ましくは45mol%以下であり、特に好ましくは40mol%以下である。 The Pd alloy is not limited to a two-component alloy containing Pd, but may be, for example, a three-component alloy of Pd—Au—Ag or a three-component alloy of Pd—Au—Cu. Further, a Pd—Au—Ag—Cu four-component alloy may be used. For example, in the case of a multi-component alloy containing Pd, Au and other metals, the total content of Au and other metals in the Pd alloy is preferably 55 mol% or less, more preferably 50 mol% or less. Yes, more preferably 45 mol% or less, particularly preferably 40 mol% or less.
 Pd合金層は、例えば、圧延法、スパッタリング法、真空蒸着法、イオンプレーティング法、及びメッキ法などにより製造することができるが、膜厚の厚いPd合金層を製造する場合には、圧延法を用いることが好ましく、膜厚の薄いPd合金層を製造する場合には、スパッタリング法を用いることが好ましい。 The Pd alloy layer can be manufactured, for example, by a rolling method, a sputtering method, a vacuum deposition method, an ion plating method, a plating method, or the like. When a thick Pd alloy layer is manufactured, a rolling method is used. It is preferable to use a sputtering method when manufacturing a thin Pd alloy layer.
 圧延法は、熱間圧延であってもよく、冷間圧延のいずれの方法でもよい。圧延法は、一対又は複数対のロール(ローラー)を回転させ、ロール間に原料である金属を、圧力をかけながら通過させることにより膜状に加工する方法である。 The rolling method may be hot rolling or any method of cold rolling. The rolling method is a method of processing a film by rotating a pair or a plurality of pairs of rollers (rollers) and passing a metal as a raw material between the rolls while applying pressure.
 圧延法により得られるPd合金層の膜厚は、5~50μmであることが好ましく、より好ましくは10~30μmである。膜厚が5μm未満の場合には、製造時にピンホール又はクラックが生じやすくなったり、水素を吸蔵すると変形しやすくなる。一方、膜厚が50μmを超えると、水素を透過させるのに時間を要するため水素透過性が低下したり、コスト面で劣るため好ましくない。 The film thickness of the Pd alloy layer obtained by the rolling method is preferably 5 to 50 μm, more preferably 10 to 30 μm. When the film thickness is less than 5 μm, pinholes or cracks are likely to occur during production, or deformation occurs when hydrogen is occluded. On the other hand, if the film thickness exceeds 50 μm, it takes time to allow hydrogen to pass therethrough, so that the hydrogen permeability is lowered or the cost is inferior.
 スパッタリング法は特に限定されず、平行平板型、枚葉型、通過型、DCスパッタ、及びRFスパッタなどのスパッタリング装置を用いて行うことができる。例えば、金属ターゲットを設置したスパッタリング装置に基板を取り付けた後、スパッタリング装置内を真空排気し、Arガス圧を所定値に調整し、金属ターゲットに所定のスパッタ電流を投入して、基板上にPd合金膜を形成する。その後、基板からPd合金膜を剥離してPd合金層を得る。なお、ターゲットとしては、製造するPd合金層に応じて、単一又は複数のターゲットを用いることができる。 The sputtering method is not particularly limited, and can be performed using a sputtering apparatus such as a parallel plate type, a single wafer type, a passing type, DC sputtering, and RF sputtering. For example, after a substrate is attached to a sputtering apparatus provided with a metal target, the inside of the sputtering apparatus is evacuated, an Ar gas pressure is adjusted to a predetermined value, a predetermined sputtering current is supplied to the metal target, and Pd is formed on the substrate. An alloy film is formed. Thereafter, the Pd alloy film is peeled from the substrate to obtain a Pd alloy layer. In addition, as a target, a single target or a some target can be used according to the Pd alloy layer to manufacture.
 基板としては、例えば、ガラス板、セラミックス板、シリコンウエハー、アルミニウム及びステンレスなどの金属板が挙げられる。 Examples of the substrate include glass plates, ceramic plates, silicon wafers, metal plates such as aluminum and stainless steel.
 スパッタリング法により得られるPd合金層の膜厚は、0.01~5μmであることが好ましく、より好ましくは0.05~2μmである。膜厚が0.01μm未満の場合には、ピンホールが形成される可能性があるだけでなく、要求される機械的強度を得難い。また、基板から剥離する際に破損しやすく、剥離後の取り扱いも困難になる。一方、膜厚が5μmを超えると、Pd合金層を製造するのに時間を要し、コスト面で劣るため好ましくない。 The film thickness of the Pd alloy layer obtained by sputtering is preferably 0.01 to 5 μm, more preferably 0.05 to 2 μm. When the film thickness is less than 0.01 μm, not only pinholes may be formed, but it is difficult to obtain the required mechanical strength. Moreover, it is easy to break when peeling from the substrate, and handling after peeling becomes difficult. On the other hand, if the film thickness exceeds 5 μm, it takes time to produce the Pd alloy layer, which is not preferable because of inferior cost.
 Pd合金層の膜面積は、水素透過量と膜厚を考慮して適宜調整することができるが、安全弁の構成部材として用いる場合には、0.01~100mm程度である。なお、本発明において膜面積は、Pd合金層において実際に水素を排出する部分の面積であって、後述するリング状の接着剤を塗布した部分は含まない。 The film area of the Pd alloy layer can be appropriately adjusted in consideration of the hydrogen permeation amount and the film thickness, but is about 0.01 to 100 mm 2 when used as a component of a safety valve. In the present invention, the film area is the area of the portion where hydrogen is actually discharged in the Pd alloy layer, and does not include the portion where a ring-shaped adhesive described later is applied.
 前記金属層は、片面又は両面にコート層を有することが好ましい。金属層の片面又は両面にコート層を設けることにより、金属層に存在するピンホール又はクラックを塞ぐことができる。それにより、電気化学素子内部の必要成分(電解液など)が外部に漏れることを抑制できる。 The metal layer preferably has a coating layer on one side or both sides. By providing a coating layer on one or both sides of the metal layer, pinholes or cracks existing in the metal layer can be closed. Thereby, it can suppress that the required components (electrolyte etc.) inside an electrochemical element leak outside.
 コート層の原料は特に制限されず、例えば、フッ素系化合物、ゴム系ポリマー、シリコーン系ポリマー、ウレタン系ポリマー、及びポリエステル系ポリマーなどが挙げられる。これらのうち、水素排出膜の水素透過性を阻害しにくいという観点から、フッ素系化合物、ゴム系ポリマー、及びシリコーン系ポリマーからなる群より選択される少なくとも1種の化合物を用いることが好ましい。 The raw material of the coating layer is not particularly limited, and examples thereof include fluorine compounds, rubber polymers, silicone polymers, urethane polymers, and polyester polymers. Among these, it is preferable to use at least one compound selected from the group consisting of a fluorine-based compound, a rubber-based polymer, and a silicone-based polymer from the viewpoint that it is difficult to inhibit the hydrogen permeability of the hydrogen discharge membrane.
 フッ素系化合物としては、例えば、フルオロアルキルカルボン酸塩、フルオロアルキル第四級アンモニウム塩、及びフルオロアルキルエチレンオキシド付加物などのフルオロアルキル基含有化合物;ペルフルオロアルキルカルボン酸塩、ペルフルオロアルキル第四級アンモニウム塩、及びペルフルオロアルキルエチレンオキシド付加物などのペルフルオロアルキル基含有化合物;テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、及びテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体などのフルオロカーボン基含有化合物;テトラフルオロエチレン重合体;フッ化ビニリデンとテトラフルオロエチレンの共重合体;フッ化ビニリデンとヘキサフルオロプロピレンの共重合体;含フッ素(メタ)アクリル酸エステル;含フッ素(メタ)アクリル酸エステル重合体;含フッ素(メタ)アクリル酸アルキルエステル重合体;含フッ素(メタ)アクリル酸エステルと他モノマーの共重合体、などが挙げられる。 Examples of the fluorine-based compound include a fluoroalkyl carboxylate, a fluoroalkyl quaternary ammonium salt, and a fluoroalkyl group-containing compound such as a fluoroalkylethylene oxide adduct; a perfluoroalkyl carboxylate, a perfluoroalkyl quaternary ammonium salt, And perfluoroalkyl group-containing compounds such as perfluoroalkylethylene oxide adducts; fluorocarbon group-containing compounds such as tetrafluoroethylene / hexafluoropropylene copolymers and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymers; tetrafluoroethylene polymers; Copolymer of vinylidene fluoride and tetrafluoroethylene; copolymer of vinylidene fluoride and hexafluoropropylene; fluorine-containing (meth) acrylic Ester; fluoro (meth) acrylate polymer; fluoro (meth) alkyl ester polymer of acrylic acid; fluorinated copolymer of (meth) acrylic ester and other monomers, and the like.
 また、コート層の原料であるフッ素系化合物として、ハーベス社製の「デュラサーフ」シリーズ、ダイキン工業社製の「オプツール」シリーズ、及び信越化学工業社製の「KY-100」シリーズなどを使用してもよい。 In addition, as a fluorine-based compound that is a raw material for the coat layer, Harves '“Durasurf” series, Daikin Industries' “OPTOOL” series, Shin-Etsu Chemical's “KY-100” series, etc. are used. May be.
 ゴム系ポリマーとしては、例えば、天然ゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、ポリイソプレンゴム、ポリブタジエンゴム、エチレンプロピレンゴム、エチレン-プロピレン-ジエン三元重合体ゴム、クロロスルフォン化ポリエチレンゴム、及びエチレン-酢酸ビニル共重合体ゴムなどが挙げられる。 Examples of rubber polymers include natural rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, chloroprene rubber, polyisoprene rubber, polybutadiene rubber, ethylene propylene rubber, ethylene-propylene-diene terpolymer rubber, chlorosulfonated polyethylene rubber, And ethylene-vinyl acetate copolymer rubber.
 また、コート層の原料であるゴム系ポリマーとして、日東シンコー社製の「エレップコート」シリーズなどを使用してもよい。 In addition, as a rubber-based polymer that is a raw material for the coating layer, “Elep Coat” series manufactured by Nitto Shinko Co., Ltd. may be used.
 シリコーン系ポリマーとしては、例えば、ポリジメチルシロキサン、アルキル変性ポリジメチルシロキサン、カルボキシル変性ポリジメチルシロキサン、アミノ変性ポリジメチルシロキサン、エポキシ変性ポリジメチルシロキサン、フッ素変性ポリジメチルシロキサン、及び(メタ)アクリレート変性ポリジメチルシロキサンなどが挙げられる。 Examples of the silicone polymer include polydimethylsiloxane, alkyl-modified polydimethylsiloxane, carboxyl-modified polydimethylsiloxane, amino-modified polydimethylsiloxane, epoxy-modified polydimethylsiloxane, fluorine-modified polydimethylsiloxane, and (meth) acrylate-modified polydimethyl. Examples thereof include siloxane.
 コート層は、例えば、金属層上にコート層原料組成物を塗布し、硬化させることにより形成することができる。 The coating layer can be formed, for example, by applying a coating layer raw material composition on a metal layer and curing it.
 塗布方法は特に制限されず、例えば、ロールコート法、スピンコート法、ディップコート法、スプレーコート法、バーコート法、ナイフコート法、ダイコート法、インクジェット法、及びグラビアコート法などが挙げられる。 The coating method is not particularly limited, and examples thereof include a roll coating method, a spin coating method, a dip coating method, a spray coating method, a bar coating method, a knife coating method, a die coating method, an ink jet method, and a gravure coating method.
 溶剤は、コート層の原料に応じて適宜選択すればよい。コート層の原料としてフッ素系化合物を用いる場合、例えば、フッ素系溶剤、アルコール系溶剤、エーテル系溶剤、エステル系溶剤、及び炭化水素系溶剤などの溶剤を単独又は混合して使用することができる。これらのうち、引火性がなく、速やかに揮発するフッ素系溶剤を単独又は他の溶剤と混合して使用することが好ましい。 The solvent may be appropriately selected according to the raw material of the coat layer. When using a fluorine-type compound as a raw material of a coating layer, solvents, such as a fluorine-type solvent, an alcohol solvent, an ether solvent, an ester solvent, and a hydrocarbon solvent, can be used individually or in mixture, for example. Among these, it is preferable to use a fluorine-based solvent which is not flammable and volatilizes rapidly, either alone or mixed with another solvent.
 フッ素系溶剤としては、例えば、ハイドロフルオロエーテル、パーフルオロポリエーテル、パーフルオロアルカン、ハイドロフルオロポリエーテル、ハイドロフルオロカーボン、パーフルオロシクロエーテル、パーフルオロシクロアルカン、ハイドロフルオロシクロアルカン、キシレンヘキサフルオライド、ハイドロフルオロクロロカーボン、及びパーフルオロカーボンなどが挙げられる。 Examples of the fluorine-based solvent include hydrofluoroether, perfluoropolyether, perfluoroalkane, hydrofluoropolyether, hydrofluorocarbon, perfluorocycloether, perfluorocycloalkane, hydrofluorocycloalkane, xylene hexafluoride, hydro Examples thereof include fluorochlorocarbon and perfluorocarbon.
 コート層の厚さは特に制限されないが、0.1~40μmであることが好ましく、より好ましくは0.2~10μmであり、さらに好ましくは0.3~5μmである。 The thickness of the coating layer is not particularly limited, but is preferably 0.1 to 40 μm, more preferably 0.2 to 10 μm, and further preferably 0.3 to 5 μm.
 前記金属層の片面又は両面に支持体を設けてもよい。特に、スパッタリング法により得られるPd合金層は、膜厚が薄いため、機械的強度を向上させるためにPd合金層の片面又は両面に支持体を積層することが好ましい。 A support may be provided on one side or both sides of the metal layer. In particular, since the Pd alloy layer obtained by sputtering is thin, it is preferable to laminate a support on one side or both sides of the Pd alloy layer in order to improve mechanical strength.
 図1及び2は、水素排出膜1の構造を示す概略断面図である。図1(a)又は(b)に示すように、Pd合金層2の片面又は両面にリング状の接着剤3を用いて支持体4を積層してもよく、図2(a)又は(b)に示すように、治具5を用いてPd合金層2の片面又は両面に支持体4を積層してもよい。 1 and 2 are schematic cross-sectional views showing the structure of the hydrogen discharge membrane 1. As shown in FIG. 1 (a) or (b), a support 4 may be laminated on one or both sides of the Pd alloy layer 2 using a ring-shaped adhesive 3, and FIG. 2 (a) or (b ), The support 4 may be laminated on one side or both sides of the Pd alloy layer 2 using the jig 5.
 支持体4は、水素透過性であり、Pd合金層2を支持しうるものであれば特に限定されず、無孔質体であってもよく、多孔質体であってもよい。また、支持体4は、織布、不織布であってもよい。支持体4の形成材料としては、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン、ポリエチレンテレフタレート及びポリエチレンナフタレートなどのポリエステル、ポリスルホン及びポリエーテルスルホンなどのポリアリールエーテルスルホン、ポリテトラフルオロエチレン及びポリフッ化ビニリデンなどのフッ素樹脂、エポキシ樹脂、ポリアミド、ポリイミドなどが挙げられる。これらのうち、化学的及び熱的に安定であるポリスルホン又はポリテトラフルオロエチレンが好ましく用いられる。 The support 4 is not particularly limited as long as it is hydrogen permeable and can support the Pd alloy layer 2, and may be a non-porous material or a porous material. The support 4 may be a woven fabric or a non-woven fabric. Examples of the material for forming the support 4 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyaryl ether sulfones such as polysulfone and polyethersulfone, polytetrafluoroethylene, and polyvinylidene fluoride. Fluorine resin, epoxy resin, polyamide, polyimide and the like can be mentioned. Of these, polysulfone or polytetrafluoroethylene which is chemically and thermally stable is preferably used.
 支持体4は、平均孔径100μm以下の多孔質体であることが好ましい。平均孔径が100μmを超えると、多孔質体の表面平滑性が低下するため、スパッタリング法等でPd合金層を製造する場合に、多孔質体上に膜厚の均一なPd合金層を形成し難くなったり、Pd合金層にピンホール又はクラックが生じやすくなる。 The support 4 is preferably a porous body having an average pore diameter of 100 μm or less. When the average pore diameter exceeds 100 μm, the surface smoothness of the porous body is lowered. Therefore, when a Pd alloy layer is produced by sputtering or the like, it is difficult to form a Pd alloy layer having a uniform thickness on the porous body. Or pinholes or cracks are likely to occur in the Pd alloy layer.
 支持体4の厚さは特に限定されないが、通常5~1000μm程度、好ましくは10~300μmである。 The thickness of the support 4 is not particularly limited, but is usually about 5 to 1000 μm, preferably 10 to 300 μm.
 Pd合金層2をスパッタリング法で製造する場合、基板として支持体4を用いると、支持体4上にPd合金層2を直接形成することができ、接着剤3又は治具5を用いることなく水素排出膜1を製造できるため、水素排出膜1の物性及び製造効率の観点から好ましい。その場合、支持体4としては、平均孔径100μm以下の多孔質体を用いることが好ましく、より好ましくは平均孔径5μm以下の多孔質体であり、特に限外ろ過膜(UF膜)を用いることが好ましい。 When the Pd alloy layer 2 is produced by the sputtering method, if the support body 4 is used as a substrate, the Pd alloy layer 2 can be directly formed on the support body 4 without using the adhesive 3 or the jig 5. Since the exhaust film 1 can be manufactured, it is preferable from the viewpoint of physical properties and manufacturing efficiency of the hydrogen exhaust film 1. In that case, the support 4 is preferably a porous body having an average pore diameter of 100 μm or less, more preferably a porous body having an average pore diameter of 5 μm or less, and particularly an ultrafiltration membrane (UF membrane). preferable.
 前記水素排出膜の形状は、略円形状であってもよく、三角形、四角形、五角形等の多角形であってもよい。後述する用途に応じた任意の形状にすることができる。 The shape of the hydrogen discharge membrane may be a substantially circular shape or a polygon such as a triangle, a quadrangle, or a pentagon. It can be made into arbitrary shapes according to the use mentioned later.
 前記水素排出膜は、電解コンデンサの安全弁の構成部材として有用である。また、水素排出膜は、安全弁とは別に水素排出弁として電解コンデンサに設けることも可能である。 The hydrogen discharge membrane is useful as a component for a safety valve of an electrolytic capacitor. Further, the hydrogen discharge membrane can be provided in the electrolytic capacitor as a hydrogen discharge valve separately from the safety valve.
 前記水素排出膜は、低温で脆化しないため、例えば150℃以下の温度、さらには110℃以下の温度で使用できるという利点がある。すなわち、高温(例えば400~500℃)で使用されない電解コンデンサの安全弁又は水素排出弁として好適に用いられる。 Since the hydrogen discharge membrane does not become brittle at a low temperature, there is an advantage that it can be used at a temperature of, for example, 150 ° C. or lower, further 110 ° C. or lower. That is, it is preferably used as a safety valve or hydrogen discharge valve for electrolytic capacitors that are not used at high temperatures (eg, 400 to 500 ° C.).
 本発明の電解コンデンサに用いられる陽極は、酸化皮膜の平均厚さとコンデンサの定格電圧との比(平均厚さ/定格電圧)が1.2~2.9(nm/V)であり、好ましくは1.3~2.4(nm/V)であり、より好ましくは1.4~2.0(nm/V)である。 The anode used in the electrolytic capacitor of the present invention has a ratio (average thickness / rated voltage) of the average thickness of the oxide film to the rated voltage of the capacitor of 1.2 to 2.9 (nm / V), preferably It is 1.3 to 2.4 (nm / V), more preferably 1.4 to 2.0 (nm / V).
 例えば、一般的な定格電圧400(V)のアルミ電解コンデンサの場合、酸化アルミ皮膜の平均厚さは1200nm程度であり、平均厚さ/定格電圧は3(nm/V)程度である。したがって、定格電圧が同じである場合、本発明の電解コンデンサに用いられる陽極の酸化皮膜の平均厚さは、従来の酸化皮膜の平均厚さのわずか40~95%であり、非常に薄い。従来の電解コンデンサの陽極として、このような非常に薄い酸化皮膜を有する陽極を用いた場合、機械的ストレス又は電気的ストレスによって酸化皮膜に多くの欠陥部が生じ、皮膜修復作用により水素ガスが大量に発生し、電解コンデンサの内部圧力の上昇によって外装ケースが膨張又は破裂する。しかし、本発明においては、電解コンデンサに前記水素排出膜を設けているため、このような非常に薄い酸化皮膜を有する陽極を用いた場合であっても外装ケースが膨張又は破裂することはない。 For example, in the case of an aluminum electrolytic capacitor having a general rated voltage of 400 (V), the average thickness of the aluminum oxide film is about 1200 nm, and the average thickness / rated voltage is about 3 (nm / V). Therefore, when the rated voltage is the same, the average thickness of the oxide film of the anode used in the electrolytic capacitor of the present invention is only 40 to 95% of the average thickness of the conventional oxide film and is very thin. When an anode having such a very thin oxide film is used as the anode of a conventional electrolytic capacitor, many defects occur in the oxide film due to mechanical stress or electrical stress, and a large amount of hydrogen gas is generated due to the film repairing action. And the outer case expands or bursts due to an increase in the internal pressure of the electrolytic capacitor. However, in the present invention, since the hydrogen discharge film is provided in the electrolytic capacitor, the outer case does not expand or rupture even when such an anode having a very thin oxide film is used.
 酸化皮膜の平均厚さは、化成工程(酸化皮膜形成工程)において、化成電圧を任意に調整することにより目的の厚さに調整することができる。 The average thickness of the oxide film can be adjusted to a desired thickness by arbitrarily adjusting the formation voltage in the formation process (oxide film formation process).
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 製造例1
〔圧延法によるPd-Au合金層(Au含有量30mol%)の作製〕
 インゴット中のAu含有量が30mol%となるようにPd及びAu原料をそれぞれ秤量し、水冷銅坩堝を備えたアーク溶解炉に投入し、大気圧のArガス雰囲気中でアーク溶解した。得られたボタンインゴットをロール径100mmの2段圧延機を用いて厚さ5mmになるまで冷間圧延して板材を得た。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で5×10-4Paまで減圧し、その後700℃まで昇温して24時間放置し、その後室温まで冷却した。この熱処理により、合金中のPd及びAuの偏析を解消した。次に、ロール径100mmの2段圧延機を用いて板材を厚さ100μmになるまで冷間圧延し、さらにロール径20mmの2段圧延機を用いて板材を厚さ20μmになるまで冷間圧延した。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で5×10-4Paまで減圧し、その後500℃まで昇温して1時間放置し、その後室温まで冷却した。この熱処理により、圧延によって生じたPd-Au合金内部のひずみを除去して厚さ20μm、Au含有量30mol%のPd-Au合金層を作製した。その後、前記Pd-Au合金層上にコート層原料組成物(ハーベス社製、デュラサーフDS-3302TH)をディップコート法で塗布し、乾燥させて厚さ0.3μmのコート層を形成して水素排出膜を作製した。
Production Example 1
[Preparation of Pd—Au alloy layer (Au content 30 mol%) by rolling method]
Pd and Au raw materials were weighed so that the Au content in the ingot was 30 mol%, and were put into an arc melting furnace equipped with a water-cooled copper crucible, and arc melted in an Ar gas atmosphere at atmospheric pressure. The obtained button ingot was cold-rolled to a thickness of 5 mm using a two-high rolling mill having a roll diameter of 100 mm to obtain a plate material. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 × 10 −4 Pa at room temperature, then heated to 700 ° C. and allowed to stand for 24 hours, and then cooled to room temperature. By this heat treatment, segregation of Pd and Au in the alloy was eliminated. Next, the sheet material is cold-rolled to a thickness of 100 μm using a two-stage rolling mill with a roll diameter of 100 mm, and further the sheet material is cold-rolled to a thickness of 20 μm using a two-stage rolling mill with a roll diameter of 20 mm. did. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 × 10 −4 Pa at room temperature, then heated to 500 ° C. and allowed to stand for 1 hour, and then cooled to room temperature. By this heat treatment, the internal strain of the Pd—Au alloy generated by rolling was removed, and a Pd—Au alloy layer having a thickness of 20 μm and an Au content of 30 mol% was produced. Thereafter, a coating layer raw material composition (manufactured by Harves, Durasurf DS-3302TH) was applied on the Pd—Au alloy layer by a dip coating method and dried to form a coating layer having a thickness of 0.3 μm. A discharge membrane was prepared.
 製造例2
〔スパッタリング法によるPd-Au合金層(Au含有量50mol%)の作製〕
 Au含有量が50mol%であるPd-Au合金ターゲットを装着したRFマグネトロンスパッタリング装置(サンユー電子社製)に、支持体であるポリスルホン多孔質シート(日東電工社製、孔径0.001~0.02μm)を取り付けた。その後、スパッタリング装置内を1×10-5Pa以下に真空排気し、Arガス圧1.0Paにおいて、Pd-Au合金ターゲットに4.8Aのスパッタ電流を投入して、ポリスルホン多孔質シート上に厚さ100nmのPd-Au合金層(Au含有量50mol%)を形成した。その後、前記Pd-Au合金層上にコート層原料組成物(ハーベス社製、デュラサーフDS-3302TH)をディップコート法で塗布し、乾燥させて厚さ0.3μmのコート層を形成して水素排出膜を作製した。
Production Example 2
[Preparation of Pd—Au alloy layer by sputtering method (Au content 50 mol%)]
A polysulfone porous sheet (manufactured by Nitto Denko Corporation, pore size: 0.001 to 0.02 μm) is mounted on an RF magnetron sputtering apparatus (manufactured by Sanyu Electronics Co., Ltd.) equipped with a Pd—Au alloy target having an Au content of 50 mol%. ) Was attached. Thereafter, the inside of the sputtering apparatus is evacuated to 1 × 10 −5 Pa or less, and a sputtering current of 4.8 A is applied to the Pd—Au alloy target at an Ar gas pressure of 1.0 Pa to form a thick film on the polysulfone porous sheet. A 100 nm thick Pd—Au alloy layer (Au content 50 mol%) was formed. Thereafter, a coating layer raw material composition (manufactured by Harves, Durasurf DS-3302TH) was applied on the Pd—Au alloy layer by a dip coating method and dried to form a coating layer having a thickness of 0.3 μm. A discharge membrane was prepared.
 実施例1
〔アルミ電解コンデンサの作製〕
 厚さ90μmの定格200~450V用中高圧用化成箔(日本蓄電器工業社製)を、電極引き出しのための突出部を設けた正方形(45×45mm)にスリットしたものを陽極とし、厚さ30μmの陰極箔(日本蓄電器工業社製)を、電極引き出しのための突出部を設けた正方形(45×45mm)にスリットしたものを陰極とし、厚さ70μmのヘンプ紙(ニッポン高度紙工業社製)を電極箔より一回り大きな正方形(50×50mm)にスリットして電解紙とした。そして、陽極と陰極を各電極の方形部が揃うように重ね合せ、陽極と陰極の間に電解紙を挟んでコンデンサ素子を形成した。この際、電極の短絡を防止するため、各電極の突出部は重ならないように配置した。素子を収納する外装ケースには、厚さが40μmのナイロン樹脂フィルムと、厚さが約50μmのアルミ箔と、厚さが30μmの熱融着性のポリプロピレン樹脂フィルムが、この順に積層されて形成されたアルミラミネートフィルム(大日本印刷社製)を方形(65×130mm)にスリットしたものを2枚使用した。ここで、一方のアルミラミネートフィルムの中央部にφ10の開口部を設け、製造例1で作製したφ20の水素排出膜を、前記開口部を覆うようにポリプロピレン樹脂フィルム面から接着剤で貼り付けた。これら2枚のアルミラミネートフィルムを各フィルムのポリプロピレン樹脂面同士が合わさるように重ね合せて、3辺を幅10mmでヒートシール(200℃)して外装ケースを作製した。次に、ヒートシールをしていない残りの一辺から前記コンデンサ素子を外装ケース内に入れた後、セバシン酸アンモニウムを主溶質とするエチレングリコール系電解液を注液した。そして、電解液注液後、ヒートシールをしていない残りの1辺も10mm幅で熱融着し、アルミ電解コンデンサを得た。
Example 1
[Production of aluminum electrolytic capacitors]
Thickness of 30μm with a 90μm rated 200-450V rated high-voltage chemical foil (manufactured by Nihon Denki Kogyo Kogyo Co., Ltd.) slit into a square (45 x 45mm) with protrusions for drawing out the electrodes Of cathode foil (manufactured by Nippon Denshi Kogyo Kogyo Co., Ltd.) slit into a square (45 x 45 mm) provided with a protruding part for electrode lead-out, and a hemp paper with a thickness of 70 μm (manufactured by Nippon Kogyo Paper Industries Co., Ltd.) Was slit into a square (50 × 50 mm) that was slightly larger than the electrode foil to obtain electrolytic paper. Then, the anode and the cathode were overlapped so that the square portions of the electrodes were aligned, and a capacitor element was formed by sandwiching electrolytic paper between the anode and the cathode. At this time, in order to prevent short-circuiting of the electrodes, the protruding portions of the electrodes were arranged so as not to overlap. The exterior case that houses the elements is formed by laminating a nylon resin film with a thickness of 40 μm, an aluminum foil with a thickness of about 50 μm, and a heat-sealable polypropylene resin film with a thickness of 30 μm in this order. Two aluminum laminate films (Dai Nippon Printing Co., Ltd.) slit into squares (65 × 130 mm) were used. Here, an opening of φ10 was provided at the center of one aluminum laminate film, and the hydrogen discharge film of φ20 produced in Production Example 1 was attached with an adhesive from the polypropylene resin film surface so as to cover the opening. . These two aluminum laminate films were overlapped so that the polypropylene resin surfaces of the respective films were aligned, and the three sides were heat-sealed (200 ° C.) with a width of 10 mm to prepare an outer case. Next, after putting the capacitor element into the outer case from the remaining one side that was not heat-sealed, an ethylene glycol electrolyte containing ammonium sebacate as a main solute was injected. And after electrolyte solution pouring, the remaining 1 side which is not heat-sealed was also heat-sealed by 10 mm width, and the aluminum electrolytic capacitor was obtained.
 実施例2
〔アルミ電解コンデンサの作製〕
 実施例1において、製造例1で作製したφ20の水素排出膜の代わりに、製造例2で作製したφ20の水素排出膜を用いた以外は実施例1と同様の方法でアルミ電解コンデンサを得た。
Example 2
[Production of aluminum electrolytic capacitors]
In Example 1, an aluminum electrolytic capacitor was obtained in the same manner as in Example 1 except that instead of the φ20 hydrogen discharge film produced in Production Example 1, the φ20 hydrogen discharge film produced in Production Example 2 was used. .
 実施例3
〔アルミ電解コンデンサの作製〕
 実施例1において、陽極及び陰極の大きさを39×39mmに変更した以外は実施例1と同様の方法でアルミ電解コンデンサを得た。
Example 3
[Production of aluminum electrolytic capacitors]
In Example 1, an aluminum electrolytic capacitor was obtained in the same manner as in Example 1 except that the sizes of the anode and the cathode were changed to 39 × 39 mm.
 実施例4
〔アルミ電解コンデンサの作製〕
 実施例3において、製造例1で作製したφ20の水素排出膜の代わりに、製造例2で作製したφ20の水素排出膜を用いた以外は実施例3と同様の方法でアルミ電解コンデンサを得た。
Example 4
[Production of aluminum electrolytic capacitors]
In Example 3, an aluminum electrolytic capacitor was obtained in the same manner as in Example 3 except that instead of the φ20 hydrogen discharge film produced in Production Example 1, the φ20 hydrogen discharge film produced in Production Example 2 was used. .
 比較例1
〔アルミ電解コンデンサの作製〕
 実施例1において、アルミラミネートフィルムの中央部にφ10の開口部を設けず、製造例1で作製したφ20の水素排出膜を用いなかった以外は実施例1と同様の方法でアルミ電解コンデンサを得た。
Comparative Example 1
[Production of aluminum electrolytic capacitors]
In Example 1, an aluminum electrolytic capacitor was obtained in the same manner as in Example 1 except that the opening of φ10 was not provided in the center of the aluminum laminate film and the hydrogen discharge film of φ20 produced in Production Example 1 was not used. It was.
 比較例2
〔アルミ電解コンデンサの作製〕
 実施例3において、アルミラミネートフィルムの中央部にφ10の開口部を設けず、製造例1で作製したφ20の水素排出膜を用いなかった以外は実施例3と同様の方法でアルミ電解コンデンサを得た。
Comparative Example 2
[Production of aluminum electrolytic capacitors]
In Example 3, an aluminum electrolytic capacitor was obtained in the same manner as in Example 3 except that the opening of φ10 was not provided in the center of the aluminum laminate film and the hydrogen discharge film of φ20 produced in Production Example 1 was not used. It was.
〔測定及び評価方法〕
(水素透過性の評価)
 作製した水素排出膜をスウェージロック社製のVCRコネクターに取り付け、片側にSUSチューブを取り付け、密封された空間(63.5ml)を作製した。チューブ内を真空ポンプで減圧後、水素ガスの圧力が0.15MPaになるように調整し、105℃の環境下での圧力変化をモニターした。圧力変化により水素排出膜を透過した水素モル数(体積)がわかるため、これを1日当たりの透過量に換算して水素透過量を算出した。例えば、2時間で圧力が0.15MPaから0.05MPaに変化した場合(変化量0.10MPa)、水素排出膜を透過した水素体積は63.5mlになる。よって、1日当たりの水素透過量は63.5×24/2=762ml/dayとなる。水素排出膜の水素透過量は、10ml/day以上であることが好ましく、100ml/day以上であることがより好ましい。製造例1の水素排出膜の水素透過量は600ml/dayであり、製造例2の水素排出膜の水素透過量は250ml/dayであった。
[Measurement and evaluation method]
(Evaluation of hydrogen permeability)
The produced hydrogen discharge membrane was attached to a VCR connector manufactured by Swagelok, and a SUS tube was attached to one side to produce a sealed space (63.5 ml). After depressurizing the inside of the tube with a vacuum pump, the pressure of hydrogen gas was adjusted to 0.15 MPa, and the pressure change in an environment of 105 ° C. was monitored. Since the number of moles (volume) of hydrogen permeated through the hydrogen discharge membrane was found by the pressure change, this was converted into the permeation amount per day, and the hydrogen permeation amount was calculated. For example, when the pressure changes from 0.15 MPa to 0.05 MPa in 2 hours (change amount: 0.10 MPa), the hydrogen volume permeated through the hydrogen discharge membrane becomes 63.5 ml. Therefore, the hydrogen permeation amount per day is 63.5 × 24/2 = 762 ml / day. The hydrogen permeation amount of the hydrogen discharge membrane is preferably 10 ml / day or more, and more preferably 100 ml / day or more. The hydrogen permeation amount of the hydrogen discharge membrane of Production Example 1 was 600 ml / day, and the hydrogen permeation amount of the hydrogen discharge membrane of Production Example 2 was 250 ml / day.
(水素ガスの選択透過性の評価)
 作製した水素排出膜をスウェージロック社製のVCRコネクターに取り付け、片側にSUSチューブを取り付け、密封された空間(63.5ml)を作製した。チューブ内を真空ポンプで減圧後、窒素ガスの圧力が150kPaになるように調整し、105℃の環境下での圧力変化をモニターした。圧力変化により水素排出膜を透過した窒素モル数(体積)がわかるため、これを1日当たりの透過量に換算して窒素透過量を算出した。例えば、2時間で圧力が150kPaから149kPaに変化した場合(変化量1kPa)、水素排出膜を透過した窒素体積は0.635mlになる。よって、1日当たりの窒素透過量は0.635×24/2=7.62ml/dayとなる。水素ガスの選択透過性は(水素透過量―窒素透過量)÷水素透過量×100で表され、上記の場合では、(762-7.62)÷762×100=99%となる。製造例1の水素排出膜の窒素透過量は0ml/dayであり、製造例2の水素排出膜の窒素透過量は0ml/dayであった。したがって、製造例1の水素排出膜の水素ガスの選択透過性は100%であり、製造例2の水素排出膜の水素ガスの選択透過性は100%である。
(Evaluation of selective permeability of hydrogen gas)
The produced hydrogen discharge membrane was attached to a VCR connector manufactured by Swagelok, and a SUS tube was attached to one side to produce a sealed space (63.5 ml). After depressurizing the inside of the tube with a vacuum pump, the pressure of nitrogen gas was adjusted to 150 kPa, and the pressure change under an environment of 105 ° C. was monitored. Since the number of moles (volume) of nitrogen that permeated through the hydrogen discharge membrane was found due to the pressure change, this was converted into the permeation amount per day, and the nitrogen permeation amount was calculated. For example, when the pressure changes from 150 kPa to 149 kPa in 2 hours (change amount: 1 kPa), the nitrogen volume permeated through the hydrogen discharge membrane becomes 0.635 ml. Therefore, the nitrogen permeation amount per day is 0.635 × 24/2 = 7.62 ml / day. The selective permeability of hydrogen gas is expressed by (hydrogen permeation amount−nitrogen permeation amount) ÷ hydrogen permeation amount × 100. In the above case, (762−7.62) ÷ 762 × 100 = 99%. The nitrogen permeation amount of the hydrogen discharge membrane of Production Example 1 was 0 ml / day, and the nitrogen permeation amount of the hydrogen discharge membrane of Production Example 2 was 0 ml / day. Therefore, the hydrogen gas selective permeability of the hydrogen discharge membrane of Production Example 1 is 100%, and the hydrogen gas selective permeability of the hydrogen discharge membrane of Production Example 2 is 100%.
(静電容量及びtanδの測定、外観変化の評価)
 実施例1~4、比較例1及び2で得られたアルミ電解コンデンサに105℃環境下において、菊水電子工業株式会社製の充放電システムコントローラPFX2511Sを用いて、200~600Vの直流電圧を10時間連続印可した。その後、キーサイトテクノロジー社製のLCRメータE4980Aを用いて20℃における静電容量(120Hz)、tanδ(120Hz)を測定すると共に、外観変化を観察して下記基準で評価した。結果を表1及び2に示す。
〇:初期と比べて変化無し。
×:初期に比べて膨れている。
(Measurement of capacitance and tan δ, evaluation of appearance change)
The aluminum electrolytic capacitors obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were subjected to a DC voltage of 200 to 600 V for 10 hours in a 105 ° C. environment using a charge / discharge system controller PFX2511S manufactured by Kikusui Electronics Corporation. Continuously applied. Thereafter, the capacitance (120 Hz) and tan δ (120 Hz) at 20 ° C. were measured using an LCR meter E4980A manufactured by Keysight Technology, and changes in appearance were observed and evaluated according to the following criteria. The results are shown in Tables 1 and 2.
○: No change compared to the initial stage.
X: Swelling compared to the initial stage.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1及び2のアルミ電解コンデンサは、酸化皮膜平均厚さ/定格電圧の値を小さくしても外装ケースに変化はなかった。その理由として、実施例1及び2のアルミ電解コンデンサは、特殊な水素排出膜を備えており、この水素排出膜によってコンデンサ内部に発生した水素ガスが速やかに外部に排出され、コンデンサの内部圧力の上昇が効果的に抑制されたためと考えられる。一方、比較例1及び2のアルミ電解コンデンサは、酸化皮膜平均厚さ/定格電圧の値を2.8以下にすると、外装ケースが膨張した。その理由として、比較例1及び2のアルミ電解コンデンサは、特殊な水素排出膜を備えていないため、コンデンサ内部に発生した水素ガスを速やかに外部に排出することができず、コンデンサの内部圧力が大きく上昇したためと考えられる。また、実施例1及び2の定格電圧200Vの陽極箔で作製したアルミ電解コンデンサは、200Vを超える電圧を印加した場合において、定格電圧250Vの陽極箔で作製したアルミ電解コンデンサよりも高い静電容量を有していることから、特殊な水素排出膜を用いることで、外観変化を伴うことなくアルミ電解コンデンサの高耐電圧化及び高静電容量化が可能であることがわかる。 In the aluminum electrolytic capacitors of Examples 1 and 2, there was no change in the outer case even when the value of the average oxide film thickness / rated voltage was reduced. The reason is that the aluminum electrolytic capacitors of Examples 1 and 2 are provided with a special hydrogen discharge film, and the hydrogen gas generated inside the capacitor is quickly discharged to the outside by the hydrogen discharge film, and the internal pressure of the capacitor is reduced. This is probably because the rise was effectively suppressed. On the other hand, in the aluminum electrolytic capacitors of Comparative Examples 1 and 2, the outer case expanded when the value of the average thickness of oxide film / rated voltage was 2.8 or less. The reason is that the aluminum electrolytic capacitors of Comparative Examples 1 and 2 do not have a special hydrogen discharge film, so that the hydrogen gas generated inside the capacitor cannot be discharged quickly and the internal pressure of the capacitor is reduced. This is thought to be due to a large increase. Moreover, the aluminum electrolytic capacitor produced with the anode foil of the rated voltage 200V of Examples 1 and 2 has a higher capacitance than the aluminum electrolytic capacitor produced with the anode foil of the rated voltage 250V when a voltage exceeding 200V is applied. Therefore, it can be seen that by using a special hydrogen discharge film, it is possible to increase the withstand voltage and the capacitance of the aluminum electrolytic capacitor without changing the appearance.
 実施例1及び2と同様に、実施例3及び4のアルミ電解コンデンサにおいても、酸化皮膜平均厚さ/定格電圧の値を小さくしても外装ケースに変化はなかった。その理由として、実施例3及び4のアルミ電解コンデンサは、特殊な水素排出膜を備えており、この水素排出膜によってコンデンサ内部に発生した水素ガスが速やかに外部に排出され、コンデンサの内部圧力の上昇が効果的に抑制されたためと考えられる。また、実施例3及び4の定格電圧200Vの陽極箔で作製したアルミ電解コンデンサは、200Vを超える電圧を印加した場合において、実施例1及び2の定格電圧250Vの陽極箔で作製したコンデンサと同等の静電容量を有していることから、特殊な水素排出膜を用いることで、外観変化を伴うことなくアルミ電解コンデンサの小型化が可能であることがわかる。 Similarly to Examples 1 and 2, in the aluminum electrolytic capacitors of Examples 3 and 4, there was no change in the outer case even if the value of the average oxide film thickness / rated voltage was reduced. The reason is that the aluminum electrolytic capacitors of Examples 3 and 4 are provided with a special hydrogen discharge film, and the hydrogen gas generated inside the capacitor is quickly discharged to the outside by this hydrogen discharge film, and the internal pressure of the capacitor is reduced. This is probably because the rise was effectively suppressed. Moreover, the aluminum electrolytic capacitor produced with the anode foil of the rated voltage 200V of Examples 3 and 4 is equivalent to the capacitor produced with the anode foil of the rated voltage 250V of Examples 1 and 2 when a voltage exceeding 200V is applied. Therefore, it can be seen that by using a special hydrogen discharge film, the aluminum electrolytic capacitor can be miniaturized without any change in appearance.
 本発明の電解コンデンサは、各種の電源などに好適に用いられる。 The electrolytic capacitor of the present invention is suitably used for various power sources.
1:水素排出膜
2:Pd合金層
3:接着剤
4:支持体
5:治具
1: Hydrogen discharge film 2: Pd alloy layer 3: Adhesive 4: Support 5: Jig

Claims (8)

  1.  水素排出膜を備えている電解コンデンサであって、
     前記水素排出膜は、水素ガスと窒素ガスを等モル含む混合ガスを接触させたときに、水素ガスを99モル%以上選択的に透過する水素ガス透過層を含み、
     陽極の酸化皮膜の平均厚さとコンデンサの定格電圧との比(平均厚さ/定格電圧)が1.2~2.9(nm/V)であることを特徴とする電解コンデンサ。
    An electrolytic capacitor having a hydrogen discharge membrane,
    The hydrogen discharge membrane includes a hydrogen gas permeable layer that selectively permeates 99% by mole or more of hydrogen gas when contacting a mixed gas containing equimolar amounts of hydrogen gas and nitrogen gas,
    An electrolytic capacitor characterized in that a ratio (average thickness / rated voltage) of the average thickness of the oxide film on the anode and the rated voltage of the capacitor is 1.2 to 2.9 (nm / V).
  2.  前記水素ガス透過層は、金属層である請求項1記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the hydrogen gas permeable layer is a metal layer.
  3.  前記金属層は、Pd合金層である請求項2記載の電解コンデンサ。 3. The electrolytic capacitor according to claim 2, wherein the metal layer is a Pd alloy layer.
  4.  前記Pd合金層の形成材料であるPd合金は、第11族元素を20~65mol%含む請求項3記載の電解コンデンサ。 The electrolytic capacitor according to claim 3, wherein the Pd alloy, which is a material for forming the Pd alloy layer, contains 20 to 65 mol% of a Group 11 element.
  5.  前記第11族元素は、Au、Ag、及びCuからなる群より選択される少なくとも1種である請求項4記載の電解コンデンサ。 The electrolytic capacitor according to claim 4, wherein the Group 11 element is at least one selected from the group consisting of Au, Ag, and Cu.
  6.  前記第11族元素は、Auである請求項4記載の電解コンデンサ。 The electrolytic capacitor according to claim 4, wherein the Group 11 element is Au.
  7.  前記金属層は、片面又は両面に支持体を有する請求項2~6のいずれかに記載の電解コンデンサ。 The electrolytic capacitor according to claim 2, wherein the metal layer has a support on one side or both sides.
  8.  前記電解コンデンサが、アルミ電解コンデンサである請求項1~7のいずれかに記載の電解コンデンサ。 The electrolytic capacitor according to any one of claims 1 to 7, wherein the electrolytic capacitor is an aluminum electrolytic capacitor.
PCT/JP2017/017155 2016-05-30 2017-05-01 Electrolytic capacitor WO2017208723A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016107677 2016-05-30
JP2016-107677 2016-05-30
JP2017-078155 2017-04-11
JP2017078155A JP7020792B2 (en) 2016-05-30 2017-04-11 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
WO2017208723A1 true WO2017208723A1 (en) 2017-12-07

Family

ID=60479565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017155 WO2017208723A1 (en) 2016-05-30 2017-05-01 Electrolytic capacitor

Country Status (1)

Country Link
WO (1) WO2017208723A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517138A (en) * 2021-06-29 2021-10-19 西安交通大学 Method for reducing working internal pressure of aluminum electrolytic capacitor by using hydrogen storage alloy
CN113517139A (en) * 2021-06-29 2021-10-19 西安交通大学 Method for reducing working internal pressure of aluminum electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038095A (en) * 2005-08-02 2007-02-15 National Institute Of Advanced Industrial & Technology Hydrogen separation membrane and its production method
JP2011512664A (en) * 2008-02-14 2011-04-21 バッツキャップ Device to prevent overpressure of super capacitor
WO2014098038A1 (en) * 2012-12-17 2014-06-26 日東電工株式会社 Hydrogen-releasing film
JP2016082126A (en) * 2014-10-20 2016-05-16 Necトーキン株式会社 Solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038095A (en) * 2005-08-02 2007-02-15 National Institute Of Advanced Industrial & Technology Hydrogen separation membrane and its production method
JP2011512664A (en) * 2008-02-14 2011-04-21 バッツキャップ Device to prevent overpressure of super capacitor
WO2014098038A1 (en) * 2012-12-17 2014-06-26 日東電工株式会社 Hydrogen-releasing film
JP2016082126A (en) * 2014-10-20 2016-05-16 Necトーキン株式会社 Solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517138A (en) * 2021-06-29 2021-10-19 西安交通大学 Method for reducing working internal pressure of aluminum electrolytic capacitor by using hydrogen storage alloy
CN113517139A (en) * 2021-06-29 2021-10-19 西安交通大学 Method for reducing working internal pressure of aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
WO2014098038A1 (en) Hydrogen-releasing film
WO2015019906A1 (en) Hydrogen discharge film
JP7181324B2 (en) Hydrogen drain membrane
WO2017208723A1 (en) Electrolytic capacitor
JP7080548B2 (en) Hydrogen emission parts
JP2021132223A (en) Electrolytic capacitor
JP6688245B2 (en) Hydrogen discharge method
WO2015194472A1 (en) Hydrogen release film
JP6180487B2 (en) Electrochemical element
WO2016143658A1 (en) Hydrogen discharge membrane
WO2017098930A1 (en) Hydrogen discharge membrane
WO2015194471A1 (en) Hydrogen release film
JP2017112355A (en) Hydrogen discharge film
WO2017104570A1 (en) Support for forming hydrogen discharge film, and laminated hydrogen discharge film
JP2017109202A (en) Support for hydrogen discharge membrane and hydrogen discharge lamination membrane
WO2018051882A1 (en) Hydrogen discharge component
JP2016002513A (en) Hydrogen discharging film
WO2017104569A1 (en) Support for forming hydrogen discharge film, and laminated hydrogen discharge film
JP2017112368A (en) Support for forming hydrogen discharge film and hydrogen discharge laminated film

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806282

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806282

Country of ref document: EP

Kind code of ref document: A1