JP2007038095A - Hydrogen separation membrane and its production method - Google Patents

Hydrogen separation membrane and its production method Download PDF

Info

Publication number
JP2007038095A
JP2007038095A JP2005223871A JP2005223871A JP2007038095A JP 2007038095 A JP2007038095 A JP 2007038095A JP 2005223871 A JP2005223871 A JP 2005223871A JP 2005223871 A JP2005223871 A JP 2005223871A JP 2007038095 A JP2007038095 A JP 2007038095A
Authority
JP
Japan
Prior art keywords
hydrogen
separation membrane
hydrogen separation
metal
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005223871A
Other languages
Japanese (ja)
Inventor
Senkoku Cho
戦国 張
Kazunori Honda
一規 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005223871A priority Critical patent/JP2007038095A/en
Publication of JP2007038095A publication Critical patent/JP2007038095A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple production method capable of obtaining a hydrogen separation membrane which is free from defects common in the conventional art and has no pin holes even though it is thin. <P>SOLUTION: The hydrogen separation membrane comprises a nonporous metal membrane having hydrogen permselectivity on a rolled metal foil having pin holes. The production method of the hydrogen separation membrane comprises fixing the rolled metal foil having pin holes on a porous supporting body or a non porous supporting frame, and thereafter forming a non porous membrane by covering on at least one side of the rolled metal foil with a material having hydrogen permselectivity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素リッチガスから水素を選択的に透過分離することができる水素分離膜およびその製造法に関する。   The present invention relates to a hydrogen separation membrane capable of selectively permeating and separating hydrogen from a hydrogen-rich gas and a method for producing the same.

水素リッチガスから高純度水素を製造する場合に、支持枠に支持された水素選択透過性を有するPd又はPdを主成分とする合金から製造された金属膜を使用することが知られている。
これらの水素選択透過性を有する金属膜としては、支持枠の支持に耐えるだけの機械的強度を膜に持たせるために、肉厚60-100μm程度の比較的厚い膜を使用する必要がある。しかし、このように厚膜であるために、高価なPdの使用量が増大してコスト高になり、その一方では水素透過速度が小さくなるという問題があった。
When producing high-purity hydrogen from a hydrogen-rich gas, it is known to use a metal film produced from Pd having hydrogen selective permeability supported by a support frame or an alloy containing Pd as a main component.
As these metal membranes having selective hydrogen permeability, it is necessary to use a relatively thick membrane having a thickness of about 60 to 100 μm in order to give the membrane mechanical strength sufficient to withstand the support of the support frame. However, since it is a thick film as described above, there is a problem that the amount of expensive Pd used increases and the cost increases, while the hydrogen permeation rate decreases.

また、特許文献1及び特許文献2に示すように、セラミックス系材料からなる多孔質の支持体に、Pdを含む水素選択透過性金属膜を形成させた水素分離膜が提案されている。しかしながら、熱膨張係数の大きく異なるセラミックス系支持体と金属膜により構成されているために、熱を受けるとセラミックス系支持体から金属膜の剥離が起こるという問題がある。
また、セラミックス系支持体自体が熱ショックを受けて破損が発生しやすいという問題もある。水素分離膜と金属性管板との接続及びシールが難しいのも欠点である。
As shown in Patent Document 1 and Patent Document 2, a hydrogen separation membrane in which a hydrogen selective permeable metal film containing Pd is formed on a porous support made of a ceramic material has been proposed. However, there is a problem in that the metal film is peeled off from the ceramic support when subjected to heat because it is composed of the ceramic support and the metal film having greatly different thermal expansion coefficients.
In addition, there is a problem that the ceramic support itself is easily damaged by a heat shock. It is also a drawback that it is difficult to connect and seal the hydrogen separation membrane and the metallic tube sheet.

さらに、特許文献3又は特許文献4に示すような、金属多孔体を支持体とする水素分離膜が提案されている。この分離膜は上記セラミックス系多孔体を支持体とする水素分離膜に見られる欠点はないものの、最大で直径15μm程度の細孔が存在する金属多孔体の表面に20μm以下の無孔金属膜を形成させることは容易ではない。
ピンホールのない、より薄い金属膜を形成させるには、支持体である金属多孔体の表面細孔に金属微粒子及び/またはセラミックス微粒子を充填して直径で5μm前後まで小さくする必要があるが、容易にできることではない。
また、実用化される場合の金属多孔質と一体化されているPdまたはPd合金膜の回収も容易なことではないと予想される。
Furthermore, a hydrogen separation membrane using a metal porous body as a support as shown in Patent Document 3 or Patent Document 4 has been proposed. Although this separation membrane does not have the disadvantages seen in the hydrogen separation membrane using the ceramic porous body as a support, a non-porous metal membrane of 20 μm or less is formed on the surface of a porous metal body having pores with a diameter of about 15 μm at the maximum. It is not easy to form.
In order to form a thinner metal film without a pinhole, it is necessary to fill the surface pores of the metal porous body as a support with metal fine particles and / or ceramic fine particles to reduce the diameter to around 5 μm, Not easy to do.
In addition, it is expected that recovery of Pd or Pd alloy film integrated with metal porous when it is put into practical use is not easy.

この他、焼結金属で形成された膜の空隙部を金属微粒子、金属酸化物微粒子、セラミックス微粒子で充填した水素分離膜からなる限外濾過膜(特許文献5参照)、無機多孔質体からなる支持体又は金属微粒子、金属酸化物微粒子、セラミックス微粒子からなる微粉末を空隙部に充填した無機多孔質体からなる支持体、該支持体上にめっきされたパラジウム又はその合金の薄膜、該薄膜上に化学蒸着で堆積させたパラジウム水素分離膜(特許文献6参照)、セラミックス粒子を充填する貫通孔基板に形成するに際して、該貫通孔の開口面積が両面で異なるようにし、セラミックス粒子を充填した後、該貫通孔の開口面積が大きい側の表面に水素透過性膜を形成してセラミックス粒子の脱落を防止した水素分離膜が提案されている(特許文献7参照)。
しかし、これらはいずれも金属微粒子、金属酸化物微粒子、セラミックス微粒子あるいは多孔質体が必須の要件になっており、製造工程が複雑で、コスト高になるという欠点を有している。
In addition, an ultrafiltration membrane (see Patent Document 5) composed of a hydrogen separation membrane in which a void portion of a membrane formed of sintered metal is filled with metal fine particles, metal oxide fine particles, and ceramic fine particles, and an inorganic porous body. Support or support made of inorganic porous material filled with fine powder composed of metal fine particles, metal oxide fine particles and ceramic fine particles in the voids, thin film of palladium or alloy plated on the support, on the thin film After forming a palladium hydrogen separation membrane deposited on the substrate by chemical vapor deposition (see Patent Document 6) and a through-hole substrate filled with ceramic particles, the opening area of the through-hole is made different on both sides and the ceramic particles are filled. A hydrogen separation membrane has been proposed in which a hydrogen permeable membrane is formed on the surface of the through hole having a larger opening area to prevent the ceramic particles from falling off (see Patent Document 7). ).
However, all of these have essential requirements for metal fine particles, metal oxide fine particles, ceramic fine particles, or a porous body, and have the disadvantage that the manufacturing process is complicated and the cost is high.

この他、無機または金属多孔質体の表面に水素選択透過性金属膜を形成させる方法として、特許文献8、特許文献9、特許文献10、特許文献11が開示されている。しかし、これらは水素選択透過性金属膜の形成方法に特徴のあるもので、効率的な水素分離膜を得るには十分ではない。また、膜厚0.15mmのPd-Ag膜を形成する水素分離膜も提案されている(特許文献12参照)が、分離効率が悪いという問題がある。
特開昭62-121616公報 特開昭62-273030公報 特開平3-52630号公報 特開平4-326931号公報 特開2004-911号公報 特開2004-122006号公報 特開2004-144363号公報 特開昭62-121616公報 特開昭62-273030公報 特開平3-52630号公報 特開平4-326931号公報 特開平5-085702号公報
In addition, Patent Literature 8, Patent Literature 9, Patent Literature 10, and Patent Literature 11 are disclosed as methods for forming a hydrogen selective permeable metal membrane on the surface of an inorganic or metallic porous body. However, these are characteristic in the method of forming a hydrogen selective permeable metal membrane, and are not sufficient for obtaining an efficient hydrogen separation membrane. A hydrogen separation membrane that forms a 0.15 mm thick Pd—Ag membrane has also been proposed (see Patent Document 12), but has the problem of poor separation efficiency.
JP-A-62-121616 JP 62-273030 JP Japanese Unexamined Patent Publication No. 3-52630 JP-A-4-326931 Japanese Patent Laid-Open No. 2004-911 JP 2004-122006 Gazette JP 2004-144363 A JP-A-62-121616 JP 62-273030 JP Japanese Unexamined Patent Publication No. 3-52630 JP-A-4-326931 Japanese Patent Laid-Open No. 5-085702

本発明は、上記の問題点を解決することを目的とし、従来技術におけるような不具合が無く、薄くてもピンホールのない水素分離膜が得ることが可能であり、それを簡易に製造する方法を提供することを目的とする。   The present invention aims to solve the above-mentioned problems, and it is possible to obtain a hydrogen separation membrane free from pinholes even though it is thin, without a problem as in the prior art, and a method for producing it easily. The purpose is to provide.

上記の課題に鑑み、
その1)として、ピンホールを持つ圧延金属箔上に水素選択透過性を有する無孔金属膜を備えている水素分離膜を提供する。
一般に、水素分離膜としては、水素選択透過性を有するPd金属又はPdを主成分とする合金が良く知られた材料であるが、本願発明は、その下地の支持膜として、圧延金属箔を使用する点に大きな特徴を有する。圧延により形成される金属箔は抗張力が向上し、水素選択透過性膜の担持体としての役割をする。
圧延金属箔としては、微細な多数の孔(ピンホール)が形成されていることが前提となる。このようなピンホールが形成されていれば、特に金属の種類に限定はない。
水素選択透過性を備えているPd-Ag合金やPd-Cu合金等の、Pd金属又はPdを主成分とする合金は、特に延性に優れており、容易に1μm又はそれ以下の箔に圧延できる。また、この程度にまで薄く圧延された箔には、該金属又は合金に含まれる微量不純物の粒界剥離により、ピンホールが無数に形成される。
このようなことから、水素選択透過性膜と同材質の圧延箔を使用することが有効である。また、圧延箔自体が水素選択透過性を有すれば、ピンホールのみならず、それ自体も水素透過に寄与するので、水素分離膜としての効率が向上する。
In view of the above issues,
As 1), a hydrogen separation membrane comprising a non-porous metal membrane having hydrogen permselectivity on a rolled metal foil having pinholes is provided.
In general, as a hydrogen separation membrane, Pd metal having hydrogen selective permeability or an alloy containing Pd as a main component is a well-known material, but the present invention uses a rolled metal foil as a supporting film for the base. It has the big feature in the point to do. The metal foil formed by rolling has improved tensile strength and serves as a carrier for the hydrogen selective permeable membrane.
As a rolled metal foil, it is assumed that a large number of fine holes (pinholes) are formed. If such a pinhole is formed, the type of metal is not particularly limited.
Pd metals or alloys based on Pd, such as Pd-Ag alloys and Pd-Cu alloys with hydrogen permselectivity, are particularly excellent in ductility and can be easily rolled into foils of 1 μm or less . In addition, countless pinholes are formed in the foil rolled thinly to this extent, due to grain boundary peeling of trace impurities contained in the metal or alloy.
For these reasons, it is effective to use a rolled foil made of the same material as the hydrogen selective permeable membrane. Further, if the rolled foil itself has hydrogen selective permeability, not only the pinhole but also itself contributes to hydrogen permeation, so that the efficiency as a hydrogen separation membrane is improved.

以上から、
その2)として、水素選択透過性を有する無孔金属膜が、Pd又はAg若しくはCuを含有するPd合金、Nb合金又はV合金である、上記1)記載の水素分離膜を提供する。
その3)として、ピンホールを持つ圧延金属箔が、水素選択透過性材料からなる上記1)又は2)記載の水素分離膜と提供する。
その4)として、ピンホールを持つ圧延金属箔は、0.1〜10μmの厚さを有する上記1)〜3)の水素分離膜を提供する。
その5)として、さらにピンホールを持つ圧延金属箔が、0.5〜5μmの厚さを有する上記4)の水素分離膜を提供する。
From the above
As the 2), the hydrogen separation membrane according to the above 1) is provided, wherein the nonporous metal membrane having hydrogen selective permeability is a Pd alloy, Nb alloy or V alloy containing Pd, Ag or Cu.
As 3), a rolled metal foil having pinholes is provided with the hydrogen separation membrane according to 1) or 2) above, which is made of a hydrogen selective permeable material.
As 4), the rolled metal foil having pinholes provides the hydrogen separation membranes of the above 1) to 3) having a thickness of 0.1 to 10 μm.
As 5), the hydrogen separation membrane according to 4) above, wherein the rolled metal foil further having pinholes has a thickness of 0.5 to 5 μm.

その6)として、ピンホールを持つ圧延金属箔のピンホールの平均径が5μm以下である上記1)〜5)に記載の水素分離膜を提供する。圧延箔上に水素選択透過性膜を形成する際には、ピンホールが障害とならないように、その径が小さい方が好ましく、平均径が5μm以下であることが望ましい。これによって、ピンホールを持つ圧延金属箔を覆うように、水素選択透過性を有する無孔金属膜を容易に形成できる。
その7)として、水素選択透過性を有する無孔金属膜の厚さが30μm以下である上記1)〜6)記載の水素分離膜を提供する。水素選択透過性を有する金属膜の厚さが薄いほど、水素分離膜としての効率が向上する。
その8)として、多孔質支持体に支持されている上記1)〜7)に記載の水素分離膜を提供する。
その9)として、無孔質支持枠に支持されている上記1)〜7)に記載の水素分離膜を提供する。
その10)として、多孔質支持体又は無孔質支持枠上に、ピンホールを持つ圧延金属箔を取付け、次に該圧延金属箔の少なくとも一方の面に、水素選択透過性を有する材料を被覆して無孔質の膜を形成する水素分離膜の製造方法を提供する。
As the 6), the hydrogen separation membrane according to any one of 1) to 5) above, wherein the average diameter of pinholes of the rolled metal foil having pinholes is 5 μm or less. When the hydrogen selective permeable membrane is formed on the rolled foil, the diameter is preferably small so that the pinhole does not become an obstacle, and the average diameter is preferably 5 μm or less. Thereby, a non-porous metal film having hydrogen selective permeability can be easily formed so as to cover the rolled metal foil having pinholes.
As the 7), the hydrogen separation membrane according to the above 1) to 6) is provided, wherein the thickness of the non-porous metal membrane having hydrogen selective permeability is 30 μm or less. As the thickness of the metal membrane having hydrogen selective permeability is thinner, the efficiency as a hydrogen separation membrane is improved.
As the 8), the hydrogen separation membrane according to the above 1) to 7) supported by a porous support is provided.
As the 9), the hydrogen separation membrane according to the above 1) to 7) supported by a nonporous support frame is provided.
As 10), a rolled metal foil having pinholes is mounted on a porous support or nonporous support frame, and then a material having hydrogen selective permeability is coated on at least one surface of the rolled metal foil. Thus, a method for producing a hydrogen separation membrane for forming a nonporous membrane is provided.

以上説明したように、本発明は水素分離膜の作製に圧延金属箔を基材として用いることができるので、次ぎのような優れた効果を奏する。
(1)ピンホールを持つ水素透過性圧延箔とその表面に形成される水素透過性金属膜又は合金膜からなる無孔水素分離膜の形成が容易であり、ピンホールを持つ圧延金属箔自体が高い強度を有するので、圧延金属箔及び水素透過性金属膜の全体の厚みを薄くすることができ、水素分離の効率が著しく増加する。
(2)水素透過性圧延箔を多孔質支持体に支持させて水素分離膜を作製するので、多孔質支持体の基材が不必要であるか、又は多孔質支持体基材を使用する場合でも、従来の水素分離膜製造法において必須であった多孔質支持体の表面孔径を小さくしなければならない前処理工程を省くことが可能である。
(3)多孔質支持体からの水素透過性圧延箔の回収又はその表面に形成した水素透過性金属若しくは合金膜からなる水素分離膜の回収が容易にできるため、劣化水素分離膜の回収・再利用コストの大幅低減が可能となる。
As described above, since the present invention can use a rolled metal foil as a base material for producing a hydrogen separation membrane, the following excellent effects can be obtained.
(1) It is easy to form a hydrogen-permeable rolled foil having a pinhole and a non-porous hydrogen separation film made of a hydrogen-permeable metal film or an alloy film formed on the surface thereof. Since it has high strength, the entire thickness of the rolled metal foil and the hydrogen permeable metal membrane can be reduced, and the efficiency of hydrogen separation is remarkably increased.
(2) Since a hydrogen separation membrane is prepared by supporting a hydrogen permeable rolled foil on a porous support, a porous support substrate is unnecessary or a porous support substrate is used. However, it is possible to omit a pretreatment step that has to reduce the surface pore diameter of the porous support, which is essential in the conventional hydrogen separation membrane production method.
(3) Since the recovery of the hydrogen permeable rolled foil from the porous support or the recovery of the hydrogen separation membrane made of a hydrogen permeable metal or alloy membrane formed on the surface can be facilitated, The usage cost can be greatly reduced.

以下、本発明をさらに詳細に説明する。
本発明者らは、上記の通り、圧延により製造された、多数のピンホールを持つ厚さ1μm程度の水素透過性金属箔を基材とし、この基材表面に水素選択透過性を有する金属膜を形成させることにより、厚さ30μm以下の薄い無孔水素分離膜を容易に製造できることを見出し、本発明を完成させるに至ったものである。
本発明で用いるピンホールのある水素透過性金属箔の金属又は合金材料の種類には特に制限は無いが、優れた水素選択透過性と優れた圧延性の両方を併せ持つ金属または合金、例えば、AgまたはCuを含有するPd合金、AgまたはCuを含有するNb合金、AgまたはCuを含有するV合金から選択することが、特に有効である。
Hereinafter, the present invention will be described in more detail.
As described above, the present inventors use a hydrogen-permeable metal foil having a number of pinholes and having a thickness of about 1 μm produced by rolling as a substrate, and a metal film having hydrogen selective permeability on the surface of the substrate. As a result, it has been found that a thin non-porous hydrogen separation membrane having a thickness of 30 μm or less can be easily produced, and the present invention has been completed.
The type of metal or alloy material of the hydrogen permeable metal foil having pinholes used in the present invention is not particularly limited, but a metal or alloy having both excellent hydrogen selective permeability and excellent rolling properties, for example, Ag It is particularly effective to select from a Pd alloy containing Cu, an Nb alloy containing Ag or Cu, or a V alloy containing Ag or Cu.

一方、金属箔の薄さに関しては、薄いほど最終的に得られる水素分離膜も薄くなることから、用いる金属箔はピンホールを持つもの、又は10μm以下のものが望ましい。薄さの下限は特に制限はないが、箔が薄過ぎると扱いが難しく、また担持強度が低下するので、用いる金属箔の薄さは0.1-10μm 、好ましくは0.5-5μmの範囲が望ましい。   On the other hand, with regard to the thinness of the metal foil, the thinner the hydrogen separation membrane finally obtained, the thinner the metal foil to be used, and it is desirable that the metal foil to be used has a pinhole or 10 μm or less. The lower limit of the thickness is not particularly limited, but if the foil is too thin, it is difficult to handle and the carrying strength is lowered. Therefore, the thickness of the metal foil to be used is preferably in the range of 0.1-10 μm, preferably 0.5-5 μm.

上記金属箔の表面に形成する水素選択透過性金属膜の材料としては、すでに知られた水素選択透過性を有する材料であれば、特に制限はない。しかし、形成する水素選択透過性金属膜が支持基材である金属箔と同じ組成を有した方が最終的に得られた水素分離膜を実際に使用する際において、熱膨張による劣化が抑えられることから、金属箔の製造に用いる金属又は合金と同じ組成を持つ金属又は合金の使用が好ましいと言える。
しかし、熱膨張が近似する材料であれば、特に問題とならないので、任意に選択可能である。この材料選択は水素分離膜の使用目的に応じて、適宜行うことができる。
The material of the hydrogen selective permeable metal film formed on the surface of the metal foil is not particularly limited as long as it is a known material having hydrogen selective permeability. However, if the hydrogen selective permeable metal membrane to be formed has the same composition as that of the metal foil as the supporting substrate, when the hydrogen separation membrane finally obtained is actually used, deterioration due to thermal expansion can be suppressed. Therefore, it can be said that it is preferable to use a metal or alloy having the same composition as that of the metal or alloy used in the production of the metal foil.
However, any material that approximates thermal expansion is not particularly problematic and can be arbitrarily selected. This material selection can be appropriately performed according to the purpose of use of the hydrogen separation membrane.

さらに、上記金属箔の表面に水素選択透過性金属膜を形成させる方法としては、元の金属又は合金の組成を保ったまま、均質な金属膜を形成できる製膜法、例えば、真空蒸着、スパッタリング、プラズマ溶射、イオンプレーティングなどから選択して成膜することができる。これらの成膜方法に制限はない。前記特許文献8〜11に記載の従来公知の製膜法を使用できることは言うまでも無い。   Furthermore, as a method of forming a hydrogen selective permeable metal film on the surface of the metal foil, a film forming method capable of forming a homogeneous metal film while maintaining the composition of the original metal or alloy, for example, vacuum deposition, sputtering. The film can be selected from plasma spraying, ion plating and the like. There is no restriction | limiting in these film-forming methods. Needless to say, the conventionally known film forming methods described in Patent Documents 8 to 11 can be used.

上記の通り、本発明の最も重要な特徴は、圧延により得られたピンホールを有する水素透過性金属箔の少なくとも一方の表面に、無孔水素分離膜すなわち、水素透過性金属又は合金で、そのピンホールを埋める程度の薄い膜を形成させるものである。
ピンホールを有する金属箔の表面にそのピンホールを埋める程度の薄い水素透過性金属膜を形成させるにあたり、金属箔を皺又は凹凸なく支持体又は支持枠に支持させ且つ支持体又は支持枠によく密着させること重要である。このことから、高度に円滑化された表面を持つ無孔質支持枠又は多孔質支持体の使用が好ましいと言える。
As described above, the most important feature of the present invention is a non-porous hydrogen separation membrane, that is, a hydrogen permeable metal or alloy on at least one surface of a hydrogen permeable metal foil having pinholes obtained by rolling. A thin film that fills the pinhole is formed.
In forming a thin hydrogen permeable metal film that fills the pinhole on the surface of the metal foil having pinholes, the metal foil is supported on a support or support frame without wrinkles or irregularities, and the support or support frame is often used. It is important to adhere. From this, it can be said that the use of a nonporous support frame or a porous support having a highly smoothed surface is preferable.

多孔質支持体を用いる場合においては、その多孔質表面に存在する細孔の直径には特に制限はないが、金属箔のピンホールを通過して支持体の細孔に入り込む水素透過分離に利用されない無駄な水素透過性金属又は合金の量を出来るだけ少なくする必要があり、その直径の範囲は0.1-20μmが好ましく、2-10μmが特に好ましい。   In the case of using a porous support, the diameter of the pores existing on the porous surface is not particularly limited, but it is used for hydrogen permeation separation that passes through the pinhole of the metal foil and enters the pores of the support. It is necessary to reduce the amount of wasteful hydrogen permeable metal or alloy that is not used, and the range of the diameter is preferably 0.1 to 20 μm, particularly preferably 2 to 10 μm.

また、用いる無孔質又は多孔質支持体の材質としては、特に制限はないが、無孔質の場合は、無孔質へ圧延箔がしっかりと密着できるような、表面が滑らかな材料、例えば、結晶性ガラス、結晶性シリコン、α−アルミナ、ステンレス等を使用することができる。
また、多孔質の場合は多孔質支持体を最終的に水素分離膜の一部とし、そのまま使用する場合には、金属箔と近い熱膨張係数を有する金属製のものから選ぶことが好ましい。
Further, the material of the nonporous or porous support to be used is not particularly limited, but in the case of nonporous, a material having a smooth surface such that the rolled foil can be firmly adhered to the nonporous, for example, Crystalline glass, crystalline silicon, α-alumina, stainless steel and the like can be used.
In the case of a porous material, the porous support is finally made a part of the hydrogen separation membrane, and when it is used as it is, it is preferably selected from those made of metal having a thermal expansion coefficient close to that of the metal foil.

以下、本発明の特徴を実施例に基づいて具体的に説明する。なお、以下の説明は、本願発明の理解を容易にするためのものであり、これに制限されるものではない。すなわち、本願発明の技術思想に基づく変形、実施態様、他の例は、本願発明に含まれるものである。   The features of the present invention will be specifically described below based on examples. In addition, the following description is for making an understanding of this invention easy, and is not restrict | limited to this. That is, modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.

(実施例1)
水素分離膜の作製に用いた水素透過製金属箔は77mol%Pd-23mol%Agの合金を圧延することにより製造された厚さ1μmのもので、無数のピンホールを有することを光透過試験により確認した。この圧延箔を大きさ20mm×20mmにカットし、厚さ1μmのPd-Ag箔を得た。
これをスパッタ装置のステンレス製試料台に固定した後、スパッタ法により膜形成を行った。ターゲットは、77mol%Pd-23mol%AgのPd-Ag合金板を使用した。スパッタリングはRFパワー100W、Arガス圧0.2Pa、製膜時間90minの条件で行った。
製膜後、得られたPd-Ag箔とその表面に堆積したPd-Ag膜からなる水素分離膜について、以下の解析・評価を行った。
Example 1
The metal foil made of hydrogen permeation used for the production of the hydrogen separation membrane was 1 μm thick manufactured by rolling an alloy of 77 mol% Pd-23 mol% Ag, and it was confirmed by light transmission test that it had innumerable pinholes. confirmed. This rolled foil was cut into a size of 20 mm × 20 mm to obtain a Pd—Ag foil having a thickness of 1 μm.
After fixing this to the stainless steel sample stage of the sputtering apparatus, a film was formed by sputtering. The target used was a 77 mol% Pd-23 mol% Ag Pd—Ag alloy plate. Sputtering was performed under the conditions of an RF power of 100 W, an Ar gas pressure of 0.2 Pa, and a film forming time of 90 min.
After film formation, the following analysis / evaluation was performed on the hydrogen separation membrane composed of the obtained Pd-Ag foil and the Pd-Ag film deposited on the surface thereof.

(1)光透過性評価:暗室で光透過試験を実施した結果、製膜後の水素分離膜の光透過は全く認められなかった。
(2)通気性評価:直径10 mmの円状に切り取った水素分離膜を下記水素透過性能評価装置の多孔質金属フィルターに載せ・シールした後、一次側に窒素ガス圧6kg/cm2をかけ気密試験を実施した結果、二次側へのガスリークは全く認められなかった。
(3)水素透過性評価:作製した水素分離膜の水素透過速度の測定は、一次側・二次側ともにガスを常に流通させた状態で、膜の水素透過速度を測定することが可能な流通式水素透過性能評価装置を用いて行った。
(1) Light transmission evaluation: As a result of conducting a light transmission test in a dark room, no light transmission of the hydrogen separation membrane after film formation was observed.
(2) Air permeability evaluation: A hydrogen separation membrane cut into a circle with a diameter of 10 mm was placed on a porous metal filter of the following hydrogen permeation performance evaluation device and sealed, and then a nitrogen gas pressure of 6 kg / cm 2 was applied to the primary side. As a result of the airtight test, no gas leak to the secondary side was observed.
(3) Hydrogen permeability evaluation: The hydrogen permeation rate of the produced hydrogen separation membrane can be measured with the gas permeating on both the primary and secondary sides. The hydrogen permeation performance evaluation apparatus was used.

具体的には、気密試験後の水素透過性評価試験を温度一定(500°C)の条件で行った。一次側には、1〜6kg/cm2 の50vol%H2-50vol%N2の混合ガスを、二次側には、1 kg/cm2 の100vol%のArガスを、それぞれ流通させながら行った。一次側と二次側のガスの分析及び定量は、ガスクロマトグラフで行った。
その結果を、表1に示す。同表より、実施例1の水素分離膜の水素透過速度は1.5 kg/cm2の水素分圧で25 cm3/cm2/minであり、前記特許文献12に例示されているPd-Ag膜(膜厚0.15 mm)の水素透過速度3.4-4.1cm3/cm2/minの、約6倍であった。
Specifically, the hydrogen permeability evaluation test after the hermetic test was performed under the condition of a constant temperature (500 ° C). 1 to 6kg / cm 2 of 50vol% H 2 -50vol% N 2 mixed gas is circulated on the primary side and 1kg / cm 2 of 100vol% Ar gas is circulated on the secondary side. It was. Analysis and quantification of the gas on the primary side and the secondary side were performed by gas chromatography.
The results are shown in Table 1. From the table, the hydrogen permeation rate of the hydrogen separation membrane of Example 1 is 25 cm 3 / cm 2 / min at a hydrogen partial pressure of 1.5 kg / cm 2 , and the Pd-Ag membrane exemplified in Patent Document 12 above The hydrogen permeation rate (film thickness: 0.15 mm) was about 6 times the 3.4-4.1 cm 3 / cm 2 / min.

Figure 2007038095
Figure 2007038095

上記の膜についての確認を行った。
(4)膜厚測定:水素透過試験に用いた膜の厚さを水素透過試験後にマイクロメーターで測定した結果、膜厚は23μmであった。
(5)膜の表面組成測定:水素透過試験に用いた膜の一部を水素透過試験後にX線光電子分光装置(XPS)にかけて表面組成分析を行った結果、Pd:Agの原子比は77:23であり、製膜に用いたターゲットのPd-Ag合金の成分比と同じであった。
The above film was confirmed.
(4) Film thickness measurement: The film thickness used for the hydrogen permeation test was measured with a micrometer after the hydrogen permeation test, and the film thickness was 23 μm.
(5) Measurement of the surface composition of the film: As a result of performing a surface composition analysis on a part of the film used in the hydrogen permeation test by using an X-ray photoelectron spectrometer (XPS) after the hydrogen permeation test, the atomic ratio of Pd: Ag is 77: It was 23 and was the same as the component ratio of the target Pd—Ag alloy used for film formation.

(実施例2)
水素分離膜の作製に用いた水素透過製金属箔は、77mol%Pd-23mol%Agの合金を圧延することにより製造した厚さ1μmのもので、無数のピンホールを有することを光透過試験により確認した。
この圧延箔から切り取った大きさ20mm×20mm、厚さ1μmのPd-Ag箔を、スパッタ装置のステンレス製試料台に固定した後、スパッタ法により膜形成を行った。スパッタリングはRFパワー100W、Arガス圧0.2Pa、製膜時間60minの条件で行った。ターゲットは市販の77mol%Pd-23mol%AgのPd-Ag合金板を使用した。
(Example 2)
The metal foil made of hydrogen permeation used for the production of the hydrogen separation membrane was 1 μm thick produced by rolling an alloy of 77 mol% Pd-23 mol% Ag, and it was confirmed by light transmission tests that it had innumerable pinholes. confirmed.
A Pd-Ag foil having a size of 20 mm × 20 mm and a thickness of 1 μm cut from the rolled foil was fixed on a stainless steel sample stage of a sputtering apparatus, and a film was formed by sputtering. Sputtering was performed under the conditions of an RF power of 100 W, an Ar gas pressure of 0.2 Pa, and a film forming time of 60 min. The target was a commercially available 77 mol% Pd-23 mol% Ag Pd—Ag alloy plate.

製膜後、得られたPd-Ag箔とその表面に堆積したPd-Ag膜からなる水素分離膜について以下の解析・評価を行った。
(1)光透過性評価:暗室で光透過試験を実施した結果、製膜後の水素分離膜の光透過は全く認められなかった。
(2)通気性評価:直径10 mmの円状に切り取った水素分離膜を前記水素透過性能評価装置の多孔質金属フィルターに載せ・シールした後、一次側に窒素ガス圧6kg/cm2をかけ気密試験を実施した結果、二次側へのガスリークは全く認められなかった。
After film formation, the following analysis / evaluation was performed on the hydrogen separation membrane composed of the obtained Pd-Ag foil and the Pd-Ag film deposited on the surface thereof.
(1) Light transmission evaluation: As a result of conducting a light transmission test in a dark room, no light transmission of the hydrogen separation membrane after film formation was observed.
(2) Air permeability evaluation: A hydrogen separation membrane cut into a circular shape with a diameter of 10 mm is placed on and sealed on the porous metal filter of the hydrogen permeation performance evaluation apparatus, and then a nitrogen gas pressure of 6 kg / cm 2 is applied to the primary side. As a result of the airtight test, no gas leak to the secondary side was observed.

(3)水素透過性評価:気密試験後の水素透過性評価試験を温度一定(500°C)の条件で行った。一次側には1〜6kg/cm2 の50vol%H2-50vol%N2の混合ガス、二次側には1 kg/cm2 の100vol%のArガスをそれぞれ流通させながら行った。その結果を表2に示す。同表より、実施例2の水素分離膜の水素透過速度はすべての水素分圧において,実施例1の膜よりさらに大きくなった。 (3) Hydrogen permeability evaluation: The hydrogen permeability evaluation test after the airtightness test was conducted under the condition of constant temperature (500 ° C). It was carried out while circulating 1 to 6 kg / cm 2 of 50 vol% H 2 -50 vol% N 2 mixed gas on the primary side and 100 kg% Ar gas of 1 kg / cm 2 on the secondary side. The results are shown in Table 2. From the table, the hydrogen permeation rate of the hydrogen separation membrane of Example 2 was higher than that of Example 1 at all hydrogen partial pressures.

Figure 2007038095
Figure 2007038095

上記の膜についての確認を行った。
(4)膜厚測定:水素透過試験に用いた膜の厚さを水素透過試験後にマイクロメーターで測定した結果、膜厚は18μmで実施例2の膜より薄かった。
(5)膜の表面組成測定:水素透過試験に用いた膜の一部を水素透過試験後にX線光電子分光装置(XPS)にかけて表面組成分析を行った結果、Pd:Agの原子比は77:23であり、成膜に用いたターゲットのPd-Ag合金の成分比と同じであった。
The above film was confirmed.
(4) Film thickness measurement: The film thickness used in the hydrogen permeation test was measured with a micrometer after the hydrogen permeation test. As a result, the film thickness was 18 μm, which was thinner than the film of Example 2.
(5) Measurement of the surface composition of the film: As a result of performing a surface composition analysis on a part of the film used in the hydrogen permeation test by using an X-ray photoelectron spectrometer (XPS) after the hydrogen permeation test, the atomic ratio of Pd: Ag is 77: It was 23, which was the same as the component ratio of the target Pd—Ag alloy used for film formation.

本発明は水素透過性圧延箔とその表面に形成される水素透過性金属又は合金膜からなる無孔水素分離膜が薄膜で簡易に製造でき、また水素透過性圧延箔を多孔質支持体に支持させて水素分離膜を製造する場合、多孔質支持体を基材とする従来の水素分離膜製造法において必須となる、多孔質支持体の表面孔径を小さくしなければならない前処理工程を省くことが可能である。さらに、多孔質支持体からの水素透過性圧延箔とその表面に形成される水素透過性金属又は合金膜からなる水素分離膜の回収が容易にできるため、劣化水素分離膜の回収・再利用コストの大幅低減が図れる等の効果があるので、水素分離膜として最適である。
In the present invention, a non-porous hydrogen separation membrane comprising a hydrogen permeable rolled foil and a hydrogen permeable metal or alloy film formed on the surface thereof can be easily produced as a thin film, and the hydrogen permeable rolled foil is supported on a porous support. In the case of producing a hydrogen separation membrane, the pretreatment step, which is essential in the conventional hydrogen separation membrane production method using a porous support as a base material, and the surface pore diameter of the porous support must be reduced is omitted. Is possible. Furthermore, the hydrogen permeable rolled foil from the porous support and the hydrogen permeable membrane made of the hydrogen permeable metal or alloy membrane formed on the surface can be easily recovered, so that the recovery / reuse cost of the deteriorated hydrogen permeable membrane can be reduced. Therefore, it is optimal as a hydrogen separation membrane.

Claims (10)

ピンホールを持つ圧延金属箔上に水素選択透過性を有する無孔金属膜を備えていることを特徴とする水素分離膜。   A hydrogen separation membrane comprising a non-porous metal membrane having selective hydrogen permeability on a rolled metal foil having pinholes. 水素選択透過性を有する無孔金属膜が、Pd又はAg若しくはCuを含有するPd合金、Nb合金又はV合金であることを特徴とする請求項1記載の水素分離膜。   2. The hydrogen separation membrane according to claim 1, wherein the nonporous metal membrane having hydrogen selective permeability is a Pd alloy, Nb alloy or V alloy containing Pd, Ag or Cu. ピンホールを持つ圧延金属箔が、水素選択透過性材料からなることを特徴とする請求項1又は2記載の水素分離膜。   The hydrogen separation membrane according to claim 1 or 2, wherein the rolled metal foil having pinholes is made of a hydrogen selective permeable material. ピンホールを持つ圧延金属箔が、0.1〜10μmの厚さを有することを特徴とする請求項1〜3のいずれかに記載の水素分離膜。   The hydrogen separation membrane according to any one of claims 1 to 3, wherein the rolled metal foil having pinholes has a thickness of 0.1 to 10 µm. ピンホールを持つ圧延金属箔が、0.5〜5μmの厚さを有することを特徴とする請求項4記載の水素分離膜。   The hydrogen separation membrane according to claim 4, wherein the rolled metal foil having pinholes has a thickness of 0.5 to 5 μm. ピンホールを持つ圧延金属箔のピンホールの平均径が5μm以下であることを特徴とする請求項1〜5のいずれかに記載の水素分離膜。   The hydrogen separation membrane according to claim 1, wherein an average diameter of pinholes of the rolled metal foil having pinholes is 5 μm or less. 水素選択透過性を有する無孔金属膜の厚さが30μm以下であることを特徴とする請求項1〜6のいずれかに記載の水素分離膜。   The hydrogen separation membrane according to any one of claims 1 to 6, wherein the thickness of the nonporous metal membrane having hydrogen selective permeability is 30 µm or less. 多孔質支持体に支持されていることを特徴とする請求項1〜7のいずれかに記載の水素分離膜。   It is supported by the porous support body, The hydrogen separation membrane in any one of Claims 1-7 characterized by the above-mentioned. 無孔質支持枠に支持されていることを特徴とする請求項1〜7のいずれかに記載の水素分離膜。   The hydrogen separation membrane according to any one of claims 1 to 7, wherein the hydrogen separation membrane is supported by a nonporous support frame. 多孔質支持体又は無孔質支持枠上に、ピンホールを持つ圧延金属箔を取付け、次に該圧延金属箔の少なくとも一方の面に、水素選択透過性を有する材料を被覆して無孔質の膜を形成することを特徴とする水素分離膜の製造方法。
A rolled metal foil having pinholes is mounted on a porous support or a nonporous support frame, and then a material having hydrogen permselectivity is coated on at least one surface of the rolled metal foil so as to be nonporous. A method for producing a hydrogen separation membrane, comprising forming a membrane.
JP2005223871A 2005-08-02 2005-08-02 Hydrogen separation membrane and its production method Pending JP2007038095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223871A JP2007038095A (en) 2005-08-02 2005-08-02 Hydrogen separation membrane and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223871A JP2007038095A (en) 2005-08-02 2005-08-02 Hydrogen separation membrane and its production method

Publications (1)

Publication Number Publication Date
JP2007038095A true JP2007038095A (en) 2007-02-15

Family

ID=37796571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223871A Pending JP2007038095A (en) 2005-08-02 2005-08-02 Hydrogen separation membrane and its production method

Country Status (1)

Country Link
JP (1) JP2007038095A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246408A (en) * 2007-03-30 2008-10-16 Ihi Corp Hydrogen-permeable membrane
EP2933013A4 (en) * 2012-12-17 2016-09-14 Nitto Denko Corp Hydrogen-releasing film
JP2017216433A (en) * 2016-05-30 2017-12-07 日東電工株式会社 Electrolytic capacitor
WO2017208723A1 (en) * 2016-05-30 2017-12-07 日東電工株式会社 Electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246408A (en) * 2007-03-30 2008-10-16 Ihi Corp Hydrogen-permeable membrane
EP2933013A4 (en) * 2012-12-17 2016-09-14 Nitto Denko Corp Hydrogen-releasing film
JP2017216433A (en) * 2016-05-30 2017-12-07 日東電工株式会社 Electrolytic capacitor
WO2017208723A1 (en) * 2016-05-30 2017-12-07 日東電工株式会社 Electrolytic capacitor
JP2021132223A (en) * 2016-05-30 2021-09-09 日東電工株式会社 Electrolytic capacitor

Similar Documents

Publication Publication Date Title
US7875154B2 (en) Preparation method of palladium alloy composite membrane for hydrogen separation
JP4250525B2 (en) Separation diffusion metal membrane and manufacturing method thereof
CA2399145C (en) Hydrogen-permeable structure and method for preparation thereof
US20020020298A1 (en) Supported metal membrane, a process for its preparation and use
JP7403483B2 (en) Graphene membrane filter for gas separation
US7125440B2 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
Ryi et al. Characterization of Pd–Cu–Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow on porous nickel support for hydrogen separation
JP2005022924A (en) Pore base material and its manufacturing method, and pore base material for gas separation material
JP2008237945A (en) Hydrogen-separating membrane
CA2684771A1 (en) Composite structures with porous anodic oxide layers and methods of fabrication
JP2007038095A (en) Hydrogen separation membrane and its production method
KR20020013767A (en) A process for preparing a composite metal membrane, the composite metal membrane prepared therewith and its use
KR100832302B1 (en) Fabrication method of pd alloy membrane using in-situ dry vacuum process for hydrogen gas separation
US20130092025A1 (en) Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method
JP4759664B2 (en) Hydrogen separation membrane and hydrogen separation method
Kim et al. The effect of Cu reflow on the Pd–Cu–Ni ternary alloy membrane fabrication for infinite hydrogen separation
Nam et al. Preparation of highly stable palladium alloy composite membranes for hydrogen separation
JP2005262082A (en) Hydrogen separation membrane, production method therefor, and hydrogen separation method
Xiong et al. Fabrication and characterization of Pd/Nb40Ti30Ni30/Pd/porous nickel support composite membrane for hydrogen separation and purification
JP3174668B2 (en) Hydrogen separation membrane
JP6561334B2 (en) Method for producing hydrogen separation membrane
WO2005075060A1 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
JP2004122006A (en) Hydrogen separation film, its production method and separation method for hydrogen
RU2624108C1 (en) Method of obtaining composite membrane materials based on hydride-forming intermetallic compounds and polymeric binders
JP2008043907A (en) Hydrogen permeable composite membrane and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080305

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090406

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A02