JPH06254361A - Production of hydrogen separation membrane - Google Patents

Production of hydrogen separation membrane

Info

Publication number
JPH06254361A
JPH06254361A JP6463893A JP6463893A JPH06254361A JP H06254361 A JPH06254361 A JP H06254361A JP 6463893 A JP6463893 A JP 6463893A JP 6463893 A JP6463893 A JP 6463893A JP H06254361 A JPH06254361 A JP H06254361A
Authority
JP
Japan
Prior art keywords
thin film
hollow fiber
film
separation membrane
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6463893A
Other languages
Japanese (ja)
Other versions
JP3246047B2 (en
Inventor
Hiroshi Anzai
博 安斉
Shigeo Akiyama
重雄 秋山
Seiji Morooka
成治 諸岡
Hideaki Maeda
英明 前田
Katsumi Kusakabe
克己 草壁
Chiyuugan Ri
仲岩 李
Takeyuki Yamaki
健之 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP06463893A priority Critical patent/JP3246047B2/en
Publication of JPH06254361A publication Critical patent/JPH06254361A/en
Application granted granted Critical
Publication of JP3246047B2 publication Critical patent/JP3246047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation

Abstract

PURPOSE:To provide a production method of a hydrogen separation membrane with an enhanced hydrogen transmission speed by forming a Pb alloy film as a thin film, in the hydrogen separation membrane in which a Pd-Ag alloy film is a hydrogen selective transmission film. CONSTITUTION:When the Pd-Ag alloy film as the hydrogen separation membrane is formed, a porous ceramics hollow fiber as a supporting body, preferably the porous ceramic hollow fiber is used where a gamma-alumina thin film on the surface is formed with a sol-gel method, and a Pd(NO3)2-AgNO3 mixture aqueous solution is sprayed and decomposed thermally and the Pd-Ag alloy thin film is deposited an formed on the outside surface of the hollow fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素分離膜の製造法に
関する。更に詳しくは、Pd-Ag合金膜を水素選択透過性
膜とする水素分離膜の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a hydrogen separation membrane. More specifically, it relates to a method for producing a hydrogen separation membrane using a Pd-Ag alloy membrane as a hydrogen selective permeable membrane.

【0002】[0002]

【従来の技術】水素の超高純度精製用膜として、Pd-Ag
合金膜が知られており(Sep.Sci.Technol.第22巻第87
3〜887頁、1987年)、既に実用化もされている。このよ
うな水素分離用Pd系合金膜は、従来合金単独で中空状に
作られており、従って、それの強度上の制約から、外径
が1.6mmのもので最小膜厚が約80μm程度が限界であり、
水素透過速度は膜厚に逆比例するため、水素透過速度が
遅いという問題がみられた。
2. Description of the Related Art Pd-Ag is used as a membrane for ultra-high purity purification of hydrogen.
Alloy films are known (Sep. Sci. Technol. Vol. 22, Vol. 87).
3 to 887, 1987), which has already been put to practical use. Such a Pd-based alloy membrane for hydrogen separation is conventionally made of a single alloy in a hollow shape.Therefore, due to its strength limitation, the outer diameter is 1.6 mm and the minimum thickness is about 80 μm. Is the limit,
Since the hydrogen permeation rate is inversely proportional to the film thickness, there was a problem that the hydrogen permeation rate was slow.

【0003】そこで、その対策として、多孔質アルミナ
チューブ表面に、化学メッキ法でPd系合金膜を形成させ
る方法が提案されているが(J.Memb.Sci.第56巻第30
3、315頁、1991年)、膜厚については4.5〜6.4μmと改善
されてはいるものの未だ厚く、しかも膜形成プロセスが
複雑で、工程が多いという難点がみられる。
Therefore, as a countermeasure against this, a method of forming a Pd-based alloy film on the surface of a porous alumina tube by a chemical plating method has been proposed (J. Memb. Sci. Vol. 56, No. 30).
(3, 315, 1991), although the film thickness has been improved to 4.5 to 6.4 μm, it is still thick, and the film forming process is complicated and there are many problems.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、Pd-A
g合金膜を水素選択透過性膜とする水素分離膜であっ
て、このPd系合金膜を薄膜として形成させることによ
り、水素透過速度を高めたものの製造法を提供すること
にある。
SUMMARY OF THE INVENTION The object of the present invention is to provide Pd-A
It is an object of the present invention to provide a method for producing a hydrogen separation membrane having a g-alloy membrane as a hydrogen selective permeable membrane, in which this Pd-based alloy membrane is formed as a thin film to enhance the hydrogen permeation rate.

【0005】[0005]

【課題を解決するための手段】かかる本発明の目的は、
多孔質セラミックス中空糸外表面上に、Pd(NO3)2-AgNO3
混合物水溶液の噴霧熱分解物たるPd-Ag合金薄膜を堆積
させて水素分離膜を製造することによって達成される。
The object of the present invention is as follows.
Pd (NO 3 ) 2 -AgNO 3 on the outer surface of the porous ceramic hollow fiber
This is accomplished by depositing a Pd-Ag alloy thin film, which is a spray pyrolyzate of an aqueous solution of a mixture, to produce a hydrogen separation membrane.

【0006】支持体として用いられる多孔質セラミック
ス中空糸としては、一般に平均細孔率が約20〜50%、好
ましくは約40〜50%であって、平均細孔径が約100〜5000
nm、好ましくは約100〜1000nmの精密ロ過性能を有する
多孔質アルミナ中空糸などが用いられる。
The porous ceramic hollow fiber used as the support generally has an average porosity of about 20 to 50%, preferably about 40 to 50%, and an average pore diameter of about 100 to 5000.
A porous alumina hollow fiber having a precision filtration performance of nm, preferably about 100 to 1000 nm is used.

【0007】多孔質セラミックス中空糸は、その表面に
ゾル-ゲル法によるγ-アルミナ薄膜を形成させて用いる
ことが好ましい。ゾル-ゲル法によるγ-アルミナ薄膜の
形成は、テトラエトキシシラン等のテトラアルコキシシ
ランを硝酸等の無機酸を用いて水溶液中で加水分解する
ことにより調製されるシリカゾルを多孔質セラミックス
中空糸内に流入させ、約1〜30秒間中空糸と接触させた
後、約100〜200℃で約0.5〜2時間程度乾燥させ、次いで
約400〜500℃で約1〜10時間程度焼成する操作を、1回
以上、一般には複数回くり返すことにより行われる。
The porous ceramic hollow fiber is preferably used by forming a γ-alumina thin film on its surface by a sol-gel method. The formation of γ-alumina thin film by the sol-gel method is carried out by hydrolyzing a tetraalkoxysilane such as tetraethoxysilane in an aqueous solution with an inorganic acid such as nitric acid, into a porous ceramic hollow fiber. After inflowing and contacting with the hollow fiber for about 1 to 30 seconds, it is dried at about 100 to 200 ° C for about 0.5 to 2 hours, and then calcined at about 400 to 500 ° C for about 1 to 10 hours. Repeated more than once, generally multiple times.

【0008】このような多孔質セラミックス中空糸外表
面上へのPd-Ag合金薄膜の堆積は、Pd(NO3)2-AgNO3混合
物水溶液を用い、これを噴霧熱分解させることにより行
われる。この噴霧熱分解は、例えば図1に示されるよう
な噴霧熱分解装置を用いて行われる。
The deposition of the Pd-Ag alloy thin film on the outer surface of the porous ceramic hollow fiber is carried out by spray pyrolysis of an aqueous Pd (NO 3 ) 2 -AgNO 3 mixture solution. This spray pyrolysis is performed using a spray pyrolysis apparatus as shown in FIG. 1, for example.

【0009】即ち、容器内のPd(NO3)2-AgNO3混合物水溶
液8は、超音波噴霧器7中に導かれ、そこで霧状にされ
た後、管6より導入された酸素と共に、邪魔板を設置し
た管路5で十分に混合され、二重管バーナー3の内管部
に導入される。バーナー外管側から管路4からの水素を
導入し、バーナー出口でH2-O2火炎を形成させて、硝酸
塩混合物を噴霧状のまま熱分解させる。二重管バーナー
3の周囲は、ガラス円筒1等により囲われており、その
側壁の対称位置に設けられた貫通孔に多孔質セラミック
ス中空糸2を通し、中空糸が火炎中に入るような位置に
ガラス円筒1を設置すると、火炎中で熱分解して生じた
合金は多孔質セラミックス中空糸の外表面上に担持さ
れ、合金薄膜を形成させる。この際、多孔質セラミック
ス中空糸に回転運動と並通運動とを加えると、中空糸の
外表面上に均一な合金薄膜が形成される。
That is, the Pd (NO 3 ) 2 -AgNO 3 mixture aqueous solution 8 in the container is introduced into the ultrasonic atomizer 7, atomized therein, and then, together with the oxygen introduced from the pipe 6, the baffle plate. Is sufficiently mixed in the pipe line 5 in which is installed and introduced into the inner pipe portion of the double pipe burner 3. Hydrogen from the conduit 4 is introduced from the outer side of the burner, H 2 -O 2 flame is formed at the burner outlet, and the nitrate mixture is pyrolyzed in a spray state. The periphery of the double-tube burner 3 is surrounded by the glass cylinder 1 and the like, and the porous ceramic hollow fiber 2 is passed through through holes provided at symmetrical positions on the side wall of the double cylinder burner 3 so that the hollow fiber enters the flame. When the glass cylinder 1 is installed in, the alloy generated by thermal decomposition in a flame is carried on the outer surface of the porous ceramic hollow fiber to form an alloy thin film. At this time, when a rotational movement and a parallel movement are applied to the porous ceramic hollow fiber, a uniform alloy thin film is formed on the outer surface of the hollow fiber.

【0010】Pd(NO3)2とAgNO3とは、前者がPdとして約1
0〜90重量%、好ましくは約40〜70重量%、また後者がAg
として約90〜10重量%、好ましくは約60〜30重量%の混合
比で一般に用いられ、これらの全硝酸塩濃度が約0.01〜
1モル/L、好ましくは約0.03〜0.3モル/Lの混合物水溶
液として用いられる。
For Pd (NO 3 ) 2 and AgNO 3 , the former is about 1 as Pd.
0-90% by weight, preferably about 40-70% by weight, the latter being Ag
Is generally used in a mixing ratio of about 90 to 10% by weight, preferably about 60 to 30% by weight, and the total nitrate concentration of these is about 0.01 to
It is used as an aqueous solution of a mixture of 1 mol / L, preferably about 0.03 to 0.3 mol / L.

【0011】このような硝酸塩混合物水溶液の噴霧熱分
解による製膜過程について検討するに、例えば後記実施
例での如く、Pd:Ag=60:40の重量比で、全硝酸塩濃度
が0.035モル/LのPd(NO3)2-AgNO3混合物水溶液を用いた
ときの析出膜形態の経時的変化をSEM写真で観察する
と、製膜初期(10分後)には比較的丸味を帯びた金属が中
空糸の外表面に斑点状に析出していたが、製膜30分後に
は島状構造になってその表面が角張っており、製膜途中
で次第に結晶化することが分かった。その後、粒成長し
ながら製膜は進行し、100分後でピンホールのみられな
い緻密な膜(膜厚約1.5μm)を形成していた。
To examine the film forming process by spray pyrolysis of such an aqueous solution of nitrate mixture, for example, as shown in the examples below, the total nitrate concentration is 0.035 mol / L at a weight ratio of Pd: Ag = 60: 40. SEM micrographs of the temporal changes in the deposited film morphology when using an aqueous solution of Pd (NO 3 ) 2 -AgNO 3 mixture of the above showed that a relatively rounded metal was hollow at the early stage of film formation (after 10 minutes). It was found that spots were deposited on the outer surface of the yarn, but after 30 minutes of film formation, the surface had an island-like structure and the surface was angular, and gradually crystallized during film formation. After that, the film formation proceeded while grain growth, and after 100 minutes, a dense film (film thickness of about 1.5 μm) without pinholes was formed.

【0012】しかしながら、形成された合金薄膜中のAg
含有率は約4重量%以下であり、出発組成とは大きく異な
っていた。このことについては、次のように考えられ
る。Pd(NO3)2-AgNO3混合物水溶液の液滴が火炎中に供給
される結果、水の蒸発と硝酸塩の熱分解とが瞬時に起こ
る。本発明方法で評価される断熱火炎温度は2000℃以上
であり、Pdの融点は1550℃よりも高いので、火炎中では
金属液滴として存在する。一方、Agは沸点が2210℃とPd
の沸点(3100℃)よりも低く、火炎温度に近いので、Agは
金属蒸気となる。このようにして、PdおよびPd-Ag合金
は液滴として、またAgは蒸気として支持体上に付着、堆
積するが、製膜中にAg成分が再蒸発するために、生成し
た膜中のAg含有率が低くなる。
However, Ag in the formed alloy thin film
The content was about 4% by weight or less, which was significantly different from the starting composition. This can be considered as follows. Droplets of an aqueous Pd (NO 3 ) 2 -AgNO 3 mixture solution are fed into the flame, resulting in instantaneous evaporation of water and thermal decomposition of nitrates. Since the adiabatic flame temperature evaluated by the method of the present invention is 2000 ° C. or higher and the melting point of Pd is higher than 1550 ° C., it exists as metal droplets in the flame. On the other hand, Ag has a boiling point of 2210 ℃ and Pd
Since it is lower than the boiling point of 3100 ° C and is close to the flame temperature, Ag becomes a metal vapor. In this way, Pd and Pd-Ag alloys are deposited as droplets, and Ag is deposited and deposited as vapor on the support, but the Ag component in the formed film is re-evaporated during film formation, so The content rate becomes low.

【0013】そこで、膜中のAg含有率を高めるために、
形成された合金薄膜上にAgNO3水溶液を用いた噴霧熱分
解が行われることが好ましい。具体的には、上記例の場
合、濃度0.1モル/LのAgNO3水溶液による再製膜を45分
間行うと、膜の厚さは約2.0μmとなり、膜中のAg含有率
は24重量%となった。
Therefore, in order to increase the Ag content in the film,
It is preferable that spray pyrolysis using an AgNO 3 aqueous solution is performed on the formed alloy thin film. Specifically, in the case of the above example, when the film is re-formed with an aqueous solution of AgNO 3 having a concentration of 0.1 mol / L for 45 minutes, the thickness of the film becomes about 2.0 μm, and the Ag content in the film becomes 24% by weight. It was

【0014】多孔質セラミックス中空糸外表面上の薄膜
を、Pdのみで形成させた場合には、水素の吸収と吐き出
しとがくり返される過程でPd薄膜が変形し、装置材料と
して使用し得ない状態となるため、Pd-Ag合金薄膜とし
て用いられなければならないが、そのために含有されな
ければならないAgの割合は、Pd-Ag合金中約5〜30重量
%、好ましくは約20〜30重量%である。
When the thin film on the outer surface of the porous ceramic hollow fiber is formed of only Pd, the Pd thin film is deformed in the process of repeating absorption and discharge of hydrogen and cannot be used as a device material. Therefore, it must be used as a Pd-Ag alloy thin film, but the proportion of Ag that must be contained for that purpose is about 5 to 30 wt% in the Pd-Ag alloy.
%, Preferably about 20-30% by weight.

【0015】[0015]

【発明の効果】水素分離膜としてのPd-Ag合金膜を形成
させるに際し、支持体として多孔質セラミックス中空
糸、好ましくはその表面にゾル-ゲル法によるγ-アルミ
ナ薄膜を形成させた多孔質セラミックス中空糸を用い、
Pd(NO3)2-AgNO3混合物水溶液を噴霧熱分解させて中空糸
外表面上にPd-Ag合金薄膜を堆積させて形成させること
により、Pd-Ag合金膜の薄膜化が図られ、しかも水素分
離膜として実用化されているポリイミド膜より耐熱性、
耐薬品性、分離性能の点ですぐれたものが得られる。な
お、硝酸塩以外にも、アンモニウム塩、しゅう酸塩、酢
酸塩、炭酸塩等が使用可能である。
EFFECTS OF THE INVENTION When forming a Pd-Ag alloy membrane as a hydrogen separation membrane, a porous ceramic hollow fiber as a support, preferably a porous ceramic having a γ-alumina thin film formed on its surface by a sol-gel method Using hollow fiber,
By spray-decomposing an aqueous Pd (NO 3 ) 2 -AgNO 3 mixture solution to form a Pd-Ag alloy thin film deposited on the outer surface of the hollow fiber, the Pd-Ag alloy film can be thinned, and Heat resistance than polyimide membrane, which is practically used as hydrogen separation membrane,
It has excellent chemical resistance and separation performance. In addition to nitrates, ammonium salts, oxalates, acetates, carbonates and the like can be used.

【0016】[0016]

【実施例】次に、実施例について本発明の効果を説明す
る。
EXAMPLES Next, the effects of the present invention will be described with reference to examples.

【0017】実施例1 多孔質アルミナ中空糸(外径2.5mm、内径1.6mm、平均細
孔率40%、平均細孔径120nm)の外表面側に、ゾル-ゲル法
によりγ-アルミナ薄膜(平均膜厚1.5μm、平均細孔径5n
m)を形成させ、支持体とした。
Example 1 On the outer surface side of a porous alumina hollow fiber (outer diameter 2.5 mm, inner diameter 1.6 mm, average porosity 40%, average pore diameter 120 nm), γ-alumina thin film (average Film thickness 1.5μm, average pore size 5n
m) was formed and used as a support.

【0018】Pd(NO3)2-AgNO3混合物水溶液(Pd:Ag=6
0:40重量%、全硝酸塩濃度0.035モル/L)500mlを用いて
の噴霧熱分解が、図1の噴霧熱分解装置を用いて行われ
た。まず、硝酸塩混合物水溶液を超音波噴霧器で霧化し
た後、流量1.5L/分の酸素に同伴させて、二重管バーナ
ーの内管部に導入した。二重管バーナーの外管には、流
量2.5L/分の水素を流通させ、バーナー出口でH2-O2
炎を形成させ、硝酸塩を熱分解させた。
Pd (NO 3 ) 2 -AgNO 3 mixture aqueous solution (Pd: Ag = 6
Spray pyrolysis with 500 ml of 0:40 wt%, total nitrate concentration 0.035 mol / L) was performed using the spray pyrolysis apparatus of FIG. First, the nitrate mixture aqueous solution was atomized by an ultrasonic atomizer, and then entrained in oxygen with a flow rate of 1.5 L / min and introduced into the inner tube portion of the double-tube burner. A flow rate of 2.5 L / min of hydrogen was circulated in the outer tube of the double-tube burner to form a H 2 —O 2 flame at the burner outlet, and the nitrate was thermally decomposed.

【0019】前記γ-アルミナ薄膜形成多孔質アルミナ
中空糸を、200rpmで回転させながら、火炎中で100分間
熱分解、製膜したところ、ピンホールのみられないほぼ
緻密なPd-Ag合金薄膜(膜厚約1.5μm、Ag含有率約4重量
%)が中空糸外表面上に形成された。なお、製膜中の支持
体平均温度は、約1000℃であった。このPd-Ag合金薄膜
を形成させた支持体のH2ガス透過係数は、約5×10-7
ル/m2・s・Paであった。
The γ-alumina thin film-forming porous alumina hollow fiber was pyrolyzed and formed into a film for 100 minutes in a flame while rotating at 200 rpm. As a result, a substantially dense Pd-Ag alloy thin film (film Thickness about 1.5 μm, Ag content about 4 weight
%) Was formed on the outer surface of the hollow fiber. The average temperature of the support during film formation was about 1000 ° C. The H 2 gas permeation coefficient of the support on which this Pd—Ag alloy thin film was formed was about 5 × 10 −7 mol / m 2 · s · Pa.

【0020】実施例2 実施例1で得られたPd-Ag合金薄膜形成支持体上に、濃
度0.1モル/LのAgNO3水溶液500mlを用いての再製膜を45
分間行ったところ、膜厚約2.0μm、Ag含有率24重量%のP
d-Ag合金薄膜が得られた。
Example 2 On the Pd-Ag alloy thin film forming support obtained in Example 1, 500 ml of AgNO 3 aqueous solution having a concentration of 0.1 mol / L was used to re-form a film.
After a minute, the film thickness of about 2.0 μm, Ag content of 24 wt% P
A d-Ag alloy thin film was obtained.

【0021】図2には、このようなPd-Ag合金薄膜を形
成させた支持体のガス透過係数の温度依存性が示されて
いる。H2ガス(▲)の透過係数は温度と共に増加したが、
N2ガス(●)の場合には温度依存性は認められなかった。
その分離係数は、300℃では7.3、400℃では11.8、500℃
では24であった。因に、この500℃のH2/N2分離係数24に
おける水素透過係数が8×10-7モル/m2・s・Paであるの
に対し、水素透過速度の大きい有機系膜としてのポリイ
ミド膜は、H2/N2分離係数50での水素透過係数が6×10-8
モル/m2・s・Paであるのと比較して、本発明のPd-Ag合
金薄膜の方が、耐熱性、耐薬品性だけではなく、水素分
離特性の点でもすぐれていることが分かる。
FIG. 2 shows the temperature dependence of the gas permeation coefficient of the support on which such a Pd-Ag alloy thin film is formed. The permeability coefficient of H 2 gas (▲) increased with temperature,
No temperature dependence was observed in the case of N 2 gas (●).
The separation factor is 7.3 at 300 ℃, 11.8 at 400 ℃, and 500 ℃
Then it was 24. Incidentally, while the hydrogen permeation coefficient at the H 2 / N 2 separation factor of 24 at 500 ° C is 8 × 10 -7 mol / m 2 sPa, polyimide as an organic membrane with a high hydrogen permeation rate is used. The membrane has a hydrogen permeation coefficient of 6 × 10 -8 at an H 2 / N 2 separation coefficient of 50.
It can be seen that the Pd-Ag alloy thin film of the present invention is superior not only in heat resistance and chemical resistance but also in terms of hydrogen separation characteristics, as compared with mol / m 2 sPa. .

【0022】なお、このグラフ中、△と○は合金薄膜を
剥がした後のγ-アルミナ薄膜のガス透過係数を示して
おり、その分離係数は3〜4であって、これは支持体中空
糸内では Knudsen 流であることを示している。
In the graph, Δ and ○ indicate the gas permeability coefficient of the γ-alumina thin film after the alloy thin film was peeled off, and the separation coefficient was 3 to 4, which is the hollow fiber support. It shows that it is Knudsen style.

【0023】このようなガス透過試験は、中空糸の中央
部(長さ約10mm)以外はすべて封着ガラスで閉じ、この中
央部の外側にH2ガスまたはN2ガスを流通させた後、Pd-A
g合金薄膜を透過したガス成分をArガスに同伴させて、T
CD-GCで分析した。なお、このガス透過試験温度は、300
〜500℃である。
In such a gas permeation test, all of the hollow fibers except the central portion (about 10 mm in length) were closed with a sealing glass, and H 2 gas or N 2 gas was circulated outside the central portion. Pd-A
The gas component that has permeated the g alloy thin film is entrained in Ar gas,
It was analyzed by CD-GC. The gas permeation test temperature is 300
~ 500 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法に用いられる噴霧熱分解装置の概要
図である。
FIG. 1 is a schematic diagram of a spray pyrolysis apparatus used in the method of the present invention.

【図2】実施例2で得られた水素分離膜のガス透過係数
の温度依存特性を示すグラフである。
FIG. 2 is a graph showing the temperature dependence characteristics of the gas permeation coefficient of the hydrogen separation membrane obtained in Example 2.

【符号の説明】[Explanation of symbols]

1 ガラス円筒 2 多孔質セラミックス中空糸 3 二重管バーナー 4 水素ガス導入管 5 邪魔板設置管路 6 酸素ガス導入管 7 超音波噴霧器 8 Pd(NO3)2-AgNO3混合物水溶液1 Glass cylinder 2 Porous ceramic hollow fiber 3 Double-tube burner 4 Hydrogen gas introduction pipe 5 Baffle plate installation pipe line 6 Oxygen gas introduction pipe 7 Ultrasonic atomizer 8 Pd (NO 3 ) 2 -AgNO 3 mixture aqueous solution

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年4月22日[Submission date] April 22, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】 図2には、このようなPd−Ag合金薄
膜を形成させた支持体のガス透過係数の温度依存性が示
されている。Hガス(▲)の透過係数は温度と共に増
加したが、Nガス(●)の場合には温度依存性は認め
られなかった。その分離係数は、300℃では7.3、
400℃では11.8、500℃では24であった。
みに、この500℃のH/N分離係数24における
水素透過係数が8×10−7モル/m・s・Paであ
るのに対し、水素透過速度の大きい有機系膜としてのポ
リイミド膜は、H/N分離係数50での水素透過係
数が6×10−8モル/m・s・Paであるのと比較
して、本発明のPd−Ag合金薄膜の方が、耐熱性、耐
薬品性だけではなく、水素分離特性の点でもすぐれてい
ることが分かる。
FIG. 2 shows the temperature dependence of the gas permeation coefficient of the support on which such a Pd-Ag alloy thin film is formed. The permeability coefficient of H 2 gas (▲) increased with temperature, but no temperature dependence was observed in the case of N 2 gas (●). Its separation factor is 7.3 at 300 ° C,
It was 11.8 at 400 ° C and 24 at 500 ° C. Cause
In addition , while the hydrogen permeation coefficient at the H 2 / N 2 separation coefficient of 24 at 500 ° C. is 8 × 10 −7 mol / m 2 · s · Pa, the polyimide as an organic membrane having a high hydrogen permeation rate. The membrane has a hydrogen permeation coefficient of 6 × 10 −8 mol / m 2 · s · Pa at an H 2 / N 2 separation coefficient of 50, as compared with the Pd—Ag alloy thin film of the present invention. It can be seen that not only heat resistance and chemical resistance but also hydrogen separation characteristics are excellent.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正書】[Procedure amendment]

【提出日】平成5年6月4日[Submission date] June 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】 多孔質セラミックス中空糸は、その表面
にゾル−ゲル法によるγ−アルミナ薄膜を形成させて用
いることが好ましい。ゾル−ゲル法によるγ−アルミナ
薄膜の形成は、アルミニウムイソプロポキシドを加水分
解後、酸で解こうすることにより調製したベーマイトゾ
ルを用い、これを多孔質セラミックス中空糸の外側にデ
イップコーティング(引上げ速度0.5〜2.0mm/
秒)することによりベーマイトゲル膜を形成させ、これ
を室温下で一夜乾燥させた後、約400〜800℃で約
5〜10時間焼成する操作を、1回以上、一般には複数
回くり返すことにより行われる。
The porous ceramic hollow fiber is preferably used after forming a γ-alumina thin film by a sol-gel method on its surface. Formation of a γ-alumina thin film by the sol-gel method is performed by hydrolyzing aluminum isopropoxide.
After thawing, boehmitezo prepared by leaching with acid
The outer surface of the porous ceramic hollow fiber.
Yip coating (Pulling speed 0.5-2.0 mm /
Second) to form a boehmite gel film.
At room temperature overnight and then at about 400-800 ℃
The operation of firing for 5 to 10 hours is performed once or more, and generally, a plurality of times.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】 即ち、容器内のPd(NO−Ag
NO混合物水溶液8は、超音波噴霧器7中に導かれ、
そこで霧状にされた後、管6より導入された酸素と共
に、邪魔板を設置した管路5で十分に混合され、二重管
バーナー3の内管部に導入される。バーナー外管側から
管路4からの水素を導入し、バーナー出口でH−O
火炎を形成させて、硝酸塩混合物を噴霧状のまま熱分解
させる。二重管バーナー3の周囲は、ガラス円筒1等に
より囲われており、その側壁の対称位置に設けられた貫
通孔に多孔質セラミックス中空糸2を通し、中空糸が火
炎中に入るような位置にガラス円筒1を設置すると、火
炎中で熱分解して生じた合金は多孔質セラミックス中空
糸の外表面上に担持され、合金薄膜を形成させる。この
際、多孔質セラミックス中空糸に回転運動と並進運動
を加えると、中空糸の外表面上に均一な合金薄膜が形成
される。
That is, Pd (NO 3 ) 2 -Ag in the container
The NO 3 mixture aqueous solution 8 is introduced into the ultrasonic atomizer 7,
Then, after being atomized, it is sufficiently mixed with the oxygen introduced from the pipe 6 in the pipe line 5 in which the baffle plate is installed, and then introduced into the inner pipe portion of the double pipe burner 3. Hydrogen is introduced from the conduit 4 from the outer side of the burner, and H 2 —O 2 is introduced at the burner outlet.
A flame is formed and the nitrate mixture is pyrolyzed in the form of a spray. The circumference of the double-tube burner 3 is surrounded by the glass cylinder 1 and the like, and the porous ceramic hollow fiber 2 is passed through through holes provided at symmetrical positions on the side wall thereof so that the hollow fiber enters the flame. When the glass cylinder 1 is installed in, the alloy generated by thermal decomposition in a flame is carried on the outer surface of the porous ceramic hollow fiber to form an alloy thin film. At this time, when a rotational motion and a translational motion are applied to the porous ceramic hollow fiber, a uniform alloy thin film is formed on the outer surface of the hollow fiber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 英明 福岡県福岡市東区箱崎6−10−1 九州大 学工学部内 (72)発明者 草壁 克己 福岡県福岡市東区箱崎6−10−1 九州大 学工学部内 (72)発明者 李 仲岩 福岡県福岡市東区箱崎6−10−1 九州大 学工学部内 (72)発明者 山木 健之 福岡県福岡市東区箱崎6−10−1 九州大 学工学部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Maeda 6-10-1 Hakozaki, Higashi-ku, Fukuoka-shi, Fukuoka Kyushu University Faculty of Engineering (72) Katsumi Kusakabe 6-10-1 Hakozaki, Higashi-ku, Fukuoka-shi, Fukuoka Kyushu Univ. Faculty of Science and Engineering (72) Inventor Lee Nakaiwa 6-10-1 Hakozaki, Higashi-ku, Fukuoka-shi, Fukuoka Kyushu Univ. Faculty of Science and Engineering (72) Takeyuki Yamaki 6-10-1 Hakozaki, Higashi-ku, Fukuoka-shi, Fukuoka Kyushu Univ. Within

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多孔質セラミックス中空糸外表面上に、
Pd(NO3)2-AgNO3混合物水溶液の噴霧熱分解物たるPd-Ag
合金薄膜を堆積させることを特徴とする水素分離膜の製
造法。
1. A porous ceramic hollow fiber outer surface,
Pd (NO 3) 2 -AgNO 3 serving mixture spray pyrolysis of aqueous Pd-Ag
A method for producing a hydrogen separation membrane, which comprises depositing an alloy thin film.
【請求項2】 請求項1記載のPd-Ag合金薄膜上に、更
にAgNO3水溶液の噴霧熱分解物を堆積させることを特徴
とする水素分離膜の製造法。
2. A method for producing a hydrogen separation membrane, which further comprises depositing a spray pyrolyzate of an AgNO 3 aqueous solution on the Pd—Ag alloy thin film according to claim 1.
【請求項3】 多孔質セラミックス中空糸として表面に
ゾル-ゲル法によるγ-アルミナ薄膜を形成させたものが
用いられる請求項1または2記載の水素分離膜の製造
法。
3. The method for producing a hydrogen separation membrane according to claim 1, wherein a porous ceramic hollow fiber having a surface on which a γ-alumina thin film is formed by a sol-gel method is used.
JP06463893A 1993-03-01 1993-03-01 Manufacturing method of hydrogen separation membrane Expired - Fee Related JP3246047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06463893A JP3246047B2 (en) 1993-03-01 1993-03-01 Manufacturing method of hydrogen separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06463893A JP3246047B2 (en) 1993-03-01 1993-03-01 Manufacturing method of hydrogen separation membrane

Publications (2)

Publication Number Publication Date
JPH06254361A true JPH06254361A (en) 1994-09-13
JP3246047B2 JP3246047B2 (en) 2002-01-15

Family

ID=13264018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06463893A Expired - Fee Related JP3246047B2 (en) 1993-03-01 1993-03-01 Manufacturing method of hydrogen separation membrane

Country Status (1)

Country Link
JP (1) JP3246047B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076212C (en) * 1996-05-08 2001-12-19 中国科学院大连化学物理研究所 Method for preparation of extra-thin palladium-ceramic compound film
US6585033B2 (en) 2001-02-19 2003-07-01 Fukuda Metal Foil & Powder Co., Ltd. Process for producing vanadium alloy foil
WO2017104569A1 (en) * 2015-12-14 2017-06-22 日東電工株式会社 Support for forming hydrogen discharge film, and laminated hydrogen discharge film
WO2017104570A1 (en) * 2015-12-14 2017-06-22 日東電工株式会社 Support for forming hydrogen discharge film, and laminated hydrogen discharge film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076212C (en) * 1996-05-08 2001-12-19 中国科学院大连化学物理研究所 Method for preparation of extra-thin palladium-ceramic compound film
US6585033B2 (en) 2001-02-19 2003-07-01 Fukuda Metal Foil & Powder Co., Ltd. Process for producing vanadium alloy foil
WO2017104569A1 (en) * 2015-12-14 2017-06-22 日東電工株式会社 Support for forming hydrogen discharge film, and laminated hydrogen discharge film
WO2017104570A1 (en) * 2015-12-14 2017-06-22 日東電工株式会社 Support for forming hydrogen discharge film, and laminated hydrogen discharge film

Also Published As

Publication number Publication date
JP3246047B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
US4689150A (en) Separation membrane and process for manufacturing the same
US5782959A (en) Process for preparing a composite inorganic membrane for hydrogen separation
Xomeritakis et al. CVD synthesis and gas permeation properties of thin palladium/alumina membranes
TWI424871B (en) A gas separation membrane comprising a substrate with a layer of coated inorganic oxide particles and an overlayer of a gas-selective material, and its manufacture and use
Morooka et al. Formation of hydrogen-permselective SiO2 membrane in macropores of α-alumina support tube by thermal decomposition of TEOS
US5415891A (en) Method for forming metal-oxide-modified porous ceramic membranes
CN1051899A (en) The preparation method who is used for chemical vapor deposited vaporized reactants
EP1720634A2 (en) Hydrogen-selective silica-based membrane
US5952421A (en) Synthesis of preceramic polymer-stabilized metal colloids and their conversion to microporous ceramics
US5541147A (en) Immobilized free molecule aerosol catalytic reactor
US20030003233A1 (en) Method for preparation of thermally and mechanically stable metal/porous substrate composite membranes
JP3217447B2 (en) Membrane reactor for dehydrogenation reaction
JPH06254361A (en) Production of hydrogen separation membrane
JPS61158877A (en) Manufacture of ceramic porous membrane
US5310414A (en) Method of forming separation membranes
JPH04349926A (en) Hydrogen gas separation membrane
JP3117276B2 (en) Hydrogen separation membrane
JPS61209005A (en) Separation membrane and its preparation
JPH0366271B2 (en)
JPH06170188A (en) Gas separation membrane and production thereof
KR100297811B1 (en) Manufacturing method of inorganic composite membrane
KR100358078B1 (en) Silica stabilized palladium composite membranes and their preparation methods
JP3373006B2 (en) Manufacturing method of hydrogen separation membrane
US20070082128A1 (en) Method for coating a substrate
JP2642860B2 (en) Inorganic xerogel membrane, method for producing the same, and gas separation membrane comprising inorganic xerogel membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091102

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees