JPH0366271B2 - - Google Patents

Info

Publication number
JPH0366271B2
JPH0366271B2 JP56092965A JP9296581A JPH0366271B2 JP H0366271 B2 JPH0366271 B2 JP H0366271B2 JP 56092965 A JP56092965 A JP 56092965A JP 9296581 A JP9296581 A JP 9296581A JP H0366271 B2 JPH0366271 B2 JP H0366271B2
Authority
JP
Japan
Prior art keywords
optical fiber
coating layer
temperature
spinning
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56092965A
Other languages
Japanese (ja)
Other versions
JPS57209845A (en
Inventor
Motohiro Nakahara
Nobuo Inagaki
Kazunori Matsui
Tooru Yamanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56092965A priority Critical patent/JPS57209845A/en
Publication of JPS57209845A publication Critical patent/JPS57209845A/en
Publication of JPH0366271B2 publication Critical patent/JPH0366271B2/ja
Priority to JP5121175A priority patent/JPH0648781A/en
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、光フアイバの表面にカーボンの被覆
層を形成する光フアイバの製造方法に関し、特に
光フアイバの高速紡糸と併用して好適である。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing an optical fiber in which a carbon coating layer is formed on the surface of the optical fiber, and is particularly suitable for use in combination with high-speed spinning of the optical fiber. .

<従来の技術> 光フアイバは製造時やその後の取り扱いの過程
で表面に微細なクラツクが発生し、比較的小さな
応力が負荷した場合でもたちまち破断してしまう
欠点がある。又、破断しないまでも長時間に亙る
使用によつて水分がクラツク内に浸入し、光フア
イバの強度が次第に低下して来る経時劣化のある
ことが一般に知られている。このようなことか
ら、従来では紡糸直後の光フアイバの表面に合成
樹脂の被覆を施して光フアイバの表面にクラツク
が入らないように配慮しているものの、これでも
完全にクラツクの発生を防止することは不可能と
なつている。しかも、被覆材として現在使われて
いる合成樹脂は、わずかながらも透水性、透湿性
があるため、通信用光フアイバのように極めて長
期間高信頼性を要求されるものでは好ましくない
特性であり、何らかの改善が必要である。そこ
で、紡糸直後の光フアイバの表面に透水性、透湿
性が本質的に全くない無機化合物或いは無機物の
薄膜を形成したのち、合成樹脂の被覆を施すよう
にしたものが開発され、長期信頼性の向上に役立
つことが期待されている。
<Prior Art> Optical fibers have the disadvantage that minute cracks occur on their surfaces during manufacturing and subsequent handling, and they quickly break even when a relatively small stress is applied to them. Furthermore, it is generally known that even if the optical fiber does not break, water may enter the crack after long-term use, causing deterioration over time, which gradually reduces the strength of the optical fiber. For this reason, in the past, the surface of the optical fiber was coated with a synthetic resin immediately after spinning to prevent cracks from forming on the surface of the optical fiber, but even this method does not completely prevent the occurrence of cracks. It has become impossible. Furthermore, the synthetic resins currently used as coating materials have water permeability and moisture permeability, although only slightly, which is an undesirable characteristic for products that require extremely long-term reliability, such as communication optical fibers. , some improvement is needed. Therefore, a method has been developed in which a thin film of an inorganic compound or an inorganic substance with essentially no water permeability or moisture permeability is formed on the surface of the optical fiber immediately after spinning, and then a synthetic resin coating is applied. It is hoped that this will help improve.

<発明が解決しようとする課題> しかし、この無機化合物或いは無機物の薄膜を
形成する手段として従来ではCVD法(化学気相
沈積法)が採用或いは考えられているため、設備
が大がかりになると共に反応管を紡糸炉と被覆用
の合成樹脂が貯えられたダイスとの間に設置しな
ければならず、技術的にも困難で不便な点が多か
つた。
<Problems to be Solved by the Invention> However, CVD (chemical vapor deposition) has been adopted or considered as a method for forming thin films of inorganic compounds or inorganic substances, which requires large-scale equipment and is difficult to react to. A tube had to be installed between the spinning furnace and the die storing the synthetic resin for coating, which was technically difficult and inconvenient.

一方、近年促進されつつある光フアイバの高速
紡糸化に伴つて高温の光フアイバが充分温度の下
がらないうちに被覆用の合成樹脂を貯えたダイス
内へ送給されることとなり、光フアイバに対する
合成樹脂の接着性が芳しくなくなる弊害が表われ
て来ている。従つて、紡糸後の光フアイバの温度
が高温となるため、光フアイバが合成樹脂を貯え
たダイスへ到達する前に積極的にその温度を下げ
る作業を行なわなければならず、極めて不合理で
ある。
On the other hand, as high-speed spinning of optical fibers has been promoted in recent years, high-temperature optical fibers are fed into dies storing synthetic resin for coating before the temperature has sufficiently decreased. The problem of poor adhesion of the resin is beginning to appear. Therefore, since the temperature of the optical fiber becomes high after spinning, it is necessary to actively lower the temperature before the optical fiber reaches the die storing the synthetic resin, which is extremely unreasonable. .

本発明は上述した観点から、非常に簡単な設備
で無機物の被覆を施すことができると共に、光フ
アイバが合成樹脂を貯えたダイスへ到達する前に
積極的にその温度を下げることができ、しかも高
速紡糸を何ら不都合なく行ない得るようにした光
フアイバの製造方法を提供することを目的とす
る。
From the above-mentioned viewpoints, the present invention makes it possible to coat the optical fiber with an inorganic material using very simple equipment, and to actively lower the temperature of the optical fiber before it reaches the die storing the synthetic resin. It is an object of the present invention to provide a method for manufacturing an optical fiber that allows high-speed spinning to be performed without any inconvenience.

<課題を解決するための手段> 前記目的を達成するために本発明者らは鋭意研
究を重ねた結果、例えばオレフイン等の化合物が
セ氏数百度で容易に分解してカーボンを形成する
ことに着目し、このような低温でカーボンとなる
ガス状原料中に高温の光フアイバを通せば、酸素
を伴わないので吸熱化学反応により光フアイバの
表面にカーボンが付着すると同時に光フアイバが
冷却され、上述した目的を達成し得る一石二鳥の
効果があることを見い出した。
<Means for Solving the Problems> In order to achieve the above object, the present inventors have conducted intensive research and have focused on the fact that compounds such as olefins easily decompose at several hundred degrees Celsius to form carbon. However, if a high-temperature optical fiber is passed through such a gaseous raw material that becomes carbon at low temperatures, carbon is deposited on the surface of the optical fiber due to an endothermic chemical reaction since it does not involve oxygen, and the optical fiber is cooled at the same time. We have discovered that this method has the effect of killing two birds with one stone by achieving our goals.

つまり本発明の構成は、紡糸直後の光フアイバ
であつて、所定の温度に温度制御されている光フ
アイバを、カーボンの被覆層となる原料ガス雰囲
気中を通過させ、前記光フアイバの熱を利用して
その表面で前記原料ガスを吸熱化学反応させ、当
該光フアイバの表面に前記カーボンの被覆層を付
着形成し、次いで合成樹脂塗布を行うことを特徴
とするものである。
In other words, the structure of the present invention is to pass an optical fiber that has just been spun, whose temperature is controlled to a predetermined temperature, through a raw material gas atmosphere that will become a carbon coating layer, and to utilize the heat of the optical fiber. The method is characterized in that the raw material gas is subjected to an endothermic chemical reaction on the surface of the optical fiber, the carbon coating layer is deposited on the surface of the optical fiber, and then a synthetic resin is applied.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明でセ氏数百度程度でカーボンとなり得る
原料ガスとしては、パラフイン、オレフイン、芳
香族炭化水素化合物等の酸素が介在せずに光フア
イバ表面で吸熱化学反応させるものが挙げられ
る。また、光フアイバの温度はその紡糸速度に大
きく依存するため、反応温度が比較的高い原料ガ
スや光フアイバの紡糸速度が遅い場合には、紡糸
直後の光フアイバをレーザ光やタングステンラン
プや電子線等の外部熱源を利用して補助的に加熱
してやることが望ましい。このように光フアイバ
を補助的に加熱しても、原料ガス雰囲気中を通過
する間に前記カーボンの被覆層となる原料ガスの
分解に基づく脱水素反応にかかる吸熱化学反応に
より必然的に吸熱される。このため次工程での被
覆材となる合成樹脂が貯えられたダイスへ到達す
るまでには充分温度が下がつており、合成樹脂の
接着性が悪化するような虞は全くない。原料ガス
雰囲気における光フアイバの表面では、紡糸直後
のその熱により原料ガスが分解して吸熱化学反応
により炭素等の無機物が光フアイバの表面に付着
し、終には被覆層となるのである。この場合、被
覆層を多層とすることも当然可能である。
In the present invention, raw material gases that can be converted into carbon at temperatures of about several hundred degrees Celsius include those that undergo an endothermic chemical reaction on the surface of the optical fiber without the intervention of oxygen, such as paraffin, olefin, and aromatic hydrocarbon compounds. In addition, since the temperature of the optical fiber greatly depends on its spinning speed, if the reaction temperature is relatively high for the raw material gas or the spinning speed of the optical fiber is slow, the optical fiber immediately after spinning can be heated with a laser beam, a tungsten lamp, or an electron beam. It is desirable to provide supplementary heating using an external heat source such as Even if the optical fiber is heated auxiliary in this way, heat is inevitably absorbed due to the endothermic chemical reaction involved in the dehydrogenation reaction based on the decomposition of the raw material gas that forms the carbon coating layer while passing through the raw material gas atmosphere. Ru. Therefore, by the time the synthetic resin that will become the coating material in the next step reaches the stored die, the temperature has dropped sufficiently, and there is no risk that the adhesiveness of the synthetic resin will deteriorate. On the surface of the optical fiber in the raw material gas atmosphere, the raw material gas is decomposed by the heat immediately after spinning, and inorganic substances such as carbon adhere to the surface of the optical fiber due to an endothermic chemical reaction, eventually forming a coating layer. In this case, it is naturally possible to make the coating layer multilayer.

<実施例> 以下、本発明による光フアイバの製造方法の一
実施例についてその作業原理を表わす図面を参照
しながら説明すると、キヤリアガスとしてヘリウ
ムガスボンベ11からヘリウムガスをバプラ12
内に貯溜されたベンゼン(液体)13へ吹き込
み、このベンゼン13のガス14をノズル15か
ら紡糸炉16により光フアイバ用母材17を所定
の径に紡糸した直後の光フアイバ18の表面に吹
き付ける。ガス14は光フアイバ18の紡糸時に
おける余熱によりその表面で分解し、脱水素反応
の結果重合して水素をほとんど含まぬカーボンと
なつて光フアイバ18の表面に付着堆積し、被覆
層を形成する。この場合、液状ではないガス14
によつてカーボンの被覆層が均一の厚みで光フア
イバ18の表面に形成できる利点がある。この吸
熱化学反応により光フアイバ18は吸熱されて温
度が低下し、被覆用の熱硬化性樹脂19が貯溜さ
れたダイス20へと送給されるが、このダイス2
0を通過する間に熱硬化性樹脂19が光フアイバ
18の表面に付着し、これを焼き付け炉21によ
り硬化定着させる。この場合、吸熱化学反応によ
るカーボンの皮覆層を形成することで光フアイバ
18が充分低温となつているため、熱硬化性樹脂
19の接着性が高速紡糸を行なつた場合でも悪化
するような虞はない。
<Example> Hereinafter, an example of the optical fiber manufacturing method according to the present invention will be described with reference to drawings showing the working principle. Helium gas is supplied as a carrier gas from a helium gas cylinder 11 to a bubbler 12
The gas 14 of benzene 13 is blown from a nozzle 15 onto the surface of an optical fiber 18 immediately after spinning an optical fiber base material 17 to a predetermined diameter in a spinning furnace 16. The gas 14 decomposes on the surface of the optical fiber 18 due to residual heat during spinning, and as a result of a dehydrogenation reaction, it polymerizes and becomes carbon containing almost no hydrogen, which adheres and deposits on the surface of the optical fiber 18 to form a coating layer. . In this case, the non-liquid gas 14
This has the advantage that a carbon coating layer with a uniform thickness can be formed on the surface of the optical fiber 18. Due to this endothermic chemical reaction, the optical fiber 18 absorbs heat and its temperature decreases, and is fed to the die 20 in which the thermosetting resin 19 for coating is stored.
Thermosetting resin 19 adheres to the surface of optical fiber 18 while passing through zero, and is hardened and fixed in baking furnace 21. In this case, the optical fiber 18 is kept at a sufficiently low temperature by forming the carbon coating layer through an endothermic chemical reaction, so that the adhesiveness of the thermosetting resin 19 will not deteriorate even when high-speed spinning is performed. There is no risk.

本実施例では、何らかの理由で光フアイバ18
の温度が低かつたり或いは原料ガスの反応温度が
高い原料ガスを使う際に補助的に光フアイバ18
を加熱する補助熱源22と光フアイバ18の温度
を検出して必要に応じて補助熱源22の運転を制
御する温度検出器23とを紡糸炉16の直下に設
置してあるが、場合によつてはこれらを設けなく
てもよい。
In this embodiment, for some reason, the optical fiber 18
Optical fiber 18 is used as an auxiliary material when using a raw material gas whose temperature is low or whose reaction temperature is high.
An auxiliary heat source 22 for heating the optical fiber 18 and a temperature detector 23 for detecting the temperature of the optical fiber 18 and controlling the operation of the auxiliary heat source 22 as necessary are installed directly below the spinning furnace 16. does not need to be provided.

又、本実施例ではガス14をノズル15により
光フアイバ18の表面に吹き付けるようにしてい
るが、このガス14の雰囲気を光フアイバ18の
周囲に形成できるものであれば、その手段はどの
ようなものでもよいことは当然である。
Further, in this embodiment, the gas 14 is sprayed onto the surface of the optical fiber 18 by the nozzle 15, but any means can be used as long as it can create an atmosphere of the gas 14 around the optical fiber 18. Of course, it can be anything.

尚、本実施例においてはガス14の光フアイバ
への吹きつけがオープン状態となつているので、
部屋を設けた場合にススが浮遊する結果、光フア
イバ表面に該ススが付着するというおそれがな
い。また、この場合は装置もコンパクトにでき
る。
In this example, since the gas 14 is blown onto the optical fiber in an open state,
When a room is provided, there is no fear that soot will float and adhere to the surface of the optical fiber. Moreover, in this case, the device can also be made compact.

<発明の効果> このように本発明の光フアイバの製造方法によ
ると、高速紡糸による光フアイバの余熱を利用し
て原料ガスを光フアイバの表面で吸熱化学反応さ
せ、カーボンの被覆層を光フアイバの表面に形成
させると共にこの吸熱化学反応により光フアイバ
の温度を下げるようにしているため、合成樹脂の
接着性が高速紡糸でも低下する虞がなく、信頼性
の高い光フアイバをコンパクトに高速紡糸するこ
とができる。
<Effects of the Invention> As described above, according to the optical fiber manufacturing method of the present invention, the raw material gas is subjected to an endothermic chemical reaction on the surface of the optical fiber using the residual heat of the optical fiber due to high-speed spinning, and the carbon coating layer is formed on the optical fiber. Since the temperature of the optical fiber is lowered by this endothermic chemical reaction, there is no risk that the adhesion of the synthetic resin will decrease even during high-speed spinning, and highly reliable optical fibers can be spun compactly and at high speed. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明による光フアイバの製造方法の一
実施例の概念図である。 図面中、13はベンゼン(液状)、14はガス、
15はノズル、16は紡糸炉、18は光フアイ
バ、19は熱硬化性樹脂、20はダイス、22は
補助熱源である。
The drawing is a conceptual diagram of an embodiment of the optical fiber manufacturing method according to the present invention. In the drawing, 13 is benzene (liquid), 14 is gas,
15 is a nozzle, 16 is a spinning furnace, 18 is an optical fiber, 19 is a thermosetting resin, 20 is a die, and 22 is an auxiliary heat source.

Claims (1)

【特許請求の範囲】 1 紡糸直後の光フアイバであつて、所定の温度
に温度制御されている光フアイバを、カーボンの
被覆層となる原料ガス雰囲気中を通過させ、前記
光フアイバの熱を利用してその表面で前記原料ガ
スを吸熱化学反応させ、当該光フアイバの表面に
前記カーボンの被覆層を付着形成し、次いで合成
樹脂塗布を行うことを特徴とする光フアイバの製
造方法。 2 光フアイバの表面に付着形成されるカーボン
の被覆層が多層であることを特徴とする特許請求
の範囲第1項に記載した光フアイバの製造方法。
[Claims] 1. An optical fiber that has just been spun and whose temperature is controlled to a predetermined temperature is passed through a raw material gas atmosphere that will become a carbon coating layer, and the heat of the optical fiber is utilized. A method for producing an optical fiber, comprising: causing the raw material gas to undergo an endothermic chemical reaction on the surface of the optical fiber, depositing the carbon coating layer on the surface of the optical fiber, and then coating the optical fiber with a synthetic resin. 2. The method for manufacturing an optical fiber according to claim 1, wherein the carbon coating layer formed on the surface of the optical fiber is multilayered.
JP56092965A 1981-06-18 1981-06-18 Manufacture of optical fiber Granted JPS57209845A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56092965A JPS57209845A (en) 1981-06-18 1981-06-18 Manufacture of optical fiber
JP5121175A JPH0648781A (en) 1981-06-18 1993-05-24 Production of optical fiber for communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP56092965A JPS57209845A (en) 1981-06-18 1981-06-18 Manufacture of optical fiber
JP5121175A JPH0648781A (en) 1981-06-18 1993-05-24 Production of optical fiber for communication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5121175A Division JPH0648781A (en) 1981-06-18 1993-05-24 Production of optical fiber for communication

Publications (2)

Publication Number Publication Date
JPS57209845A JPS57209845A (en) 1982-12-23
JPH0366271B2 true JPH0366271B2 (en) 1991-10-16

Family

ID=26434329

Family Applications (2)

Application Number Title Priority Date Filing Date
JP56092965A Granted JPS57209845A (en) 1981-06-18 1981-06-18 Manufacture of optical fiber
JP5121175A Pending JPH0648781A (en) 1981-06-18 1993-05-24 Production of optical fiber for communication

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5121175A Pending JPH0648781A (en) 1981-06-18 1993-05-24 Production of optical fiber for communication

Country Status (1)

Country Link
JP (2) JPS57209845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073033A (en) * 2014-07-06 2014-10-01 杨发祥 High-wear-resistant high-hardness nanoscale titanium crystal coating liquid and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485122A (en) * 1983-03-23 1984-11-27 International Telephone And Telegraph Corporation Method of an arrangement for coating optical fibers with metallic materials
US4599098A (en) * 1984-02-13 1986-07-08 Lightwave Technologies, Inc. Optical fiber and method of producing same
US5000541A (en) * 1987-09-18 1991-03-19 At&T Bell Laboratories Hermetically sealed optical fibers
EP0308143B1 (en) * 1987-09-18 1993-11-24 AT&T Corp. Hermetically sealed optical fibers
US5242477A (en) * 1989-10-19 1993-09-07 At&T Bell Laboratories Apparatus for coating optical fibers
US5147432A (en) * 1989-10-19 1992-09-15 At&T Bell Laboratories Methods of and apparatus for coating optical fibers
US5199993A (en) * 1989-10-19 1993-04-06 At&T Bell Laboratories Methods of and apparatus for coating optical fibers
US5698177A (en) * 1994-08-31 1997-12-16 University Of Cincinnati Process for producing ceramic powders, especially titanium dioxide useful as a photocatalyst
KR100347434B1 (en) * 2000-09-28 2002-08-03 김인하 Reactor and method for auto controling temperature of reactor
JP5310126B2 (en) * 2009-03-10 2013-10-09 日本電気硝子株式会社 Linear glass article, manufacturing method and manufacturing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147330A (en) * 1975-06-13 1976-12-17 Furukawa Electric Co Ltd:The Production method of optical fibre
US4183621A (en) * 1977-12-29 1980-01-15 International Telephone And Telegraph Corporation Water resistant high strength fibers
JPS5575945A (en) * 1978-11-24 1980-06-07 Yokogawa Hewlett Packard Ltd Optical fiber coating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147330A (en) * 1975-06-13 1976-12-17 Furukawa Electric Co Ltd:The Production method of optical fibre
US4183621A (en) * 1977-12-29 1980-01-15 International Telephone And Telegraph Corporation Water resistant high strength fibers
JPS5575945A (en) * 1978-11-24 1980-06-07 Yokogawa Hewlett Packard Ltd Optical fiber coating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073033A (en) * 2014-07-06 2014-10-01 杨发祥 High-wear-resistant high-hardness nanoscale titanium crystal coating liquid and preparation method thereof

Also Published As

Publication number Publication date
JPH0648781A (en) 1994-02-22
JPS57209845A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
DE68922476T2 (en) Process for the production of a carbon-coated optical fiber.
US4042006A (en) Pyrolytic process for producing a band-shaped metal layer on a substrate
JPH0366271B2 (en)
JP2975642B2 (en) Hermetic coated fiber and manufacturing method thereof
US4610896A (en) Method for repairing a multilayer coating on a carbon-carbon composite
US4518628A (en) Hermetic coating by heterogeneous nucleation thermochemical deposition
EP0095729A2 (en) Hermetic coating by heterogeneous nucleation thermochemical deposition
US5037464A (en) Method of cleaning and carbon coating optical fiber
US5246746A (en) Method for forming hermetic coatings for optical fibers
US4790625A (en) Method of applying hermetic coating on optical fiber
JPS6120915A (en) Hermetic coating of optical fiber and formation thereof
US4332751A (en) Method for fabricating thin films of pyrolytic carbon
US3861953A (en) Node-free boron composite filament
GB2117754A (en) Continuous process for manufacture of optical fibre waveguides
CA1262307A (en) Aluminum oxide optical fiber coating
JPH06171987A (en) Production of carbon coated optical fiber
JPH0312345A (en) Production of hermetically-coated optical fiber
JP2796167B2 (en) Optical fiber manufacturing equipment
JP2697916B2 (en) Method for producing hermetic coated optical fiber
JP2710402B2 (en) Optical fiber
JPH02160644A (en) Production of optical fiber
JPH02263741A (en) Production of carbon-coated optical fiber
JP2796166B2 (en) Optical fiber manufacturing equipment
JP3039948B2 (en) Optical fiber manufacturing method
JPH0248436A (en) Carbon coating process for optical fiber