CH593133A5 - Hard coating of carbides or (carbo)nitrides - applied by direct thermal reaction of iron, boron, silicon, etc., with di- or triazine cpd. - Google Patents

Hard coating of carbides or (carbo)nitrides - applied by direct thermal reaction of iron, boron, silicon, etc., with di- or triazine cpd.

Info

Publication number
CH593133A5
CH593133A5 CH170174A CH170174A CH593133A5 CH 593133 A5 CH593133 A5 CH 593133A5 CH 170174 A CH170174 A CH 170174A CH 170174 A CH170174 A CH 170174A CH 593133 A5 CH593133 A5 CH 593133A5
Authority
CH
Switzerland
Prior art keywords
sep
alkyl
halogen
triazine
carbon atoms
Prior art date
Application number
CH170174A
Other languages
German (de)
Original Assignee
Ciba Geigy Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy Ag filed Critical Ciba Geigy Ag
Priority to CH170174A priority Critical patent/CH593133A5/en
Priority to CA219,397A priority patent/CA1053547A/en
Priority to SE7501313A priority patent/SE410622B/en
Priority to FR7503701A priority patent/FR2273078B1/fr
Priority to DE19752505007 priority patent/DE2505007C3/en
Priority to AT92175*#A priority patent/AT334708B/en
Priority to JP50016169A priority patent/JPS5750869B2/ja
Priority to GB5349/75A priority patent/GB1488948A/en
Publication of CH593133A5 publication Critical patent/CH593133A5/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Inorg. substrates are provided with a coating layer of carbides-, nitrides and or carbonitrides of Fe-, B-, Si or gp. 4-6 transition metals, by direct thermal reaction of Fe, B, Si or gp. 4-6 transition metals, opt. with other additives with a C- and N- providing cpd. of formula (in which Y is =N-, =CH- or =C-halogen; one of X1, X2 and X3 = H, halogen, alkyl, -CN, -NR1R2 or -N(R5)-N(R3)(R4) and the other two = (independently) -CN, -NH2, -NR1R2 or -N(R5)-N(R3)(R4); R1, R3 and R4 = (independently) H, (halo)alkyl, cyanoalkyl (alkyl)aminoalkyl or alkenyl; R2=(halo)alkyl, cyanoalkyl, (alkyl)aminoalkyl or alkenylf and R5 = H or alkyl; the alkyl gps. 1-4C, the alkyl part of substd. alkyl gps. has 2-4C and the alkylene gps. have 3 or 4 C). The coatings are applied at relatively moderate temps. (e.g. ca 900 degrees C) and slightly reduced pressures and at high rates of growth to give adherent, smooth coatings.

Description

  

  
 



   Die vorliegende Erfindung betrifft ein Verfahren zum Beschichten von Kohlenstoffmaterialien mit Carbiden, Nitriden und/oder Carbonitriden.



   Es wurde gefunden, dass man auf einfache Weise Kohlenstoffmaterialien mit Carbiden, Nitriden und/oder Carbonitriden des Eisens, Bors, Siliziums oder eines der Übergangsmetalle der Nebengruppen 4-6 des Periodischen Systems durch direkte thermische Einwirkung von Eisen, Bor, Silizium oder einem der Übergangsmetalle der Nebengruppen 4-6 des Periodischen Systems in elementarer Form oder als Verbindung und in Gegenwart einer Kohlenstoff und Stickstoff liefernden Substanz auf das zu überziehende Material, gegebenenfalls in Gegenwart von weiteren Zusätzen, beschichten kann, indem man als Kohlenstoff- und Stickstofflieferanten mindestens eine Verbindung der Formel I
EMI1.1     
 verwendet, worin
Y =N-, =CH- oder =C-Halogen, eines von X1,   X2    und X3 Wasserstoff, Halogen, Alkyl,

   Phenyl,
EMI1.2     


<tb>  <SEP> /R1
<tb> -CN,-Ns <SEP> oder
<tb>  <SEP> R2 <SEP> R4
<tb>  und die beiden anderen unabhängig voneinander Halogen,
EMI1.3     


<tb>  <SEP> R1 <SEP> R3
<tb> -CN,-NH2,-Ns <SEP> oder-NH-Ns
<tb>  <SEP> R2 <SEP> R4
<tb>  darstellen, R1, R3 und R4 unabhängig voneinander Wasserstoff, Alkyl, Halogenalkyl, Cyanalkyl, Aminoalkyl, Alkylaminoalkyl oder Alkenyl und R2 Alkyl, Halogenalkyl, Cyanalkyl, Aminoalkyl, Alkylaminoalkyl oder Alkenyl bedeuten, wobei Alkylreste 1-4, die Alkylteile in substituierten Alkylresten je 2-4 und Alkenylreste je 3 oder 4 Kohlenstoffatome aufweisen.



   Gegenüber bekannten Methoden zeichnet sich das erfindungsgemässe Verfahren vor allem durch seine Einfachheit und Wirtschaftlichkeit aus, indem die zur Bildung der Carbide, Nitride und/oder Carbonitride erforderlichen Elemente Kohlenstoff und Stickstoff sowie gegebenenfalls weitere, den Reaktionsverlauf beeinflussende Elemente, wie Wasserstoff und/ oder Halogen, der Reaktionszone in den gewünschten Mengenverhältnissen in einfacher Weise zugeführt werden können.



  Ferner lassen sich nach dem erfindungsgemässen Verfahren hohe Aufwachsraten und ausgezeichnet haftende, glatte Beschichtungen erzielen, wobei in manchen Fällen eine beträchtliche Verbesserung der Oxydationsbeständigkeit der Kohlen   stoffmaterialien    erreicht wird. Ein weiterer Vorteil besteht darin, dass im allgemeinen bei Normaldruck oder leichtem Unter- oder Überdruck (ca. 700-800 Torr) gearbeitet werden kann, was in vielen Fällen eine Vereinfachung der zur Durchführung der Reaktion benötigten Apparaturen ermöglicht.



   Die Verbindungen der Formel I geben unter den Reaktionsbedingungen Kohlenstoff und Stickstoff sowie gegebenenfalls Wasserstoff und/oder Halogen in reaktionsfähigem Zustand ab.



   Durch X1, X2, X3 bzw. R1, R2, R3 oder R4 dargestellte Alkyl- oder Alkenylreste können geradkettig oder verzweigt sein. Halogen bedeutet Fluor oder Brom, insbesondere jedoch Chlor.



   Beispiele definitionsgemässer Alkylreste X1, X2 oder   X3    sind der Methyl-, Äthyl-, n-Propyl-, Isopropyl-, n-Butyl-, sek.-Butyl und tert.-Butylrest. Als durch X1, X2 oder X3 dargestellte Reste
EMI1.4     


<tb>  <SEP> zR1 <SEP> R3
<tb> oder <SEP> -NH-N= <SEP> kommen
<tb>  <SEP> R2 <SEP> R4
<tb>  beispielsweise die folgenden in Betracht:

  :
EMI1.5     
  
EMI2.1     

Als Verbindungen der Formel I werden solche bevorzugt, worin Y =N- oder =C-Halogen, eines von X1,   X2    und   X3   
EMI2.2     


<tb>  <SEP> R1
<tb> Halogen, <SEP> -NH2, <SEP> -NX <SEP> oder <SEP> -NH-N <SEP> und <SEP> die <SEP> beiden
<tb>  <SEP> R2 <SEP> R4 <SEP> oR1
<tb> anderen <SEP> unabhängig <SEP> voneinander <SEP> Halogen, <SEP> -Ns <SEP> oder
<tb>  <SEP> ,R3 <SEP> R2
<tb> -NH-N <SEP> - <SEP> darstellen, <SEP> wobei <SEP> R1, <SEP> R3 <SEP> und <SEP> R4 <SEP> unabhängig
<tb>  <SEP> oR4
<tb>  voneinander Wasserstoff oder Alkyl mit 1-4 Kohlenstoffatomen und R2 Alkyl mit 1-4 Kohlenstoffatomen oder Alkenyl mit 3 oder 4 Kohlenstoffatomen bedeuten.



   Besonders bevorzugt sind Verbindungen der Formel I, worin Y =N- oder =C-CI und X1, X2 und X3 unabhängig voneinander Chlor oder
EMI2.3     


<tb>  <SEP> ,R1
<tb> -N <SEP> darstellen,
<tb>  <SEP> oR2
<tb>  wobei R1 Wasserstoff oder Alkyl mit 1-4 Kohlenstoffatomen und R2 Alkyl mit 1-4 Kohlenstoffatomen oder Alkenyl mit 3 oder 4 Kohlenstoffatomen bedeuten.



   Die Verbindungen der Formel I sind bekannt oder können auf bekannte Weise hergestellt werden. Als spezifische Verbindungen der Formel I seien genannt:    2,4,5,6-Tetrachlorpyrimidin,    2,4,6-Tribrom- oder Trichlorpyrimidin, 2,4-Dichlorpyrimidin, 2,4-Dichlor-6-methyl-, -6-isopropyl- oder -6-phenylpyrimidin, 2,4-Dibrom-6-cyanpyrimidin, 2-Chlor-4-n-butyl-6-methylamino-pyrimidin, 2   Chlor-4,6-di-äthylamino-pyrimidin,    2-Chlor-4,6-bis-(dimethylamino)-pyrimidin,   2,4,6-Tris-methylamino-pyrimidin,    2-Propyl-4,6-di-isopropylamino-pyrimidin, 2-Chlor-4,6-bis   (ss-cyanäthylamino)-pyrimidin,    2-Chlor-4,6-bis-(ss-brom äthylamino)-pyrimidin, 2,4-Dichlor-6-(ss-di-methylamino äthylamino)-pyrimidin, 2-Chlor-4,6-di-allylamino-pyrimidin,   2-Chlor-4,

   6-di-hydrazino-pyrimidin,    2-Brom-4-äthyl-6-äthylhydrazino-pyrimidin, 2,4,6-Trichlor- oder -Tribrom-s-triazin, 2,4-Dichlor-6-n-butyl-s-triazin, 2,4-Dichlor-6-phenyl-s-triazin,   2-Chlor-4,6-di-äthylamino-s-triazin,    2,4-Dichlor-6-methylamino-, -6-diäthylamino- und -6-di-isopropylamino-striazin, 2-Chlor-4,6-di-methylamino-s-triazin, 2-Chlor-4,6-din-butylamino-s-triazin,   2-Chlor-4,6-bis-(diäthylamino)-    und -(di-isopropylamino)-s-triazin, 2,6-Dichlor-4-(ss-cyanoäthylamino)-s-triazin, 2-Chlor-4-isopropylamino-6-allylamino-striazin, 2,4-Diamino-6-methallylamino-s-triazin, 2,4-Diamino6-cyano-s-triazin, 2-Chlor-4,6-bis-(ss-bromäthylamino)-striazin,   2,4-Dichlor-6-äthylamino-methylamino-s-triazin,    2 Dipropylamino-4,6-di-hydrazino-s-triazin, 2,4-Di-isopropylamino-6-methylhydrazino-s-triazin,

   2,4-Bis-(di-methyl   amino)-6-[N,N-bis-(aminoäthyl)j-hydrnzino-s-tnazin,    2,4,6 Tris-(diäthylamino)-s-triazin, 2,4-Bis-(diäthylamino)-6-dimethylamino-s-triazin,   2,4-Bis-(diäthylamino)-64sopropyl-    amino-s-triazin, 2,4-Bis-(dimethylamino)-6-n-butylamino-striazin.



   Als Übergangsmetalle der Nebengruppen 4-6 des Periodischen Systems kommen im erfindungsgemässen Verfahren beispielsweise Titan, Vanadium, Niob, Tantal, Molybdän, Chrom, Wolfram, Zirkonium und Uran in Betracht. Bevorzugte Elemente sind Eisen, Uran, Tantal, Vanadium und Wolfram, insbesondere jedoch Bor, Silizium und Titan.



   Das Eisen, Bor, Silizium und die Übergangsmetalle der Nebengruppen 4-6 des Periodischen Systems können in an sich beliebiger Form, z. B. in elementarer Form, eingesetzt werden. Zweckmässig verwendet man sie aber in Form von Verbindungen, besonders die definitionsgemässen Übergangsmetalle. Geeignete Verbindungen sind z. B. 

  Hydride, Carbonyle, Carbonylhydride, organometallische Verbindungen und Halogenide, wie Siliziumhydrid (SiH4), Titanhydrid (TiH2), Zirkoniumhydrid (ZrH2), Borane; Chrom-, Molybdän- und Wolframhexacarbonyl, Eisenpentacarbonyl   [Fe(CO)S],      FeH2(CO)4;    Tetraäthyltitan, Tetramethyl- und Tetraäthylsilan, Methyl-dichlorsilan, Trichlorsilan, Methyl-trichlorsilan, Äthyl-trichlorsilan, Trimethylchlorsilan; Bortrichlorid, Siliziumtetrachlorid, Titandibromid, Titantrichlorid, Titantetrachlorid und -tetrabromid, Zirkontetrachlorid, Vanadiumtrichlorid und -tetrachlorid, Niobpentachlorid, Tantalpentachlorid, Chromtrichlorid, Wolframhexachlorid und -hexafluorid, Eisen-II- und Eisen-III-chlorid, Urantetrachlorid und   Uranhexafluorid.     



   Bevorzugt sind die Halogenide, besonders die Chloride, vor allem diejenigen des Bors, Siliziums und der Übergangsmetalle. Ganz besonders bevorzugt sind Bortrichlorid, Siliziumtetrachlorid und Titantetrachlorid.



   Je nach Anwendungszweck und/oder Art der Verbindung der Formel I kann es wünschenswert sein, die Reaktion in Gegenwart von weiteren Zusätzen, wie Wasserstoff, Chlorwasserstoff, atomarem oder molekularem Stickstoff oder weiteren, unter den Reaktionsbedingungen Stickstoff und/oder Kohlenstoff abgebenden Verbindungen vorzunehmen. Diese Stoffe bzw. Verbindungen können zur Bildung der Carbide, Nitride oder Carbonitride beitragen oder das Gleichgewicht der Bildungsreaktion mehr zu den Nitriden oder den Carbiden hin verschieben. Derartige zusätzliche, unter den Reaktionsbedingungen Stickstoff und/oder Kohlenstoff abgebende Verbindungen sind z. B. Methan, Äthan, n-Butan, N-Methylamin, N,N-Diäthylamin, Äthylendiamin, Benzol und Ammoniak.



   Die erfindungsgemässe Beschichtung der Kohlenstoffmaterialien mit Carbiden, Nitriden und/oder Carbonitriden kann im Rahmen der Definition nach beliebigen, an sich bekannten Methoden vorgenommen werden.



   Eines der wichtigsten Verfahren ist die chemische Abscheidung aus der Gasphase, auch CVD-Verfahren (Chemical Vapour Deposition) genannt. Die Reaktion in der Gasphase kann unter Zufuhr von Wärme- oder Strahlungsenergie durchgeführt werden. Bei diesem Verfahren werden üblicherweise das Eisen, Bor, Silizium oder die Übergangsmetalle und die Verbindung der Formel I in Form gasförmiger Verbindungen eingesetzt. Die Reaktionstemperaturen liegen im allgemeinen zwischen etwa 600 und   1500     C, bevorzugt zwischen 800 und   12000 C.   



   Als Reduktionsmittel wird gegebenenfalls Wasserstoff verwendet. In gewissen Fällen kann es auch vorteilhaft sein, für den Transport der Ausgangsstoffe in die Reaktionszone ein Trägergas, wie Argon, zu verwenden.



   Gemäss einer anderen Methode können die zu beschichtenden Kohlenstoffmaterialien auch in Stoffgemische, z. B.



  Pulvergemische, eingehüllt bzw. mit Stoffen vermischt und gegebenenfalls verpresst werden, welche sämtliche oder - vorzugsweise - einen Teil der zur Bildung der Carbide, Nitride oder Carbonitride erforderlichen Ausgangsstoffe enthalten.



  Anschliessend wird das Ganze bevorzugt auf Temperaturen zwischen 500 und   1200     C erhitzt, und zwar je nach Zusammensetzung des Stoffgemisches in Gegenwart der dem Stoffgemisch noch fehlenden Ausgangsstoffe, d. h. in Gegenwart einer gasförmigen Verbindung der Formel I oder in Gegenwart von geeigneten Verbindungen des Eisens, Bors, Siliziums oder eines Übergangsmetalls in gasförmigem Zustand.



   Die Beschichtung der Kohlenstoffmaterialien mit Carbiden, Nitriden und/oder Carbonitriden kann auch durch Umsetzung der Ausgangsstoffe in einem Plasma, z. B. durch sogenanntes Plasmaspritzen, erfolgen. Das Plasma kann auf an sich beliebige Weise erzeugt werden, beispielsweise mittels Lichtbogen, Glimm- oder Koronaentladung. Als Plasmagase verwendet man zweckmässig Argon oder Wasserstoff. Im allgemeinen liegt die Temperatur des Plasmas oberhalb   2000     C.



   Definitionsgemässe Beschichtungen lassen sich ferner nach dem Flammspritzverfahren erzeugen, wobei im allgemeinen Wasserstoff/Sauerstoff- oder   Acetylen/S auerstoff-Flammen    zur Anwendung gelangen.



   Eine weitere Methode besteht darin, dass man das zu beschichtende Substrat mit einer Lösung oder Suspension einer geeigneten Verbindung des Eisens, Bors, Siliziums oder eines Übergangsmetalls imprägniert und das imprägnierte Material anschliessend bei erhöhten Temperaturen mit einer Verbin dung der Formel I zur Reaktion bringt.



   Das erfindungsgemässe Verfahren wird bevorzugt nach der Plasma-, Flammspritz- oder CVD-Technik durchgeführt.



   Mit Hilfe des erfindungsgemässen Verfahrens können   Kohlenstoffmaterialien    beliebiger Art, wie glasiger (amorpher) Kohlenstoff, teilweise graphitisierter Kohlenstoff und Graphit, beschichtet werden. Die Substrate können ganz oder teilweise aus Kohlenstoff bestehen und in beliebiger Form vorliegen, beispielsweise als Pulver, Fasern, Fäden, Folien, Formkörper oder Bauteile verschiedenster Art.



   Hauptsächlichste Anwendungsgebiete sind das Beschichten von Kohle- und   Graphitelektroden;    von Kohlenstoffasern, einschliesslich sogenannter  chopped   fibres      als Faserschutz und zur Verbesserung der Haftung und Benetzbarkeit durch die Metallmatrix; von Carbon-Carbon-Composites, vor allem für den Turbinenbau; Graphitdichtungen usw.



   Je nach Wahl der Ausgangsstoffe, Zusätze und Reaktionstemperaturen werden nach dem erfindungsgemässen   Verfah-    ren Carbide, Nitride, Carbonitride oder Gemische davon gebildet.



   Beispiel 1
Die Versuche werden in einem vertikalen Reaktor aus Pyrexglas, der oben und unten mit einem Flansch abgeschlossen ist, durchgeführt. Die Reaktionsgase werden zwecks Erzielung eines gleichmässigen Gasstroms durch eine Dusche in den Reaktor eingeleitet. Die Temperaturmessung am Substrat erfolgt mit einem Pyrometer. Die Verbindungen der Formel I werden in einer Verdampfervorrichtung innerhalb oder ausserhalb des Reaktors verdampft. Dabei kann das Substrat durch Widerstandsbeheizung, induktiv oder in einem von aussen mit einem Ofen beheizten Reaktor erhitzt werden.



   In einer Apparatur der oben beschriebenen Art wird ein Graphitstab mit einem Durchmesser von 2 mm in einer Argonatmosphäre durch Widerstandsbeheizung auf   950"    C erhitzt.



  Bei dieser Temperatur wird während 2 Stunden ein Gasgemisch, bestehend aus 97 Vol. % Wasserstoff, 1 Vol. % Titan tetrachlorid und 2 Vol. % Cyanurchlorid über den Graphitstab geleitet, wobei der Gesamtgasdurchfluss 1,04 Liter/Minute   [l/min.]    und der Innendruck im Reaktor 720 Torr betragen.



  Nach dieser Zeit hat sich auf dem Graphitstab eine graue, harte Schicht von Titancarbonitrid gebildet. Die sehr fest haftende Schicht weist eine Dicke von 40,u und eine Mikrohärte nach Vickers von   HVo,os    = 3300-3700 kg/mm2 auf.



   Beispiel 2
Ein Graphitstab mit einem Durchmesser von 2 mm wird analog Beispiel 1 unter den folgenden Reaktionsbedingungen beschichtet: Temperatur:   950"    C; Druck 720 Torr; Reaktionsdauer: 2 Stunden; Gasgemisch: 97 Vol. % Wasserstoff, 1 Vol. % Titantetrachlorid, 2 Vol. % 2-Chlor-4,6-bis-(diäthylamino) -striazin; Gesamtgasdurchfluss: 1,03   1/min.   

 

   Man erhält einen mit grauem Titancarbonitrid beschichteten Graphitstab; Schichtdicke 35,u; Mikrohärte der Schicht von   HVoos = 3300-3710    kg/mm2.



   Beispiel 3
Beispiel 2 wird wiederholt, jedoch bei einer Temperatur von   1100     C/720 Torr und mit einer Reaktionszeit von 110 Minuten. Man erhält auf dem Graphitstab eine graue Titancarbonitridschicht mit einer Schichtdicke von 200-250,u und einer Mikrohärte von   HVoos = 2580-3180    kg/mm2.



   Beispiele 4-12
In der folgenden Tabelle sind weitere Kohlenstoffmaterialien beschrieben, die auf die oben angegebene Weise in einem CVD-Reaktor beschichtet wurden. Die gemäss diesen Beispielen erhaltenen Beschichtungen weisen eine gute Haftfestigkeit auf und sind frei von Poren und Rissen.  



     Tabelle
Beispiel Reaktorbeheizung Temperatur Druck Reaktions- Gasgemisch Gesamtgas- Produkt Nr.  C Torr dauer (in Vol.%) durchfluss Substrat/Farbe Schichtdicke  m/Aus- Mikrohärte kg/mmê Minuten l/Min. (in Gew.%) sehen der Schicht 4 Widerstands- 850 720 120 97 % H2 1 % TiCl4 2 % 1,03 Graphitelektrode 30-40  m HV0,05 = ca. 4200-4380 beheizung Cyanurchlorid # 6,2 mm silbergrau glänzend 5 do. 950 720 120 89 % H2 1 % TiCl4 10 % 2,4- 1,03 Graphitstab 55  m HV0,05 = ca. 3580 Dichlor-6-(diisopropylamino)- # 2 mm grau s-triazin 6 do. 950 720 120 97 % H2 1 % TiCl4 2 % 2,4-Di- 1,03 do. 50  m HV0,05 = 3100 chlor-6-(diisopropylamino)s-triazin 7 do. 950 720 120 97 % H2 1 % TiCl4 2 % 2-Di- 1,03 do. ca. 20  m HV0,05 = 2450-3090 methylamino-4,6-bis-(di äthylamino)-s-triazin 8 do.

   950 720 120 92 % H2 1 % TiCl4 7 % 2-Di- Graphitstab 40  m HV0,05 = 3070-3860 methylamino-4,6-bis-(di- # 2 mm grau äthylamino)-s-triazin 9 von aussen mit 800 100 300 95,5 % H2 1,5 % TiCl4 3 % 1,03 Graphitstab 15  m HV0,05 = 1500 Ofen beheizt 2,4-Dichlor-6-(diallylamino)- # 2 mm mattgrau gut haftend, s-triazin porenfrei 10 do. 800 20 240 93,5 % H2 1,5 % TiCl4 5 % 0,4 C/C-Composite 8  m HV0,015 = ca. 2400 2,4-Dichlor-6-(diallylamino)- hellgrau gut haftend, s-triazin porenfrei 11 do. 800 20 240 do. 0,4 glasiger Kohlenstoff 10  m HV0,015 = ca. 2000 hellgrau gut haftend, porenfrei 12 do. 800 20 240 do. 0,4 Kohlenstoffaser ca. 5  m HV0,015 = 2300-3000 hellgrau gut haftend, porenfrei     
Beispiel 13
Der Versuch wird in einem Plasma-Reaktor mit einem Plasmabrenner konventioneller Bauart [Modell PJ 139 H der Fa.

  Arcos, Brüssel; Brennerleistung: 7,8 kw (30 V, 260   A)j    durchgeführt. Der Reaktor ist in einer von der Aussenatmosphäre abgeschlossenen, wassergekühlten Reaktionskammer aus rostfreiem Stahl angeordnet. Das Plasma wird durch einen zwischen der Wolframkathode und der Kupferanode des Plasmabrenners angeordneten Gleichstrom-Lichtbogen erzeugt. Die Kathode und Anode sind ebenfalls wassergekühlt.



  Als Plasma können Argon oder Wasserstoff verwendet werden.



  Die Reaktionsgase werden mit Hilfe eines Trägergases durch seitliche Bohrungen in der Austrittsdüse der Kupferanode in den Plasmastrahl eingeführt. Die Konzentration der Reaktionsgase im Trägergasstrom wird mit Hilfe von thermostatisch regulierbaren Verdampfervorrichtungen und Durchflussreglern eingestellt. Das Substrat, das unter Umständen wassergekühlt sein kann, befindet sich in einem Abstand von 1-5 cm vor der Austrittsöffnung des Plasmastrahls in der Kupferanode.



   Zu Beginn des Versuches wird die Reaktionskammer evakuiert, gespült und mit Argon gefüllt. Dann wird das Plasmagas (Argon, 90 Mol/Stunde) eingeführt und die Plasmaflamme gezündet. Ein Substrat aus Graphit wird in einem Abstand von 2 cm vor der Austrittsöffnung des Plasmastrahls angeordnet, und die Reaktionsgase und das Trägergas werden wie folgt in den Plasmastrahl eingeleitet:
Titantetrachlorid: 0,02 Mol/Stunde, Trägergas (Wasserstoff) für   Trick:    1 Mol/Stunde,   2,4,6-Tris-(diäthylamino)-s-    triazin: 0,001 Mol/Stunde.

 

   Die Temperatur der Plasmaflamme liegt oberhalb   3000C    C; die Temperatur der Substratoberfläche beträgt ca.   2500     C.



  Nach einer Reaktionsdauer von 6 Minuten wird der Plasmabrenner abgeschaltet, und das beschichtete Substrat wird in der gasgefüllten Reaktionskammer abgekühlt. Man erhält eine homogene, metallisch glänzende, hellgraue Schicht; Dicke   4 um;    durch Röntgenbeugung ermittelte Zusammensetzung: TiC (Gitterkonstante a = 4,33    ).    



  
 



   The present invention relates to a method for coating carbon materials with carbides, nitrides and / or carbonitrides.



   It has been found that carbon materials with carbides, nitrides and / or carbonitrides of iron, boron, silicon or one of the transition metals of subgroups 4-6 of the periodic system can be obtained in a simple manner by direct thermal action of iron, boron, silicon or one of the transition metals of subgroups 4-6 of the Periodic Table in elemental form or as a compound and in the presence of a substance that provides carbon and nitrogen on the material to be coated, optionally in the presence of further additives, by using at least one compound of the carbon and nitrogen suppliers Formula I.
EMI1.1
 used where
Y = N-, = CH- or = C-halogen, one of X1, X2 and X3 hydrogen, halogen, alkyl,

   Phenyl,
EMI1.2


<tb> <SEP> / R1
<tb> -CN, -Ns <SEP> or
<tb> <SEP> R2 <SEP> R4
<tb> and the other two independently halogen,
EMI1.3


<tb> <SEP> R1 <SEP> R3
<tb> -CN, -NH2, -Ns <SEP> or-NH-Ns
<tb> <SEP> R2 <SEP> R4
<tb> represent, R1, R3 and R4 independently of one another hydrogen, alkyl, haloalkyl, cyanoalkyl, aminoalkyl, alkylaminoalkyl or alkenyl and R2 denote alkyl, haloalkyl, cyanoalkyl, aminoalkyl, alkylaminoalkyl or alkenyl, where alkyl radicals 1-4, the alkyl parts in substituted Alkyl radicals each have 2-4 and alkenyl radicals each have 3 or 4 carbon atoms.



   Compared to known methods, the method according to the invention is characterized above all by its simplicity and economic efficiency, in that the elements required for the formation of the carbides, nitrides and / or carbonitrides are carbon and nitrogen and, if appropriate, other elements that influence the course of the reaction, such as hydrogen and / or halogen can be fed to the reaction zone in the desired proportions in a simple manner.



  In addition, the process according to the invention enables high growth rates and excellent adherence, smooth coatings to be achieved, with a considerable improvement in the oxidation resistance of the carbon materials being achieved in some cases. Another advantage is that it is generally possible to work at normal pressure or slightly under or overpressure (approx. 700-800 Torr), which in many cases enables the equipment required to carry out the reaction to be simplified.



   Under the reaction conditions, the compounds of the formula I give off carbon and nitrogen and, if appropriate, hydrogen and / or halogen in a reactive state.



   Alkyl or alkenyl radicals represented by X1, X2, X3 or R1, R2, R3 or R4 can be straight-chain or branched. Halogen means fluorine or bromine, but especially chlorine.



   Examples of alkyl radicals X1, X2 or X3 according to the definition are the methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl and tert-butyl radical. As a residue represented by X1, X2 or X3
EMI1.4


<tb> <SEP> zR1 <SEP> R3
<tb> or <SEP> -NH-N = <SEP> come
<tb> <SEP> R2 <SEP> R4
For example, <tb> consider the following:

  :
EMI1.5
  
EMI2.1

Preferred compounds of the formula I are those in which Y = N- or = C-halogen, one of X1, X2 and X3
EMI2.2


<tb> <SEP> R1
<tb> Halogen, <SEP> -NH2, <SEP> -NX <SEP> or <SEP> -NH-N <SEP> and <SEP> the <SEP> both
<tb> <SEP> R2 <SEP> R4 <SEP> oR1
<tb> other <SEP> independent <SEP> from each other <SEP> halogen, <SEP> -Ns <SEP> or
<tb> <SEP>, R3 <SEP> R2
<tb> -NH-N <SEP> - <SEP> represent, <SEP> whereby <SEP> R1, <SEP> R3 <SEP> and <SEP> R4 <SEP> are independent
<tb> <SEP> oR4
<tb> of one another denotes hydrogen or alkyl with 1-4 carbon atoms and R2 denotes alkyl with 1-4 carbon atoms or alkenyl with 3 or 4 carbon atoms.



   Particularly preferred are compounds of the formula I in which Y = N- or = C-CI and X1, X2 and X3 independently of one another are chlorine or
EMI2.3


<tb> <SEP>, R1
<tb> -N <SEP> represent,
<tb> <SEP> oR2
<tb> where R1 is hydrogen or alkyl with 1-4 carbon atoms and R2 is alkyl with 1-4 carbon atoms or alkenyl with 3 or 4 carbon atoms.



   The compounds of the formula I are known or can be prepared in a known manner. Specific compounds of the formula I include: 2,4,5,6-tetrachloropyrimidine, 2,4,6-tribromo- or trichloropyrimidine, 2,4-dichloropyrimidine, 2,4-dichloro-6-methyl-, -6- isopropyl- or -6-phenylpyrimidine, 2,4-dibromo-6-cyanopyrimidine, 2-chloro-4-n-butyl-6-methylamino-pyrimidine, 2-chloro-4,6-di-ethylamino-pyrimidine, 2-chlorine -4,6-bis (dimethylamino) -pyrimidine, 2,4,6-tris-methylamino-pyrimidine, 2-propyl-4,6-di-isopropylamino-pyrimidine, 2-chloro-4,6-bis (see p -cyanäthylamino) pyrimidine, 2-chloro-4,6-bis (ss-bromo ethylamino) pyrimidine, 2,4-dichloro-6- (ss-dimethylamino ethylamino) pyrimidine, 2-chloro-4, 6-di-allylamino-pyrimidine, 2-chloro-4,

   6-di-hydrazino-pyrimidine, 2-bromo-4-ethyl-6-ethylhydrazino-pyrimidine, 2,4,6-trichloro- or tribromo-s-triazine, 2,4-dichloro-6-n-butyl s-triazine, 2,4-dichloro-6-phenyl-s-triazine, 2-chloro-4,6-di-ethylamino-s-triazine, 2,4-dichloro-6-methylamino-, -6-diethylamino- and -6-di-isopropylamino-striazine, 2-chloro-4,6-dimethylamino-s-triazine, 2-chloro-4,6-din-butylamino-s-triazine, 2-chloro-4,6- bis (diethylamino) - and - (di-isopropylamino) -s-triazine, 2,6-dichloro-4- (ss-cyanoäthylamino) -s-triazine, 2-chloro-4-isopropylamino-6-allylamino-striazine, 2,4-diamino-6-methallylamino-s-triazine, 2,4-diamino6-cyano-s-triazine, 2-chloro-4,6-bis (ss-bromoethylamino) -triazine, 2,4-dichloro 6-ethylamino-methylamino-s-triazine, 2 dipropylamino-4,6-di-hydrazino-s-triazine, 2,4-di-isopropylamino-6-methylhydrazino-s-triazine,

   2,4-bis- (dimethylamino) -6- [N, N-bis- (aminoethyl) j-hydrnzino-s-tnazine, 2,4,6 tris- (diethylamino) -s-triazine, 2, 4-bis (diethylamino) -6-dimethylamino-s-triazine, 2,4-bis (diethylamino) -64sopropylamino-s-triazine, 2,4-bis (dimethylamino) -6-n-butylamino- striazine.



   As transition metals of subgroups 4-6 of the periodic system, for example titanium, vanadium, niobium, tantalum, molybdenum, chromium, tungsten, zirconium and uranium come into consideration in the process according to the invention. Preferred elements are iron, uranium, tantalum, vanadium and tungsten, but in particular boron, silicon and titanium.



   The iron, boron, silicon and the transition metals of subgroups 4-6 of the Periodic Table can be used in any form, e.g. B. can be used in elementary form. However, they are expediently used in the form of compounds, especially the transition metals as defined. Suitable compounds are e.g. B.

  Hydrides, carbonyls, carbonyl hydrides, organometallic compounds and halides, such as silicon hydride (SiH4), titanium hydride (TiH2), zirconium hydride (ZrH2), boranes; Chromium, molybdenum and tungsten hexacarbonyl, iron pentacarbonyl [Fe (CO) S], FeH2 (CO) 4; Tetraethyltitanium, tetramethyl and tetraethylsilane, methyl dichlorosilane, trichlorosilane, methyl trichlorosilane, ethyl trichlorosilane, trimethylchlorosilane; Boron trichloride, silicon tetrachloride, titanium dibromide, titanium trichloride, titanium tetrachloride and tetrabromide, zirconium tetrachloride, vanadium trichloride and tetrachloride, niobium pentachloride, tantalum pentachloride, chromium trichloride, tungsten hexachloride and uranium hexachloride, iron hexachloride and uranium hexafluoride, iron hexachloride and uranium hexafluoride, iron hexachloride and uranium hexachloride, iron hexachloride and uranium hexachloride.



   The halides, especially the chlorides, especially those of boron, silicon and transition metals are preferred. Boron trichloride, silicon tetrachloride and titanium tetrachloride are very particularly preferred.



   Depending on the intended use and / or nature of the compound of the formula I, it may be desirable to carry out the reaction in the presence of further additives, such as hydrogen, hydrogen chloride, atomic or molecular nitrogen or other compounds which release nitrogen and / or carbon under the reaction conditions. These substances or compounds can contribute to the formation of the carbides, nitrides or carbonitrides or shift the equilibrium of the formation reaction more towards the nitrides or the carbides. Such additional, under the reaction conditions nitrogen and / or carbon donating compounds are z. B. methane, ethane, n-butane, N-methylamine, N, N-diethylamine, ethylenediamine, benzene and ammonia.



   The inventive coating of the carbon materials with carbides, nitrides and / or carbonitrides can be carried out within the scope of the definition by any method known per se.



   One of the most important processes is chemical deposition from the gas phase, also known as CVD (Chemical Vapor Deposition). The reaction in the gas phase can be carried out with the supply of heat or radiation energy. In this process, iron, boron, silicon or the transition metals and the compound of the formula I are usually used in the form of gaseous compounds. The reaction temperatures are generally between about 600 and 1500 C, preferably between 800 and 12000 C.



   If necessary, hydrogen is used as the reducing agent. In certain cases it can also be advantageous to use a carrier gas such as argon to transport the starting materials into the reaction zone.



   According to another method, the carbon materials to be coated can also be used in mixtures of substances, e.g. B.



  Powder mixtures, enveloped or mixed with substances and optionally pressed, which contain all or - preferably - some of the starting materials required for the formation of the carbides, nitrides or carbonitrides.



  The whole is then preferably heated to temperatures between 500 and 1200 C, depending on the composition of the substance mixture in the presence of the starting materials still missing from the substance mixture, i.e. H. in the presence of a gaseous compound of the formula I or in the presence of suitable compounds of iron, boron, silicon or a transition metal in the gaseous state.



   The coating of the carbon materials with carbides, nitrides and / or carbonitrides can also be achieved by reacting the starting materials in a plasma, e.g. B. by so-called plasma spraying. The plasma can be generated in any way, for example by means of an arc, glow discharge or corona discharge. Argon or hydrogen are expediently used as plasma gases. In general, the temperature of the plasma is above 2000 C.



   Coatings according to the definition can also be produced by the flame spraying process, with hydrogen / oxygen or acetylene / oxygen flames generally being used.



   Another method consists in impregnating the substrate to be coated with a solution or suspension of a suitable compound of iron, boron, silicon or a transition metal and then reacting the impregnated material with a compound of the formula I at elevated temperatures.



   The method according to the invention is preferably carried out according to the plasma, flame spray or CVD technique.



   With the aid of the method according to the invention, carbon materials of any type, such as glassy (amorphous) carbon, partially graphitized carbon and graphite, can be coated. The substrates can consist entirely or partially of carbon and be in any form, for example as powder, fibers, threads, foils, moldings or components of various types.



   The main areas of application are the coating of carbon and graphite electrodes; of carbon fibers, including so-called chopped fibers as fiber protection and to improve adhesion and wettability through the metal matrix; of carbon-carbon composites, especially for turbine construction; Graphite seals, etc.



   Depending on the choice of starting materials, additives and reaction temperatures, carbides, nitrides, carbonitrides or mixtures thereof are formed in the process according to the invention.



   example 1
The tests are carried out in a vertical reactor made of Pyrex glass, which is closed at the top and bottom with a flange. The reaction gases are introduced into the reactor through a shower in order to achieve a uniform gas flow. The temperature of the substrate is measured with a pyrometer. The compounds of the formula I are evaporated in an evaporator device inside or outside the reactor. The substrate can be heated by resistance heating, inductively or in a reactor heated from the outside with an oven.



   In an apparatus of the type described above, a graphite rod with a diameter of 2 mm is heated to 950 ° C. in an argon atmosphere by resistance heating.



  At this temperature, a gas mixture consisting of 97% by volume of hydrogen, 1% by volume of titanium tetrachloride and 2% by volume of cyanuric chloride is passed over the graphite rod for 2 hours, the total gas flow rate being 1.04 liters / minute [l / min.] and the internal pressure in the reactor is 720 torr.



  After this time, a gray, hard layer of titanium carbonitride has formed on the graphite rod. The very firmly adhering layer has a thickness of 40 u and a micro Vickers hardness of HVo, os = 3300-3700 kg / mm2.



   Example 2
A graphite rod with a diameter of 2 mm is coated analogously to Example 1 under the following reaction conditions: temperature: 950 ° C.; pressure 720 Torr; reaction time: 2 hours; gas mixture: 97% by volume of hydrogen, 1% by volume of titanium tetrachloride, 2% by volume. % 2-chloro-4,6-bis (diethylamino) triazine; total gas flow: 1.03 l / min.

 

   A graphite rod coated with gray titanium carbonitride is obtained; Layer thickness 35, u; Micro hardness of the layer of HVoos = 3300-3710 kg / mm2.



   Example 3
Example 2 is repeated, but at a temperature of 1100 C / 720 torr and with a reaction time of 110 minutes. A gray titanium carbonitride layer with a layer thickness of 200-250 u and a microhardness of HVoos = 2580-3180 kg / mm2 is obtained on the graphite rod.



   Examples 4-12
The following table describes other carbon materials which have been coated in a CVD reactor in the manner indicated above. The coatings obtained according to these examples have good adhesive strength and are free from pores and cracks.



     table
Example reactor heating temperature pressure reaction gas mixture total gas product no. C torr duration (in vol.%) Flow substrate / color layer thickness m / out micro hardness kg / mmê minutes l / min. (in% by weight) see layer 4 resistance 850 720 120 97% H2 1% TiCl4 2% 1.03 graphite electrode 30-40 m HV0.05 = approx. 4200-4380 heating cyanuric chloride # 6.2 mm silver-gray glossy 5 do. 950 720 120 89% H2 1% TiCl4 10% 2.4-1.03 graphite rod 55 m HV0.05 = approx. 3580 dichloro-6- (diisopropylamino) - # 2 mm gray s-triazine 6 do. 950 720 120 97% H2 1% TiCl4 2% 2,4-Di- 1,03 do. 50 m HV0.05 = 3100 chloro-6- (diisopropylamino) s-triazine 7 do. 950 720 120 97% H2 1% TiCl4 2% 2-Di- 1.03 do. approx. 20 m HV0.05 = 2450-3090 methylamino-4,6-bis- (diethylamino) -s-triazine 8 do.

   950 720 120 92% H2 1% TiCl4 7% 2-di- graphite rod 40 m HV0.05 = 3070-3860 methylamino-4,6-bis- (di- # 2 mm gray ethylamino) -s-triazine 9 from the outside with 800 100 300 95.5% H2 1.5% TiCl4 3% 1.03 graphite rod 15 m HV0.05 = 1500 furnace heated 2,4-dichloro-6- (diallylamino) - # 2 mm matt gray, good adhesion, s-triazine non-porous 10 do. 800 20 240 93.5% H2 1.5% TiCl4 5% 0.4 C / C composite 8 m HV0.015 = approx. 2400 2,4-dichloro-6- (diallylamino) - light gray good adhesion, s- triazine pore-free 11 do. 800 20 240 do. 0.4 glassy carbon 10 m HV0.015 = approx. 2000 light gray, good adhesion, pore-free 12 do. 800 20 240 do. 0.4 carbon fiber approx. 5 m HV0.015 = 2300-3000 light gray, good adhesion, pore-free
Example 13
The experiment is carried out in a plasma reactor with a plasma torch of conventional design [model PJ 139 H from

  Arcos, Brussels; Burner output: 7.8 kw (30 V, 260 A) j performed. The reactor is arranged in a water-cooled reaction chamber made of stainless steel, which is sealed off from the outside atmosphere. The plasma is generated by a direct current arc arranged between the tungsten cathode and the copper anode of the plasma torch. The cathode and anode are also water-cooled.



  Argon or hydrogen can be used as plasma.



  The reaction gases are introduced into the plasma jet with the aid of a carrier gas through lateral bores in the outlet nozzle of the copper anode. The concentration of the reaction gases in the carrier gas flow is set with the aid of thermostatically adjustable evaporator devices and flow regulators. The substrate, which may be water-cooled under certain circumstances, is located at a distance of 1-5 cm in front of the exit opening of the plasma jet in the copper anode.



   At the beginning of the experiment, the reaction chamber is evacuated, flushed and filled with argon. Then the plasma gas (argon, 90 mol / hour) is introduced and the plasma flame is ignited. A graphite substrate is placed at a distance of 2 cm in front of the exit opening of the plasma jet, and the reaction gases and the carrier gas are introduced into the plasma jet as follows:
Titanium tetrachloride: 0.02 mol / hour, carrier gas (hydrogen) for trick: 1 mol / hour, 2,4,6-tris (diethylamino) -s-triazine: 0.001 mol / hour.

 

   The temperature of the plasma flame is above 3000C C; the temperature of the substrate surface is approx. 2500 C.



  After a reaction time of 6 minutes, the plasma torch is switched off and the coated substrate is cooled in the gas-filled reaction chamber. A homogeneous, shiny metallic, light gray layer is obtained; Thickness 4 µm; Composition determined by X-ray diffraction: TiC (lattice constant a = 4.33).

 

Claims (1)

PATENTANSPRUCH PATENT CLAIM Verfahren zum Beschichten von Kohlenstoffmaterialien mit Carbiden, Nitriden und/oder Carbonitriden des Eisens, Bors, Siliziums oder eines der Übergangsmetalle der Nebengruppen 4-6 des Periodischen Systems durch direkte thermische Einwirkung von Eisen, Bor, Silizium oder einem der Übergangsmetalle der Nebengruppen 4-6 des Periodischen Systems in elementarer Form oder als Verbindung und in Gegenwart einer Kohlenstoff und Stickstoff liefernden Substanz auf das zu überziehende Material, dadurch gekennzeichnet, dass man als Kohlenstoff- und Stickstofflieferanten mindestens eine Verbindung der Formel I EMI5.1 verwendet, worin Y =N-, =CH- oder =C-Halogen, eines von X1, X2 und X3 Wasserstoff, Halogen, Alkyl, Phenyl, EMI5.2 <tb> <SEP> ,R1 <SEP> oR3 <tb> -CN, Process for coating carbon materials with carbides, nitrides and / or carbonitrides of iron, boron, silicon or one of the transition metals of subgroups 4-6 of the periodic system by direct thermal action of iron, boron, silicon or one of the transition metals of subgroups 4-6 of the Periodic Table in elemental form or as a compound and in the presence of a substance which supplies carbon and nitrogen on the material to be coated, characterized in that at least one compound of the formula I EMI5.1 used where Y = N-, = CH- or = C-halogen, one of X1, X2 and X3 hydrogen, halogen, alkyl, phenyl, EMI5.2 <tb> <SEP>, R1 <SEP> oR3 <tb> -CN, <SEP> -N- <SEP> oder <SEP> -NH-N, <tb> <SEP> R2 <SEP> R4 <tb> und die beiden anderen unabhängig voneinander Halogen, EMI5.3 <tb> <SEP> ,R1 <SEP> R3 <tb> -CN,-NH2,-NX <SEP> oder-NH-N <tb> <SEP> R2 <SEP> R4 <tb> darstellen, R1, R3 und R4 unabhängig voneinander Wasserstoff, Alkyl, Halogenalkyl, Cyanalkyl, Aminoalkyl, Alkylaminoalkyl oder Alkenyl und R2 Alkyl, Halogenalkyl, Cyanalkyl, Aminoalkyl, Alkylaminoalkyl oder Alkenyl bedeuten, wobei Alkylreste 1-4, die Alkylteile in substituierten Alkylresten je 2-4 und Alkenylreste je 3 oder 4 Kohlenstoffatome aufweisen. <SEP> -N- <SEP> or <SEP> -NH-N, <tb> <SEP> R2 <SEP> R4 <tb> and the other two independently halogen, EMI5.3 <tb> <SEP>, R1 <SEP> R3 <tb> -CN, -NH2, -NX <SEP> or -NH-N <tb> <SEP> R2 <SEP> R4 <tb> represent, R1, R3 and R4 independently of one another hydrogen, alkyl, haloalkyl, cyanoalkyl, aminoalkyl, alkylaminoalkyl or alkenyl and R2 denote alkyl, haloalkyl, cyanoalkyl, aminoalkyl, alkylaminoalkyl or alkenyl, where alkyl radicals 1-4, the alkyl parts in substituted Alkyl radicals each have 2-4 and alkenyl radicals each have 3 or 4 carbon atoms. UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man eine Verbindung der Formel I verwendet, worin Y =N- oder =C-Halogen, eines von X1, X2 und X3 EMI5.4 <tb> <SEP> R, <SEP> wR3 <tb> Halogen, <SEP> -NH2, <SEP> -N <SEP> oder-NH- <SEP> und <SEP> die <tb> <SEP> sR2 <SEP> R4 <SEP> R <tb> beiden <SEP> anderen <SEP> unabhängig <SEP> voneinander <SEP> Halogen, <SEP> -N <tb> <SEP> ,R3 <SEP> R2 <tb> oder <SEP> -NH-N <SEP> darstellen, <SEP> wobei <SEP> Ri, <SEP> R3 <SEP> und <SEP> R4 <SEP> unabhängig <tb> <SEP> NR4 <tb> voneinander Wasserstoff oder Alkyl mit 1-4 Kohlenstoffatomen und R2 Alkyl mit 1-4 Kohlenstoffatomen oder Alkenyl mit 3 oder 4 Kohlenstoffatomen bedeuten. SUBCLAIMS 1. The method according to claim, characterized in that a compound of the formula I is used in which Y = N- or = C-halogen, one of X1, X2 and X3 EMI5.4 <tb> <SEP> R, <SEP> wR3 <tb> Halogen, <SEP> -NH2, <SEP> -N <SEP> or-NH- <SEP> and <SEP> die <tb> <SEP> sR2 <SEP> R4 <SEP> R <tb> both <SEP> other <SEP> independent <SEP> of each other <SEP> halogen, <SEP> -N <tb> <SEP>, R3 <SEP> R2 <tb> or <SEP> -NH-N <SEP> represent, <SEP> whereby <SEP> Ri, <SEP> R3 <SEP> and <SEP> R4 <SEP> are independent <tb> <SEP> NR4 <tb> of one another denotes hydrogen or alkyl with 1-4 carbon atoms and R2 denotes alkyl with 1-4 carbon atoms or alkenyl with 3 or 4 carbon atoms. 2. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man eine Verbindung der Formel I verwendet, worin Y =N- oder =C-Cl und X1, X2 und X3 unabhängig voneinander Chlor odei EMI5.5 <tb> -N <SEP> darstellen, <tb> <SEP> sR2 <tb> wobei Rf Wasserstoff oder Alkyl mit 1-4 Kohlenstoffatomen und R2 Alkyl mit 1-4 Kohlenstoffatomen oder Alkenyl mit 3 oder 4 Kohlenstoffatomen bedeuten. 2. The method according to claim, characterized in that a compound of the formula I is used in which Y = N- or = C-Cl and X1, X2 and X3 independently of one another chlorine or EMI5.5 <tb> -N <SEP> represent, <tb> <SEP> sR2 <tb> where Rf is hydrogen or alkyl with 1-4 carbon atoms and R2 is alkyl with 1-4 carbon atoms or alkenyl with 3 or 4 carbon atoms.
CH170174A 1974-02-07 1974-02-07 Hard coating of carbides or (carbo)nitrides - applied by direct thermal reaction of iron, boron, silicon, etc., with di- or triazine cpd. CH593133A5 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CH170174A CH593133A5 (en) 1974-02-07 1974-02-07 Hard coating of carbides or (carbo)nitrides - applied by direct thermal reaction of iron, boron, silicon, etc., with di- or triazine cpd.
CA219,397A CA1053547A (en) 1974-02-07 1975-02-05 Process for coating inorganic substrates with carbides, nitrides and/or carbonitrides
SE7501313A SE410622B (en) 1974-02-07 1975-02-06 PROCEDURE FOR COATING INORGANIC SUBSTRATES WITH LAYERS OF CARBIDES, NITRIDES AND / OR CARBONITRIDES
FR7503701A FR2273078B1 (en) 1974-02-07 1975-02-06
DE19752505007 DE2505007C3 (en) 1974-02-07 1975-02-06 Process for coating inorganic substrates with carbides, nitrides and / or carbonitrides
AT92175*#A AT334708B (en) 1974-02-07 1975-02-06 PROCESS FOR COATING INORGANIC SUBSTRATES WITH CARBIDES, NITRIDES AND / OR CARBONITRIDES
JP50016169A JPS5750869B2 (en) 1974-02-07 1975-02-07
GB5349/75A GB1488948A (en) 1974-02-07 1975-02-07 Process for coating inorganic substrates with carbides nitrides and/or carbonitrides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH170174A CH593133A5 (en) 1974-02-07 1974-02-07 Hard coating of carbides or (carbo)nitrides - applied by direct thermal reaction of iron, boron, silicon, etc., with di- or triazine cpd.

Publications (1)

Publication Number Publication Date
CH593133A5 true CH593133A5 (en) 1977-11-30

Family

ID=4216576

Family Applications (1)

Application Number Title Priority Date Filing Date
CH170174A CH593133A5 (en) 1974-02-07 1974-02-07 Hard coating of carbides or (carbo)nitrides - applied by direct thermal reaction of iron, boron, silicon, etc., with di- or triazine cpd.

Country Status (1)

Country Link
CH (1) CH593133A5 (en)

Similar Documents

Publication Publication Date Title
DE3027526C2 (en)
US4196233A (en) Process for coating inorganic substrates with carbides, nitrides and/or carbonitrides
US4016013A (en) Process for producing diffusion layers of carbides, nitrides and/or carbonitrides
DE4113791A1 (en) METHOD FOR THE SEPARATION OF A BOR AND NITROGEN CONTAINING LAYER
US4698244A (en) Deposition of titanium aluminides
DE3907693C2 (en)
CH593133A5 (en) Hard coating of carbides or (carbo)nitrides - applied by direct thermal reaction of iron, boron, silicon, etc., with di- or triazine cpd.
DE1942292A1 (en) Process for the deposition of high temperature-resistant metal and non-metal carbides on a base material
DE2505007C3 (en) Process for coating inorganic substrates with carbides, nitrides and / or carbonitrides
DE2505008C3 (en) Method for producing diffusion layers from carbides, nitrides and / or carbonitrides
DE1056449B (en) Process for the production of coatings from hard carbides
DE69915866T2 (en) METHOD FOR PRODUCING COATINGS ON TITANIUM BASE
CH593345A5 (en) Depositing carbide, nitride and carbonitride coatings - on inorg. substrates by using cyano cpds. as sources of carbon and nitrogen
DE2505007B2 (en) PROCESS FOR COATING INORGANIC SUBSTRATES WITH CARBIDES, NITRIDES AND / OR CARBONITRIDES
DE2505009C3 (en) Process for coating inorganic substrates with carbides, nitrides and / or carbonitrides
DE2634731A1 (en) Metal carbide-nitride powder prodn. - using triazine or pyrimidine cpd. as carbon and nitrogen source
CH589723A5 (en) Depositing carbide, nitride and carbonitride coatings - on inorg. substrates by using cyano cpds. as sources of carbon and nitrogen
DE2505010C3 (en) Method for producing diffusion layers from carbides, nitrides and / or carbonitrides
EP0876516A1 (en) Process for producing wear-resistant boride layers on metal material surfaces
DE3512825A1 (en) METHOD FOR THE PRODUCTION OF WEAR-RESISTANT COMPOSITES
DE2505009A1 (en) PROCESS FOR COATING INORGANIC SUBSTRATES WITH CARBIDES, NITRIDES AND / OR CARBONITRIDES
DE2634665A1 (en) Refractory carbides, nitrides and carbonitrides prodn. - using (poly)nitriles as sources of carbon and nitrogen
DE4214224C2 (en)
Hill et al. Low-pressure pyrolysis studies of a new phosphorus precursor: Tertiarybutylbis (dimethylamino) phosphine
DD147625A1 (en) PROCESS FOR REACTION OF POWDER FEEDERS WITH GASOFUL SUBSTANCES

Legal Events

Date Code Title Description
PUE Assignment

Owner name: BERNA AG OLTEN

PL Patent ceased