CH589723A5 - Depositing carbide, nitride and carbonitride coatings - on inorg. substrates by using cyano cpds. as sources of carbon and nitrogen - Google Patents

Depositing carbide, nitride and carbonitride coatings - on inorg. substrates by using cyano cpds. as sources of carbon and nitrogen

Info

Publication number
CH589723A5
CH589723A5 CH170374A CH170374A CH589723A5 CH 589723 A5 CH589723 A5 CH 589723A5 CH 170374 A CH170374 A CH 170374A CH 170374 A CH170374 A CH 170374A CH 589723 A5 CH589723 A5 CH 589723A5
Authority
CH
Switzerland
Prior art keywords
radical
carbon atoms
substituted
formula
opt
Prior art date
Application number
CH170374A
Other languages
German (de)
Original Assignee
Ciba Geigy Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy Ag filed Critical Ciba Geigy Ag
Priority to CH170374A priority Critical patent/CH589723A5/en
Priority to CA219,428A priority patent/CA1047899A/en
Priority to FR7503703A priority patent/FR2273080B1/fr
Priority to SE7501315A priority patent/SE410743B/en
Priority to DE19752505009 priority patent/DE2505009C3/en
Priority to BE153101A priority patent/BE825238A/en
Priority to AT92375A priority patent/AT332697B/en
Priority to GB534475A priority patent/GB1489102A/en
Priority to JP1617175A priority patent/JPS5753308B2/ja
Priority to US05/813,364 priority patent/US4196233A/en
Publication of CH589723A5 publication Critical patent/CH589723A5/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Inorg. substrates are coated with carbides, nitrides and/or carbonitrides of Fe, B, S: or the transition metals of sub-groups 4-6 by direct thermal reaction between the appropriate element or its deriv. and sources of C and Nof formulae (I) and (II) (X = Cl, CN, CH2NHQ, CH2NQ, CH2N(Q).CH2CH2NQ2, 1-6 C alkyl (opt. substd. by halo, NR1R2 or -N(CH2)m), 2-4C alkylene (opt. substd. by halo or NR1R2), 3-6C cycloalkyl or 6-10C aryl (opt. substd. by halo, CH3 or NR1R2); X1 = 1-10C alkylene, 2-4C alkenylene, phenylene or cyclohexylene (both opt. substd. by halo or NR1R2), C= C(CN)2 or the gps. Q = CH2CN; R1 and R2 = H or 1-4C alkyl, m = 4-7), opt. in presence of further additives. The process is simple and economic, can be carried out at 900 degrees C and about normal press. with high deposition rates to give well-adhered smooth coatings. The coatings improve resistance to wear and corrosion of e.g. machinery parts, chemical apparatus electrodes, C fibres, catalyst supports etc.

Description

  

  
 



   Die vorliegende Erfindung betrifft ein Verfahren zum Beschichten von anorganischen Substraten mit Carbiden, Nitriden und/oder Carbonitriden.



   Es wurde gefunden, dass man auf einfache Weise anorganische Substrate mit Carbiden, Nitriden und/oder Carbonitriden des Eisens, Bors, Siliziums oder der Übergangsmetalle der Nebengruppen 4-6 des Periodischen Systems durch di    rekte thermische Reaktion von Eisen, Bor, Silizium oder Ubergangsmetallen der Nebengruppen 4-6 des Periodischen    Systems oder Derivaten davon mit Kohlenstoff und Stickstoff liefernden Substanzen, gegebenenfalls in Gegenwart von weiteren Zusätzen, beschichten kann, indem man als Kohlenstoff- und Stickstofflieferanten mindestens eine Verbin dung der Formel I oder II   X-C- N    (I) oder   (II)    N   C-XI-C-    N verwendet, worin X Chlor, -CN, -CH2-NH-CH2CN, -CH2N-(CH2CN)2,
CH2CN -CH2-N-CH2CH2-N-(CH2CN)2, einen Alkylrest mit 1-6 Kohlenstoffatomen,

   der durch Halogenatome.
EMI1.1     




  -Gruppen substituiert sein kann, einen Alkenylrest mit 2-4 Kohlenstoffatomen, der durch Halogenatome oder
EMI1.2     
 -Gruppen substituiert sein kann, einen Cycloalkylrest mit 3-6 Kohlenstoffatomen oder einen Arylrest mit 6-10 Kohlenstoffatomen, welche je durch Halogenatome, Methyl- oder
EMI1.3     
 - Gruppen substituiert sein können und   X1    einen Alkylenrest mit 1-10 Kohlenstoffatomen, einen Alkenylenrest mit 2-4 Kohlenstoffatomen, einen Phenylen- oder Cyclohexylenrest, welche je durch Halogenatome oder
EMI1.4     
 -Gruppen substituiert sein können, einen Rest der Formel
EMI1.5     
 darstellen, wobei R1 und R2 unabhängig voneinander Wasserstoff oder einen Alkylrest mit 1-4 Kohlenstoffatomen und m eine ganze Zahl von 4-7 bedeuten.



   Gegenüber bekannten Methoden zeichnet sich das erfin   dungsgemässe Veffahren    vor allem durch seine Einfachheit und Wirtschaftlichkeit aus, indem die zur Bildung der Carbide, Nitride und/oder Carbonitride erforderlichen Elemente Kohlenstoff und Stickstoff sowie gegebenenfalls weitere, den Reaktionsverlauf beeinflussende Elemente, wie Wasserstoff und/oder Halogen, der Reaktionszone in den gewünschten Mengenverhältnissen in einfacher Weise zugeführt werden können. Ferner lassen sich nach dem erfindungsgemässen Verfahren hohe Aufwachsraten und gut haftende, glatte Beschichtungen erzielen.

  Ein weiterer Vorteil besteht darin, dass im allgemeinen bei Normaldruck oder leichtem Unterbzw.   Uberdruck    (ca. 700-800 Torr) gearbeitet werden kann, was in vielen Fällen eine Vereinfachung der zur Durchführung der Reaktion benötigten Apparaturen ermöglicht.



   Die Verbindungen der Formel I und II geben unter den Reaktionsbedingungen Kohlenstoff und Stickstoff sowie gegebenenfalls Wasserstoff und/oder Halogen in reaktionsfähigem Zustand ab.



   Durch X, X1 bzw. R1 und R2 dargestellte Alkyl-, Alkenyl-, Alkylen- und Alkenylenreste können geradkettig oder verzweigt sein. Halogen bedeutet Fluor oder Brom, insbesondere jedoch Chlor.



   Beispiele definitionsgemässer unsubstituierter Alkylreste X sind der Methyl-, Äthyl-, n-Propyl-, Isopropyl-, n-Butyl-, sek Butyl-, tert-Butyl-, n-Pentyl-, Isopentyl- und n-Hexylrest.



   Sind durch X oder X1 dargestellte definitionsgemässe Reste durch
EMI1.6     
 -Gruppen substituiert, so bedeuten R1 und R2 bevorzugt unabhängig voneinander Wasserstoff, die Methyl- oder Äthylgruppe.



   Als Substituenten
EMI1.7     
 sind solche bevorzugt, worin m eine ganze Zahl von 4-6 darstellt.



   Als Verbindungen der Formel I werden solche bevorzugt, worin X Chlor, -CN, -CH2NHCH2CN, -CH2N-(CH2CN)2,
CH2CN -CH2N-CH2CH2N-(CH2CN)2, einen Alkylrest mit 1-4 Kohlenstoffatomen, der durch Chloratome oder
EMI1.8     
 -Gruppen substituiert sein kann, einen Alkenyl- oder Chloralkenylrest mit 2-4 Kohlenstoffatomen oder einen Phenylrest, der durch Halogenatome, Methyl- oder
EMI1.9     
 -Gruppen substituiert sein kann, darstellt, wobei   Rt    und R2 unabhängig voneinander Wasserstoff oder einen Alkylrest mit 1 oder 2 Kohlenstoffatomen bedeuten.



   Als Verbindungen der Formel II verwendet man mit Vorteil solche, worin X1 einen unsubstituierten Alkylenrest mit 1-4 Kohlenstoffatomen, einen unsubstituierten Phenylenoder Cyclohexylenrest oder einen Rest der Formel
EMI1.10     
 darstellt.  



   Ganz besonders bevorzugt verwendet man Chlorcyan, Dicyan, Acetonitril, Propionitril, Acrylnitril, Bernsteinsäuredinitril oder Adipinsäuredinitril als Verbindungen der Formel I bzw. II.



   Die Verbindungen der Formel I und II sind bekannt oder können auf bekannte Weise hergestellt werden. Als spezifische Verbindungen der Formel I oder II seien genannt: Chlorcyan, Dicyan, Bis-cyanmethyl-amin (Iminodiacetonitril), Tris-cyanmethyl-amin (Nitrilotriacetonitril,   N,N.N'.N'-Tetrakis-    (cyanmethyl)-äthylendiamin (Äthylendiamin-tetraacetonitril), Acetonitril, Mono-, Di- und Trichloracetonitril, Aminoacetonitril, Methylaminoacetonitril, Dimethylaminoacetonitril, Propionitril, 3-Chlorpropionitril, 3-Brompropionitril, 3-Aminopropionitril, 3-Methylaminopropionitril, 3-Dimethylamino- und 3-Diäthylaminopropionitril, Butyronitril, 4-Chlorbutyronitril, 4-Diäthylaminobutyronitril, Capronsäurenitril, Isocapronitril, Oenanthsäurenitril, N-Pyrrolidino-, N-Piperidino- und Hexa methyleniminoacetonitril, 4-(N-Pyrrolidino)-,

   4-(N-Piperidino)und 4-(N-Hexamethylenimino)-butyronitril, Acrylinitril, a-Methacrylnitril, 2-Chloracrylnitril, 3-Vinylacrylsäurenitril, Cyclopropancarbonsäurenitril, Cyclopentancarbonsäurenitril, Cyclo hexancarbonsäurenitril, Chlor-, Brom- oder Methylcyclohexancarbonsäurenitril, 4-(N,N-Dimethylamino)-cyclohexancarbonsäurenitril, Benzonitril, 1- oder 2-Naphthonitril, 2-, 3- oder 4-Chlorbenzonitril, 4-Brombenzonitril, o-, m- oder p-Toluni tril, Aminobenzonitril, 4-Dimethylamino- und 4-Diäthylamino benzonitril, Malodinitril, Chlormaleinsäuredinitril, Fumarsäu redinitril, Bernsteinsäuredinitril, Glutarsäuredinitril, 3-Methylglutarsäuredinitril, Adipinsäuredinitril, Pimelinsäuredinitril,
Decansäuredinitril, Dodecansäuredinitril, Undecansäuredinitril, 2-Methylen-glutarsäuredinitril,   (2,4-Dicyan-1-buten),    3-Hexendisäure-dinitril (1,4-Dicyan-2-buten),

   Phthalsäuredinitril, 4-Chlorphthalsäuredinitril, 4-Aminophthalsäuredinitril, Isoph thalsäuredinitril, Terephthalsäuredinitril, Hexahydrotereph thalsäuredinitril,   Tetracyanoäthylen,1 ,2-Bis-(cyanmethyl)-ben-    zol und 7,7,8,8-Tetracyano-chinodimethan [2,5-Cyclohexa   dien-A1,a :    4,a'-dimalononitril].



   Als Übergangsmetalle der Nebengruppen 4-6 des Periodi schen Systems kommen im erfindungsgemässen Verfahren beispielsweise Titan, Vanadium, Niob, Tantal, Molybdän,
Chrom, Wolfram, Zirkonium und Uran in Betracht. Bevor zugte Elemente sind Eisen, Uran, Tantal, Vanadium und Wol fram, insbesondere jedoch Bor, Silizium und Titan.



   Das Eisen, Bor, Silizium und die Übergangsmetalle der
Nebengruppen 4-6 des Periodischen Systems können in an sich beliebiger Form, z. B. in elementarer Form, eingesetzt werden. Zweckmässig verwendet man sie aber in Form von
Derivaten, besonders die definitionsgemässen Übergangsme talle. Geeignete Derivate sind z. B.

  Hydride, Carbonyle, Car bonylhydride, organometallische Verbindungen und Haloge nide, wie Siliziumhydrid (SiH4), Titanhydrid (TiH2), Zirkonium hydrid (ZrH2), Borane; Chrom-, Molybdän- und Wolframhexa carbonyl, Eisenpentacarbonyl [Fe(CO)5], FeH2 (CO)4; Tetraät hyltitan, Tetramethyl- und Tetraäthylsilan, Methyl-dichlorsi lan, Trichlorsilan, Methyl-trichlorsilan, Äthyl-trichlorsilan, Trimethylchlorsilan; Bortrichlorid, Siliziumtetrachlorid, Titandibromid, Titantrichlorid, Titantetrachlorid und -tetrabromid, Zirkontetrachlorid, Vanadiumtrichlorid und -tetrachlorid, Niob pentachlorid, Tantalpentachlorid, Chromtrichlorid, Wolfram hexachlorid und -hexafluorid,   Eisen-ll-    und   Eisen-lll-chlorid,   
Urantetrachlorid und Uranhexafluorid.



   Bevorzugt sind die Halogenide, besonders die Chloride, vor allem diejenigen des Bors, Siliziums und der Übergangs metalle. Ganz besonders bevorzugt sind Bortrichlorid, Silizi umtetrachlorid und Titantetrachlorid.



   Je nach Anwendungszweck und/oder Art der Verbin dung der Formel I oder II kann es wünschenswert sein, die
Reaktion in Gegenwart von weiteren Zustäzen, wie Wasserstoff, Chlorwasserstoff, atomarem oder molekularem Stickstoff oder weiteren, unter den Reaktionsbedingungen Stickstoff und/oder Kohlenstoff abgebenden Verbindungen vorzunehmen. Diese Stoffe bzw. Verbindungen können zur Bildung der Carbide, Nitride oder Carbonitride beitragen oder das Gleichgewicht der Bildungsreaktion mehr zu den Nitriden oder den Carbiden hin verschieben. Derartige zusätzliche, unter den Reaktionsbedingungen Stickstoff und/oder Kohlenstoff abgebende Verbindungen sind z. B. Methan, Äthan, n-Butan, N-Methylamin, N,N-Diäthylamin, Äthylendiamin, Benzol und Ammoniak.



   Die erfindungsgemässe Beschichtung von anorganischen Substraten mit Carbiden, Nitriden und/oder Carbonitriden kann im Rahmen der Definition nach beliebigen, an sich bekannten Methoden vorgenommen werden.



   Eines der wichtigsten Verfahren ist die chemische Abscheidung aus der Gasphase, auch CVD-Verfahren (Chemical Vapour Deposition) genannt. Die Reaktion in der Gasphase kann unter Zufuhr von Wärme- oder Strahlungsenergie durchgeführt werden. Bei diesem Verfahren werden üblicherweise das Eisen, Bor, Silizium oder die Übergangsmetalle und die Verbindungen der Formel I oder II in Form von gasförmigen Verbindungen eingesetzt. Die Reaktionstemperaturen liegen im allgemeinen zwischen etwa 600 und 1500   "C,    bevorzugt zwischen 800 und 1200   "C.   



   Als Reduktionsmittel wird gegebenenfalls Wasserstoff verwendet. In gewissen Fällen kann es auch vorteilhaft sein, für den Transport der Ausgangsstoffe in die Reaktionszone ein Trägergas, wie Argon, zu verwenden.



   Gemäss einer anderen Methode können die zu beschichtenden Substrate auch in Stoffgemische, z. B. Pulvergemische, eingehüllt bzw. mit Stoffen vermischt und gegebenenfalls verpresst werden, welche sämtliche oder - vorzugsweise - einen Teil der zur Bildung der Carbide, Nitride oder Carbonitride erforderlichen Ausgangsstoffe enthalten. Anschliessend wird das Ganze bevorzugt auf Temperaturen zwischen 500 und 1200   OC    erhitzt und zwar je nach Zusammensetzung des Stoffgemisches in Gegenwart der dem Stoffgemisch noch fehlenden Ausgangsstoffe, d. h. in Gegenwart einer gasförmigen Verbindung der Formel I oder II oder in Gegenwart von geeigneten Derivaten des Eisens, Bors, Siliziums oder eines Ubergangsmetalls in gasförmigem Zustand.



   Die Beschichtung der Substrate mit Carbiden, Nitriden und/oder Carbonitriden kann auch durch Umsetzung der Ausgangsstoffe in einem Plasma, z. B. durch sogenanntes Plasmaspritzen, erfolgen. Das Plasma kann auf an sich beliebige Weise erzeugt werden, beispielsweise mittels Lichtbogen, Glimm- oder Koronaentladung. Als Plasmagase verwendet man zweckmässig Argon oder Wasserstoff. Im allgemeinen liegt die Temperatur des Plasmas oberhalb 2000   OC.   



   Definitionsgemässe Beschichtungen lassen sich ferner nach dem Flammspritzverfahren erzeugen, wobei im allgemeinen Wasserstoff/Sauerstoff- oder Acetylen/Sauerstoff Flammen zur Anwendung gelangen.

 

   Eine weitere Methode besteht darin, dass man das zu be schichtende Substrat mit einer Lösung oder Suspension eines geeigneten Derivats des Eisens, Bors, Siliziums oder eines Übergangsmetalls imprägniert und das imprägnierte
Material anschliessend bei erhöhten Temperaturen mit einer
Verbindung der Formel I oder II zur Reaktion bringt.



   Das erfindungsgemässe Verfahren wird bevorzugt nach der   Plasma-,    Flammspritz- oder CVD-Technik durchgeführt.



   Als anorganische Substrate, die mit Hilfe des erfindungs gemässen Verfahrens beschichtet werden können, kommen vor allem metallische und halbmetallische Substrate, Hartme talle, keramische Substrate, Gläser, Oxide, Nitride und Car bide in Betracht.



   Beispiele von metallischen Substraten sind Eisenmetalle,  wie Stahl und Gusseisen; Titan; hochschmelzende Metalle, wie Wolfram, Molybdän, Niob, Vanadium und Tantal. Geeignete Halbmetalle sind z. B. Bor und Silizium, während als Hartmetalle, d. h. gesinterte Werkstoffe aus Carbiden der Übergangsmetalle der Nebengruppen 4-6 des Periodischen Systems und Kobalt als Bindemittel, vor allem Legierungen aus Wolframcarbid-Kobalt, Wolframcarbid- Tantalcarbid-Kobalt, Wolframcarbid-Titancarbid-Kobalt,   Wolframcarbid-Vana.   



  diumcarbid-Kobalt, Wolframcarbid-Titancarbid-Tantalcarbid Kobalt, Wolframcarbid-Tantalcarbid-Niobcarbid-Kobalt und Wolframcarbid-Titancarbid-Tantalcarbid- Niobcarbid-Kobalt in Frage kommen. Geeignete keramische Substrate bzw.



  Oxide sind z. B. Porzellan, Schamotte und Tonmaterialien bzw. Aluminiumoxid, SiO2 und Zirkondioxid. Als Nitride und Carbide kommen z. B. Si3N4 und SiC in Betracht.



   Die Substrate können ganz oder teilweise aus einem oder mehreren der genannten Werkstoffe bestehen und in be   liebiger    Form vorliegen, beispielsweise als Pulver, Fasern, Folien, Fäden, Werkstücke oder Bauteile verschiedenster Art.



   Je nach Wahl der Ausgangsstoffe und Zusätze, der Reaktionstemperaturen und/oder Substrate werden nach dem erfindungsgemässen Verfahren Carbide, Nitride, Carbonitride oder Gemische davon gebildet.



   Hauptsächlichste Anwendungsgebiete des erfindungsgemässen Verfahrens sind die Oberflächenvergütung bzw. -härtung von Metallen und Hartmetallen, wie Werkzeugstahl, Gusseisen, Titan, titanhaltige Metallträger,   Tantal-,    Vanadium- und Eisenbleche, sowie Hartmetalle der vorerwähnten Art, wie WC-CO-Legierungen, z. B. für Drehstähle, Press-, Stanz-, Schneid- und Ziehwerkzeuge, Motorenbauteile, feinmechanische Bauteile für Uhren und Textilmaschinen, Raketendüsen, korrosionsfeste Apparaturen für die chemische Industrie, etc., die Beschichtung von keramischen Werkstoffen oder Gläasern, z. B. keramische Trägermaterialien für Katalysatoren und Filtergläser, und schliesslich die Ummantelung von Bor-, Silizium- und Wolframfasern oder -fäden zur Erzielung einer besseren Benetzbarkeit durch die Metallmatrix und als Faserschutz.



  Beispiel 1
Die Versuche werden in einem vertikalen Reaktor aus Pyrexglas, der oben und unten mit einem Flansch abgeschlossen ist, durchgeführt. Die Reaktionsgase werden zwecks Erzielung eines gleichmässigen Gasstroms durch eine Dusche in den Reaktor eingeleitet. Die Temperaturmessung am Substrat erfolgt mit einem Pyrometer. Die Verbindungen der Formel I oder II werden - soweit erforderlich - in einer Verdampfervorrichtung innerhalb oder ausserhalb des Reaktors verdampft.



   Das Substrat kann dabei durch Widerstandsbeheizung, induktiv oder in einem von aussen mit einem Ofen beheizten Reaktor, erhitzt werden.



   Ein Stahldraht mit einem Durchmesser von 0,78 mm (Analyse: 1 Gew.-% C, 0,1   Gew.-0/o    Si, 0,25   Gew.-0/e    Mn, 0,1   Gew.-0/o    V) wird in einer Apparatur der oben beschriebenen Art in einer Argonatmosphäre auf 950   "C    durch Widerstandsbeheizung erhitzt. Bei dieser Temperatur wird während 30 Minuten ein Gasgemisch, bestehend aus 95   Vol.-olo    Wasserstoff, 2,4 Vol.-% Argon, 1   Vol.- /0    Titantechrachlorid und 1,6   Vol.-0/o    Chlorcyan über das Substrat geleitet, wobei der Gesamtgasdurchfluss 0,21 Liter/Mintue   [1/min.]    und der Innendruck im Reaktor 720 Torr betragen. Nach dieser Zeit hat sich auf dem Substrat eine dunkelgelbe Schicht aus Titancarbonitrid gebildet.

  Schichtdicke ca. 12   u;    Mikrohärte nach Vikkers   HVooXs    = 2270 kg/cm2.



  Beispiel 2
Ein Stahldraht mit einem Durchmesser von 0,78 mm wird nach dem CVD-Verfahren mit einer 6 um dicken Schicht aus Chromcarbid versehen. Dieser beschichtete Stahldraht wird dann auf die im Beispiel 1 beschriebene Arbeitsweise bei 950   "C/720    Torr während 2er Stunden mit einem Gasgemisch, bestehend aus 97   Vol.-0/o    Wasserstoff, 1   Vol.-0/o    Titantetrachlorid und 2 Vol.-% Propionitril behandelt (Gesamtgasdurchfluss   1,03 1/min.).    Es bildet sich eine dunkelgraue Schicht von ca.   30 um    Dicke, die eine Mikrohärte von   HVoo2s    = 2280 kg/mm2 aufweist.



  Beispiele 3-31
In der folgenden Tabelle sind weitere Substrate angeführt, welche auf die oben beschriebene Weise beschichtet wurden.  



     Tabelle
Bsp. Reaktor- Temper. Druck Reaktions- Gasgemisch Gesamt- Produkt Mikrohärte HV Nr. beheizung  C Torr dauer (in Vol.-%) gasdurch- Substrat/Farbe Schichtdicke  m/ kg/mmê 0,05 Minuten fluss (in Gew.-%) Aussehen der (sofern nichts anderes 1/Min. Schicht angegeben) 3 Widerstands- 950 720 120 97% H2 1,03 Hartmetallstab 70  m Substrat 1890 beheizung 1% TiCl4  H 10  (92% WC 2% gut haftend, leicht Schicht 2200 2% o-Toluo- TiC + TaC, 6% Co) porös nitril graublau glänzend 4 do. 950 720 120 97% H2 1,03 Hartmetallstab 30  m 1790 1% TiCl4  H 10  porenfrei Schicht 2200 2% Bern- graubraun, matt steinsäuredinitril 5 do. 950 720 120 97% H2 1,03 Hartmetallstab 158  m Substrat 2190 1% TiCl4  H 10  porenfrei, gut haftend Schicht 2760-3070 2% Adipin- mattgrau säuredinitril 6 do.

   950 720 120 97% H2 1,03 Hartmetallstab 100-200  m Substrat 1690-2220 1% TiCl4  H 10  porenfrei, gut haftend Schicht 2580-2960 2% Tetra- mattgrau cyanoäthylen 7 do. 950 720 50 97% H2 1,03 dito 32  m Substrat 1690-1790 1% TiCl4 porenfrei Schicht 2410-2850 2% 3-Chlorpropionitril 8 do. 950 720 120 97% H2 1,03 Hartmetallstab 50   Substrat 1280-1950 1% TiCl4  H 45  (87% WC, porenfrei, Schicht 2410 2% 3-Di- 1% TiC + TaC, 12% gut haftend methyl- Co) aminopro- hellgrau glänzend pionitril 9 do. 950 720 120 97% H2 1,03 Hartmetallstab 60  m Substrat 1140-1380 1% TiCl4  H 45  (87% WC, porenfrei, gut haftend Schicht 3070-3180 2% Cyclo- 1% TiC + TaC, 12% Co) hexancar- hellgrau glänzend bonsäurenitril 10 do. 

   1500 720 120 97% H2 1,03 Niobdraht # 0,5 mm 80   Substrat 195 1% TiCl4 grau glänzend leicht porös Schicht 3710 2% 3-Chlorpropionitril 11 Hochfre- Titanstab # 1 mm 80  m quenzbe- hellgrau glänzend porenfrei heizung 1300 720 120 97% H2 0,25 1% TiCl4
Bernsteinsäuredinitril         Bsp. Reaktor- Temper. Druck Reaktions- Gasgemisch Gesamt- Produkt Mikrohärte HV Nr. beheizung  C Torr dauer (in Vol.-%) gasdurch- Substrat/Farbe Schichtdicke  m/ kg/mmê 0,05 Minuten fluss (in Gew.-%) Aussehen der (sofern nichts anderes 1/Min. Schicht angegeben) 12 Widerstands- 1200 720 120 85% H2 0,5 Wolframdraht # 150  m Substrat 549-593 beheizung 5% BCl3 0,6 mm, dunkelgrau gut haftend, porenfrei Schicht 2190-2340 10% Acryl- matt C/N-haltige Schicht nitril gemäss chem.

  Analyse 13 dito 1200 720 120 85% H2 0,5 Wolframdraht # 160  m Substrat 480-501 5% BBr3 0,6 mm porenfrei Schicht 5260 10% Acryl- graubraun, glänzend C/N-haltige Schicht (HV0,002 = 4020) nitril gemäss chem. Analyse 14 dito 1100 720 120 97% H2 1,03 Wolframdraht # ca. 1  m 1% ZrCl4 0,6 mm, hellgrau, porenfrei 2% Acetonitril glänzend 15 von aussen 800 100 315 97,5% H2 0,4 Böhler Spezialstahl 16  m Substrat 666 mit Ofen be- 1,5% TiCl4 KRS (12% Cr. 0,5% Mo, leicht porös, gut Schicht 3070 heizt 1% Aceto- 1,1% W, 0,5% V, haftend nitril 2,05% C) mattgrau glänzend 16 dito dito dito dito dito dito Wolfram 18  m Substrat 473 mattgrau glänzend porenfrei, gut haftend Schicht ca. 3000 17 dito dito dito dito dito dito Molybdän 22  m Substrat 336 mattgrau glänzend porenfrei, gut haftend Schicht ca.

   3000 18 dito dito dito dito dito dito Niob 20  m Substrat 137 mattgrau glänzend leicht porös, gut Schicht ca. 2600 haftend 19 dito dito dito dito dito dito Al2O3 22   Substrat 1950 mattgrau glänzend porenfrei, gut haftend Schicht ca: 2600 20 dito dito dito dito dito dito Porzellan 16  m Substrat 1100 mattgrau glänzend porenfrei, gut haftend Schicht 3070 21 dito dito dito dito dito dito SiO2 22  m mattgrau glänzend leicht porös, gut Schicht ca. 2500 haftend 22 dito dito dito dito dito dito Stahl 17 VDT 18  m Substrat 274 mattgrau glänzend porenfrei, gut haftend Schicht ca. 3200 23 dito 580 100 480 dito dito Pyrexglas ca. 1  m grau glänzend porenfrei, gut hafend 24 dito 450 150 240 dito 0,5 Pyrexglas einige   grauviolett glänzend 25 von aussen 760 250 240 97% H2 0,5 Si3N4, mattgrau 20  m Substrat ca. 1000 mit Ofen 1,5% TiCl4 gut haftend, leicht Schicht HV0,015 ca.

   3090 beheizt 1,5% Acryl- porös nitril 26 dito 760 250 240 dito 0,5 Harmettal  S 4  22  m Substrat 1310-1896 (68,5% WC, 22% TiC gut haftend, leicht Schicht 2440 +TaC, 9,5% Co) porös grau glänzend 27 dito 760 150 180 97,5% H2 0,5 Harmetall  S 4  22  m 1,5% TiCl4 mattgrau gut haftend, leicht Substrat 1890 1% Butvro- porös Schicht 2410-2580         Bsp. Reaktor- Temper. Druck Reaktions- Gasgemisch Gesamt- Produkt Mikrohärte HV Nr. beheizung  C Torr dauer (in Vol.-%) gasdurch- Substrat/Farbe Schichtdicke  m/ kg/mmê 0,05 Minuten fluss (in Gew.-%) Aussehen der (sofern nichts anderes 1/Min. 

  Schicht angegeben) 28 von aussen 840 100 240 98%H2 0,5 Hartmetall  S 4  15  m Substrat 2070 mit Ofen 1,25% mattgrau gut haftend, poren- Schicht 2910 beheizt TiCl4 frei 0,75% Acetonitril Bor 22  m Substrat 3710 29 dito 840 100 240 dito 0,5 mattgrau leicht porös, gut Schicht 2190 haftend 30 dito 800 20 240 97,5% H2 0,4 Schamotte 8  m HV0,015 = ca. 2500 1,5% TiCl4 Grau gut haftend, leicht 1% Aceto- porös nitril 31 dito 800 20 240 dito 0,4 Pyrexglas 12  m HV0,015 = ca. 2700 Grau gut haftend, leicht porös    



  
 



   The present invention relates to a method for coating inorganic substrates with carbides, nitrides and / or carbonitrides.



   It has been found that inorganic substrates with carbides, nitrides and / or carbonitrides of iron, boron, silicon or the transition metals of subgroups 4-6 of the periodic system can be easily obtained by direct thermal reaction of iron, boron, silicon or transition metals Subgroups 4-6 of the Periodic Table or derivatives thereof with carbon and nitrogen-supplying substances, optionally in the presence of other additives, can be coated by using at least one compound of the formula I or II XC-N (I) or as carbon and nitrogen suppliers (II) N C-XI-C- N used, where X is chlorine, -CN, -CH2-NH-CH2CN, -CH2N- (CH2CN) 2,
CH2CN -CH2-N-CH2CH2-N- (CH2CN) 2, an alkyl radical with 1-6 carbon atoms,

   that by halogen atoms.
EMI1.1




  Groups, an alkenyl radical with 2-4 carbon atoms, which can be substituted by halogen atoms or
EMI1.2
 -Gruppen can be substituted, a cycloalkyl radical with 3-6 carbon atoms or an aryl radical with 6-10 carbon atoms, which are each by halogen atoms, methyl or
EMI1.3
 - Groups can be substituted and X1 is an alkylene radical with 1-10 carbon atoms, an alkenylene radical with 2-4 carbon atoms, a phenylene or cyclohexylene radical, each by halogen atoms or
EMI1.4
 -Groups can be substituted, a radical of the formula
EMI1.5
 represent, where R1 and R2 independently of one another are hydrogen or an alkyl radical having 1-4 carbon atoms and m is an integer from 4-7.



   Compared to known methods, the process according to the invention is characterized above all by its simplicity and economy, in that the elements required for the formation of the carbides, nitrides and / or carbonitrides are carbon and nitrogen and optionally other elements that influence the course of the reaction, such as hydrogen and / or halogen , can be fed to the reaction zone in the desired proportions in a simple manner. Furthermore, the process according to the invention enables high growth rates and well-adhering, smooth coatings to be achieved.

  Another advantage is that, in general, at normal pressure or slightly lower or lower. Overpressure (about 700-800 Torr) can be used, which in many cases enables the equipment required to carry out the reaction to be simplified.



   Under the reaction conditions, the compounds of the formulas I and II give off carbon and nitrogen and, if appropriate, hydrogen and / or halogen in a reactive state.



   Alkyl, alkenyl, alkylene and alkenylene radicals represented by X, X1 or R1 and R2 can be straight-chain or branched. Halogen means fluorine or bromine, but especially chlorine.



   Examples of unsubstituted alkyl radicals X according to the definition are the methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, isopentyl and n-hexyl radical.



   Are defined residues represented by X or X1 through
EMI1.6
 Groups substituted, R1 and R2 are preferably, independently of one another, hydrogen, the methyl or ethyl group.



   As a substituent
EMI1.7
 those in which m is an integer from 4-6 are preferred.



   Preferred compounds of the formula I are those in which X is chlorine, -CN, -CH2NHCH2CN, -CH2N- (CH2CN) 2,
CH2CN -CH2N-CH2CH2N- (CH2CN) 2, an alkyl radical with 1-4 carbon atoms substituted with chlorine atoms or
EMI1.8
 -Gruppen may be substituted, an alkenyl or chloralkenyl radical with 2-4 carbon atoms or a phenyl radical, which is by halogen atoms, methyl or
EMI1.9
 -Groups can be substituted, where Rt and R2 are independently hydrogen or an alkyl radical having 1 or 2 carbon atoms.



   Compounds of the formula II which are advantageously used are those in which X1 is an unsubstituted alkylene radical having 1-4 carbon atoms, an unsubstituted phenylene or cyclohexylene radical or a radical of the formula
EMI1.10
 represents.



   Very particular preference is given to using cyanogen chloride, dicyano, acetonitrile, propionitrile, acrylonitrile, succinic dinitrile or adipic dinitrile as compounds of the formula I or II.



   The compounds of the formulas I and II are known or can be prepared in a known manner. Specific compounds of the formula I or II that may be mentioned are: cyanogen chloride, dicyan, bis-cyanomethylamine (iminodiacetonitrile), tris-cyanomethylamine (nitrilotriacetonitrile, N, N.N'.N'-tetrakis- (cyanomethyl) -ethylenediamine ( ethylenediamine tetraacetonitril), acetonitrile, mono-, di- and trichloroacetonitrile, aminoacetonitrile, methylaminoacetonitrile, dimethylaminoacetonitrile, propionitrile, 3-chloropropionitrile, 3-bromopropionitrile, 3-aminopropionitrile, 3-methylaminopropionitrile, 3-dimethylamino and 3-Diäthylaminopropionitril, butyronitrile, 4-chlorobutyronitrile, 4-diethylaminobutyronitrile, caproic acid nitrile, isocapronitrile, oenanthic acid nitrile, N-pyrrolidino-, N-piperidino- and hexamethyleneiminoacetonitrile, 4- (N-pyrrolidino) -,

   4- (N-piperidino) and 4- (N-hexamethyleneimino) -butyronitrile, acrylinitrile, α-methacrylonitrile, 2-chloroacrylonitrile, 3-vinylacrylonitrile, cyclopropanecarboxylic acid nitrile, cyclopentanecarboxylic acid nitrile, cyclohexanecarboxylic acid nitrile, cyclohexanecarboxylic acid nitrile, methyl cycloacid, bromocarboxylic acid nitrile, N, N-dimethylamino) cyclohexanecarboxitrile, benzonitrile, 1- or 2-naphthonitrile, 2-, 3- or 4-chlorobenzonitrile, 4-bromobenzonitrile, o-, m- or p-tolunitrile, aminobenzonitrile, 4-dimethylamino and 4-diethylamino benzonitrile, malodinitrile, chloromaleic dinitrile, fumaric acid dinitrile, succinic acid dinitrile, glutaric acid dinitrile, 3-methylglutaric acid dinitrile, adipic acid dinitrile, pimelic acid dinitrile,
Decanoic acid dinitrile, dodecanoic acid dinitrile, undecanoic acid dinitrile, 2-methylene-glutaric acid dinitrile, (2,4-dicyan-1-butene), 3-hexenedioic acid dinitrile (1,4-dicyan-2-butene),

   Phthalic acid dinitrile, 4-chlorophthalic acid dinitrile, 4-aminophthalic acid dinitrile, isophthalic acid dinitrile, terephthalic acid dinitrile, hexahydroterephthalic acid dinitrile, tetracyanoethylene, 1,2-bis- (cyanomethyl) -ben- dimethane [2,5,8-tetracycline] and 7,7,8-quinomethyl) -ben- zene Cyclohexadiene-A1, a: 4, a'-dimalononitrile].



   The transition metals of subgroups 4-6 of the Periodic System include, for example, titanium, vanadium, niobium, tantalum, molybdenum,
Chromium, tungsten, zirconium and uranium can be considered. Preferred elements are iron, uranium, tantalum, vanadium and tungsten, but especially boron, silicon and titanium.



   The iron, boron, silicon and the transition metals of the
Subgroups 4-6 of the Periodic Table can be in any form, e.g. B. can be used in elementary form. However, it is best used in the form of
Derivatives, especially the transition metals as defined. Suitable derivatives are e.g. B.

  Hydrides, carbonyls, carbonyl hydrides, organometallic compounds and halides, such as silicon hydride (SiH4), titanium hydride (TiH2), zirconium hydride (ZrH2), boranes; Chromium, molybdenum and tungsten hexa carbonyl, iron pentacarbonyl [Fe (CO) 5], FeH2 (CO) 4; Tetraät hyltitan, tetramethyl and tetraethylsilane, methyl dichlorosilane, trichlorosilane, methyl trichlorosilane, ethyl trichlorosilane, trimethylchlorosilane; Boron trichloride, silicon tetrachloride, titanium dibromide, titanium trichloride, titanium tetrachloride and tetrabromide, zirconium tetrachloride, vanadium trichloride and tetrachloride, niobium pentachloride, tantalum pentachloride, chromium trichloride, tungsten hexachloride and iron hexafluoride,
Uranium tetrachloride and uranium hexafluoride.



   The halides, especially the chlorides, especially those of boron, silicon and transition metals are preferred. Boron trichloride, silicon tetrachloride and titanium tetrachloride are very particularly preferred.



   Depending on the intended use and / or type of compound of the formula I or II, it may be desirable to use the
To carry out the reaction in the presence of other additives, such as hydrogen, hydrogen chloride, atomic or molecular nitrogen or other compounds that give off nitrogen and / or carbon under the reaction conditions. These substances or compounds can contribute to the formation of the carbides, nitrides or carbonitrides or shift the equilibrium of the formation reaction more towards the nitrides or the carbides. Such additional, under the reaction conditions nitrogen and / or carbon donating compounds are z. B. methane, ethane, n-butane, N-methylamine, N, N-diethylamine, ethylenediamine, benzene and ammonia.



   The inventive coating of inorganic substrates with carbides, nitrides and / or carbonitrides can be carried out within the scope of the definition by any method known per se.



   One of the most important processes is chemical deposition from the gas phase, also known as CVD (Chemical Vapor Deposition). The reaction in the gas phase can be carried out with the supply of heat or radiation energy. In this process, iron, boron, silicon or the transition metals and the compounds of the formula I or II are usually used in the form of gaseous compounds. The reaction temperatures are generally between about 600 and 1500 "C., preferably between 800 and 1200" C.



   If necessary, hydrogen is used as the reducing agent. In certain cases it can also be advantageous to use a carrier gas such as argon to transport the starting materials into the reaction zone.



   According to another method, the substrates to be coated can also be used in mixtures of substances, e.g. B. powder mixtures, enveloped or mixed with substances and optionally pressed, which contain all or - preferably - some of the starting materials required for the formation of the carbides, nitrides or carbonitrides. The whole is then preferably heated to temperatures between 500 and 1200.degree. C., depending on the composition of the substance mixture in the presence of the starting substances still missing from the substance mixture, i.e. H. in the presence of a gaseous compound of the formula I or II or in the presence of suitable derivatives of iron, boron, silicon or a transition metal in the gaseous state.



   The coating of the substrates with carbides, nitrides and / or carbonitrides can also be achieved by reacting the starting materials in a plasma, e.g. B. by so-called plasma spraying. The plasma can be generated in any way, for example by means of an arc, glow discharge or corona discharge. Argon or hydrogen are expediently used as plasma gases. In general, the temperature of the plasma is above 2000 OC.



   Coatings according to the definition can also be produced by the flame spraying process, with hydrogen / oxygen or acetylene / oxygen flames generally being used.

 

   Another method consists in impregnating the substrate to be coated with a solution or suspension of a suitable derivative of iron, boron, silicon or a transition metal and impregnating it
Material then at elevated temperatures with a
Brings compound of formula I or II to the reaction.



   The method according to the invention is preferably carried out according to the plasma, flame spray or CVD technique.



   As inorganic substrates that can be coated with the help of the fiction, according to method, metallic and semi-metallic substrates, Hartme metals, ceramic substrates, glasses, oxides, nitrides and carbides come into consideration.



   Examples of metallic substrates are ferrous metals such as steel and cast iron; Titanium; refractory metals such as tungsten, molybdenum, niobium, vanadium and tantalum. Suitable semi-metals are, for. B. boron and silicon, while as hard metals, d. H. Sintered materials made from carbides of the transition metals of subgroups 4-6 of the periodic system and cobalt as a binder, especially alloys made from tungsten carbide-cobalt, tungsten carbide-tantalum carbide-cobalt, tungsten carbide-titanium carbide-cobalt, tungsten carbide-Vana.



  dium carbide-cobalt, tungsten carbide-titanium carbide-tantalum carbide cobalt, tungsten carbide-tantalum carbide-niobium carbide-cobalt and tungsten carbide-titanium carbide-tantalum carbide-niobium carbide-cobalt come into question. Suitable ceramic substrates or



  Oxides are e.g. B. porcelain, fireclay and clay materials or aluminum oxide, SiO2 and zirconium dioxide. As nitrides and carbides, for. B. Si3N4 and SiC into consideration.



   The substrates can consist entirely or partially of one or more of the materials mentioned and be in any form, for example as powder, fibers, foils, threads, workpieces or components of various types.



   Depending on the choice of starting materials and additives, the reaction temperatures and / or substrates, carbides, nitrides, carbonitrides or mixtures thereof are formed in the process according to the invention.



   The main areas of application of the method according to the invention are the surface treatment or hardening of metals and hard metals, such as tool steel, cast iron, titanium, titanium-containing metal supports, tantalum, vanadium and iron sheets, and hard metals of the aforementioned type, such as WC-CO alloys, e.g. B. for turning tools, pressing, punching, cutting and drawing tools, engine components, precision mechanical components for watches and textile machines, rocket nozzles, corrosion-resistant equipment for the chemical industry, etc., the coating of ceramic materials or glass, e.g. B. ceramic carrier materials for catalysts and filter glasses, and finally the coating of boron, silicon and tungsten fibers or threads to achieve better wettability through the metal matrix and as fiber protection.



  example 1
The tests are carried out in a vertical reactor made of Pyrex glass, which is closed at the top and bottom with a flange. The reaction gases are introduced into the reactor through a shower in order to achieve a uniform gas flow. The temperature of the substrate is measured with a pyrometer. The compounds of the formula I or II are - if necessary - evaporated in an evaporator device inside or outside the reactor.



   The substrate can be heated by resistance heating, inductively or in a reactor heated from the outside with an oven.



   A steel wire with a diameter of 0.78 mm (analysis: 1% by weight C, 0.1% by weight Si, 0.25% by weight Mn, 0.1% by weight / o V) is heated in an apparatus of the type described above in an argon atmosphere to 950 "C by resistance heating. At this temperature, a gas mixture consisting of 95 vol.% hydrogen, 2.4 vol .-% argon, 1% by volume of titanium chloride and 1.6% by volume of cyanogen chloride are passed over the substrate, the total gas flow rate being 0.21 liters / minute [1 / min.] And the internal pressure in the reactor being 720 Torr a dark yellow layer of titanium carbonitride has formed on the substrate.

  Layer thickness approx. 12 u; Micro hardness according to Vikkers HVooXs = 2270 kg / cm2.



  Example 2
A steel wire with a diameter of 0.78 mm is provided with a 6 .mu.m thick layer of chromium carbide using the CVD method. This coated steel wire is then on the procedure described in Example 1 at 950 "C / 720 Torr for 2 hours with a gas mixture consisting of 97 vol.-0 / o hydrogen, 1 vol.-0 / o titanium tetrachloride and 2 vol. % Propionitrile (total gas flow rate 1.03 1 / min.) A dark gray layer about 30 µm thick with a micro hardness of HVoo2s = 2280 kg / mm2 is formed.



  Examples 3-31
The following table lists further substrates which have been coated in the manner described above.



     table
Example reactor temper. Pressure reaction gas mixture total product micro hardness HV no. Heating C torr duration (in vol .-%) gas flow- substrate / color layer thickness m / kg / mmê 0.05 minutes flow (in wt .-%) appearance of (if nothing other 1 / min. layer specified) 3 resistance 950 720 120 97% H2 1.03 hard metal rod 70 m substrate 1890 heating 1% TiCl4 H 10 (92% WC 2% adheres well, light layer 2200 2% o-Toluo- TiC + TaC, 6% Co) porous nitrile gray-blue glossy 4 do. 950 720 120 97% H2 1.03 hard metal rod 30 m 1790 1% TiCl4 H 10 pore-free layer 2200 2% amber gray brown, matt stinic acid dinitrile 5 do. 950 720 120 97% H2 1.03 hard metal rod 158 m substrate 2190 1% TiCl4 H 10 pore-free, well adhering layer 2760-3070 2% adipine- matt gray acid dinitrile 6 do.

   950 720 120 97% H2 1.03 hard metal rod 100-200 m substrate 1690-2220 1% TiCl4 H 10 pore-free, good adhesion layer 2580-2960 2% tetra matt gray cyanoethylene 7 do. 950 720 50 97% H2 1.03 ditto 32 m substrate 1690-1790 1% TiCl4 pore-free layer 2410-2850 2% 3-chloropropionitrile 8 do. 950 720 120 97% H2 1.03 Tungsten carbide rod 50 substrate 1280-1950 1% TiCl4 H 45 (87% WC, pore-free, layer 2410 2% 3-Di- 1% TiC + TaC, 12% well-adhering methyl- Co) aminopro - light gray glossy pionitrile 9 do. 950 720 120 97% H2 1.03 Carbide rod 60 m substrate 1140-1380 1% TiCl4 H 45 (87% WC, pore-free, well adhering layer 3070-3180 2% cyclo- 1% TiC + TaC, 12% Co) hexanecar- light gray glossy acid nitrile 10 do.

   1500 720 120 97% H2 1.03 niobium wire # 0.5 mm 80 substrate 195 1% TiCl4 glossy gray slightly porous layer 3710 2% 3-chloropropionitrile 11 high-frequency titanium rod # 1 mm 80 m quenzbe- light gray glossy pore-free heating 1300 720 120 97% H2 0.25 1% TiCl4
Succinic acid dinitrile e.g. reactor temper. Pressure reaction gas mixture total product micro hardness HV no. Heating C torr duration (in vol .-%) gas flow- substrate / color layer thickness m / kg / mmê 0.05 minutes flow (in wt .-%) appearance of (if nothing other 1 / min. layer specified) 12 resistance 1200 720 120 85% H2 0.5 tungsten wire # 150 m substrate 549-593 heating 5% BCl3 0.6 mm, dark gray good adhesion, pore-free layer 2190-2340 10% acrylic matt C / N-containing layer nitrile according to chem.

  Analysis 13 ditto 1200 720 120 85% H2 0.5 tungsten wire # 160 m substrate 480-501 5% BBr3 0.6 mm non-porous layer 5260 10% acrylic gray-brown, glossy C / N-containing layer (HV0.002 = 4020) nitrile according to chem. Analysis 14 ditto 1100 720 120 97% H2 1.03 Tungsten wire # approx. 1 m 1% ZrCl4 0.6 mm, light gray, pore-free 2% acetonitrile glossy 15 from the outside 800 100 315 97.5% H2 0.4 Böhler special steel 16 m substrate 666 with furnace- 1.5% TiCl4 KRS (12% Cr. 0.5% Mo, slightly porous, good layer 3070 heats 1% aceto- 1.1% W, 0.5% V, adhesive nitrile 2 , 05% C) matt gray glossy 16 ditto ditto ditto ditto ditto ditto tungsten 18 m substrate 473 matt gray glossy pore-free, well adhering layer approx. 3000 17 ditto ditto ditto ditto ditto ditto molybdenum 22 m substrate 336 matt gray glossy pore-free, good adhesive layer approx.

   3000 18 ditto ditto ditto ditto ditto ditto niobium 20 m substrate 137 matt gray glossy slightly porous, good layer approx. 2600 adhering 19 ditto ditto ditto ditto ditto ditto ditto Al2O3 22 substrate 1950 matt gray glossy pore-free, good adhering layer approx: 2600 20 ditto ditto ditto ditto ditto ditto porcelain 16 m substrate 1100 matt gray glossy pore-free, well adhering layer 3070 21 ditto ditto ditto ditto ditto ditto SiO2 22 m matt gray glossy slightly porous, good layer approx. 2500 adhering 22 ditto ditto ditto ditto ditto ditto steel 17 VDT 18 m substrate 274 matt gray glossy pore-free, good adhesion layer approx. 3200 23 ditto 580 100 480 ditto ditto Pyrex glass approx. 1 m gray glossy pore-free, good adhesion 24 ditto 450 150 240 ditto 0.5 pyrex glass some gray-violet glossy 25 from the outside 760 250 240 97% H2 0.5 Si3N4, matt gray 20 m substrate approx. 1000 with oven 1.5% TiCl4 good adhesion, light layer HV0.015 approx.

   3090 heated 1.5% acrylic porous nitrile 26 ditto 760 250 240 ditto 0.5 Harmettal S 4 22 m substrate 1310-1896 (68.5% WC, 22% TiC adheres well, light layer 2440 + TaC, 9.5 % Co) porous gray glossy 27 ditto 760 150 180 97.5% H2 0.5 Harmetall S 4 22 m 1.5% TiCl4 matt gray, good adhesion, light substrate 1890 1% butvroporous layer 2410-2580 e.g. reactor temper . Pressure reaction gas mixture total product micro hardness HV no. Heating C torr duration (in vol .-%) gas flow- substrate / color layer thickness m / kg / mmê 0.05 minutes flow (in wt .-%) appearance of (if nothing other 1 / min.

  Layer specified) 28 from outside 840 100 240 98% H2 0.5 hard metal S 4 15 m substrate 2070 with oven 1.25% matt gray good adhesion, pore layer 2910 heated TiCl4 free 0.75% acetonitrile boron 22 m substrate 3710 29 ditto 840 100 240 ditto 0.5 matt gray slightly porous, well adhesive layer 2190 30 ditto 800 20 240 97.5% H2 0.4 fireclay 8 m HV0.015 = approx. 2500 1.5% TiCl4 gray well adhesive, slightly 1 % Acetoporous nitrile 31 ditto 800 20 240 ditto 0.4 Pyrex glass 12 m HV0.015 = approx. 2700 Gray, good adhesion, slightly porous

 

Claims (1)

PATENTANSPRUCH Verfahren zum Beschichten von anorganischen Substraten mit Carbiden, Nitriden und/oder Carbonitriden des Eisens, Bors, Siliziums oder der Übergangsmetalle der Neben gruppen 4-6 des Periodischen Systems durch direkte thermische Reaktion von Eisen, Bor, Silizium oder Übergangsmetal- len der Nebengruppen 4-6 des Periodischen Systems oder Derivaten davon mit Kohlenstoff und Stickstoff liefernden Substanzen, dadurch gekennzeichnet, dass man als Kohlenstoff- und Stickstofflieferanten mindestens eine Verbindung der Formel I oder II X - C# N N # C - X1 - C # N oder (I) (II) verwendet, worin X Chlor, -CN, -CH2-NH-CH2-CN, -CH2-N--(CH2CN)2, EMI6.1 einen Alkylrest mit 1-6 Kohlenstoffatomen, der durch Halogenatome, EMI6.2 -Gruppen substituiert sein kann, einen Alkenylrest mit 2-4 Kohlenstoffatomen, PATENT CLAIM Process for coating inorganic substrates with carbides, nitrides and / or carbonitrides of iron, boron, silicon or transition metals from subgroups 4-6 of the periodic system by direct thermal reaction of iron, boron, silicon or transition metals from subgroups 4- 6 of the Periodic Table or derivatives thereof with carbon and nitrogen supplying substances, characterized in that at least one compound of the formula I or II X - C # NN # C - X1 - C # N or (I) (II ) where X is chlorine, -CN, -CH2-NH-CH2-CN, -CH2-N - (CH2CN) 2, EMI6.1 an alkyl radical with 1-6 carbon atoms, which is replaced by halogen atoms, EMI6.2 Groups can be substituted, an alkenyl radical with 2-4 carbon atoms, der durch Halogenatome oder EMI6.3 -Gruppen substituiert sein kann, einen Cycloalkylrest mit 3-6 Kohlenstoffatomen oder Arylrest mit 6-10 Kohlenstoffatomen, welche je durch Halogenatome, Methyl- oder EMI6.4 -Gruppen substituiert sein können und X1 einen Alkylenrest mit 1-10 Kohlenstoffatomen, Alkenylenrest mit 2-4 Kohlenstoffatomen, Phenylen- oder Cyclohexylenrest, welche je durch Halogenatome oder EMI6.5 -Gruppen substituiert sein können, einen Rest der Formel EMI6.6 darstellen, wobei R1 und R2 unabhängig voneinander Wasser stoff oder einen Alkylrest mit 1-4 Kohlenstoffatomen und m eine ganze Zahl von 4-7 bedeuten. by halogen atoms or EMI6.3 -Gruppen can be substituted, a cycloalkyl radical with 3-6 carbon atoms or aryl radical with 6-10 carbon atoms, which are each by halogen atoms, methyl or EMI6.4 -Gruppen can be substituted and X1 is an alkylene radical with 1-10 carbon atoms, alkenylene radical with 2-4 carbon atoms, phenylene or cyclohexylene radical, which are each by halogen atoms or EMI6.5 -Groups can be substituted, a radical of the formula EMI6.6 represent, where R1 and R2 are independently hydrogen or an alkyl radical having 1-4 carbon atoms and m is an integer from 4-7. 5 UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch, dadurch gekennzeich net, dass man eine Verbindung der Formel 1, verwendet worin X Chlor, -CN, -CH2-NH-CH2CN, -CH2N--(CH2CN)2, EMI7.1 einen Alkylrest mit 1-4 Kohlenstoffatomen, der durch Chloratome oder EMI7.2 -Gruppen substituiert sein kann, einen Alkenyl- oder Chloralkenylrest mit 2-4 Kohlenstoffatomen oder einen Phenylrest, der durch Halogenatome, Methyl- oder EMI7.3 -Gruppen substituiert sein kann, darstellt, wobei Rl und R2 unabhängig voneinander Wasserstoff oder einen Alkylrest mit 1 oder 2 Kohlenstoffatomen bedeuten. 5 SUBCLAIMS 1. The method according to claim, characterized in that a compound of the formula 1 is used in which X is chlorine, -CN, -CH2-NH-CH2CN, -CH2N - (CH2CN) 2, EMI7.1 an alkyl radical with 1-4 carbon atoms, which is replaced by chlorine atoms or EMI7.2 -Gruppen may be substituted, an alkenyl or chloralkenyl radical with 2-4 carbon atoms or a phenyl radical, which is by halogen atoms, methyl or EMI7.3 -Groups may be substituted, where Rl and R2 are independently hydrogen or an alkyl radical having 1 or 2 carbon atoms. 2. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man eine Verbindung der Formel II verwendet, worin X1 einen unsubstituierten Alkylenrest mit 1-4 Kohlenstoffatomen, einen unsubstituierten Phenylen- oder Cyclohexylenrest oder einen Rest der Formel EMI7.4 darstellt. 2. The method according to claim, characterized in that a compound of the formula II is used in which X1 is an unsubstituted alkylene radical having 1-4 carbon atoms, an unsubstituted phenylene or cyclohexylene radical or a radical of the formula EMI7.4 represents. 3. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass man Chlorcyan, Dicyan, Acetonitril, Propionitril, Acrylnitril, Bernsteinsäuredinitril oder Adipinsäuredinitril verwendet. 3. The method according to claim, characterized in that one uses cyanogen chloride, dicyan, acetonitrile, propionitrile, acrylonitrile, succinic acid dinitrile or adipic acid dinitrile.
CH170374A 1974-02-07 1974-02-07 Depositing carbide, nitride and carbonitride coatings - on inorg. substrates by using cyano cpds. as sources of carbon and nitrogen CH589723A5 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CH170374A CH589723A5 (en) 1974-02-07 1974-02-07 Depositing carbide, nitride and carbonitride coatings - on inorg. substrates by using cyano cpds. as sources of carbon and nitrogen
CA219,428A CA1047899A (en) 1974-02-07 1975-02-05 Process for coating inorganic substrates with carbides, nitrides and/or carbonitrides
FR7503703A FR2273080B1 (en) 1974-02-07 1975-02-06
SE7501315A SE410743B (en) 1974-02-07 1975-02-06 PROCEDURE FOR COATING INORGANIC SUBSTRATES WITH LAYERS OF CARBIDES, NITRIDES AND / OR CARBONITRIDES
DE19752505009 DE2505009C3 (en) 1974-02-07 1975-02-06 Process for coating inorganic substrates with carbides, nitrides and / or carbonitrides
BE153101A BE825238A (en) 1974-02-07 1975-02-06 PROCESS FOR FUELING AND / OR NITRURING MINERALS
AT92375A AT332697B (en) 1974-02-07 1975-02-06 PROCESS FOR COATING INORGANIC SUBSTRATES WITH CARBIDES, NITRIDES AND / OR CARBONITRIDES
GB534475A GB1489102A (en) 1974-02-07 1975-02-07 Process for coating inorganic substrates with carbides nitrides and/or carbonitrides
JP1617175A JPS5753308B2 (en) 1974-02-07 1975-02-07
US05/813,364 US4196233A (en) 1974-02-07 1977-07-06 Process for coating inorganic substrates with carbides, nitrides and/or carbonitrides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH170374A CH589723A5 (en) 1974-02-07 1974-02-07 Depositing carbide, nitride and carbonitride coatings - on inorg. substrates by using cyano cpds. as sources of carbon and nitrogen

Publications (1)

Publication Number Publication Date
CH589723A5 true CH589723A5 (en) 1977-07-15

Family

ID=4216623

Family Applications (1)

Application Number Title Priority Date Filing Date
CH170374A CH589723A5 (en) 1974-02-07 1974-02-07 Depositing carbide, nitride and carbonitride coatings - on inorg. substrates by using cyano cpds. as sources of carbon and nitrogen

Country Status (2)

Country Link
BE (1) BE825238A (en)
CH (1) CH589723A5 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096656B2 (en) 2004-05-17 2006-08-29 Bracker Ag Ring traveler and method for producing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096656B2 (en) 2004-05-17 2006-08-29 Bracker Ag Ring traveler and method for producing it

Also Published As

Publication number Publication date
BE825238A (en) 1975-08-06

Similar Documents

Publication Publication Date Title
US4196233A (en) Process for coating inorganic substrates with carbides, nitrides and/or carbonitrides
DE69213387T2 (en) Process for passivating the inner surface of a coke-forming reactor by depositing a ceramic coating, and process for pyrolysis of hydrocarbons
US8431190B2 (en) Method for depositing hard metallic coatings
US4239819A (en) Deposition method and products
DD155140A5 (en) METHOD FOR HIGH-TEMPERATURE TREATMENT OF CARBON-CONTAINING MATERIALS
DE69117385T2 (en) Process for producing a nitride or carbon nitride coating
US4698244A (en) Deposition of titanium aluminides
US4028142A (en) Carbo-nitriding process using nitriles
DE2306402A1 (en) Coating particles with wear resistant layers - by producing a fluidised bed using gas and particulate material of equal specific
DE3907693C2 (en)
CH589723A5 (en) Depositing carbide, nitride and carbonitride coatings - on inorg. substrates by using cyano cpds. as sources of carbon and nitrogen
DE2505009C3 (en) Process for coating inorganic substrates with carbides, nitrides and / or carbonitrides
DE1942292B2 (en) PROCESS FOR DEPOSITING A COATING
CH593345A5 (en) Depositing carbide, nitride and carbonitride coatings - on inorg. substrates by using cyano cpds. as sources of carbon and nitrogen
CA1047899A (en) Process for coating inorganic substrates with carbides, nitrides and/or carbonitrides
DE69915866T2 (en) METHOD FOR PRODUCING COATINGS ON TITANIUM BASE
DE69518586T2 (en) Process for the passivation of workpieces made of iron-nickel-based superalloys
DE2505010C3 (en) Method for producing diffusion layers from carbides, nitrides and / or carbonitrides
DE2600631A1 (en) Wear resistant coatings of carbide and/or nitride - obtd. by thermal decomposition of soln. contg. polyacrylamide and metal salt
DE2421131C2 (en) Process for the deposition of a hard metal alloy on a substrate
DE2505007C3 (en) Process for coating inorganic substrates with carbides, nitrides and / or carbonitrides
DE2944301A1 (en) STEEL MOLDED PART WITH A WEAR-RESISTANT COATING AND METHOD FOR THE PRODUCTION THEREOF
DE2634665A1 (en) Refractory carbides, nitrides and carbonitrides prodn. - using (poly)nitriles as sources of carbon and nitrogen
DE2505007B2 (en) PROCESS FOR COATING INORGANIC SUBSTRATES WITH CARBIDES, NITRIDES AND / OR CARBONITRIDES
CH593133A5 (en) Hard coating of carbides or (carbo)nitrides - applied by direct thermal reaction of iron, boron, silicon, etc., with di- or triazine cpd.

Legal Events

Date Code Title Description
PL Patent ceased