CH344473A - Process for the production of iron and steel sheets and strips with heat-resistant, electrically insulating coatings - Google Patents

Process for the production of iron and steel sheets and strips with heat-resistant, electrically insulating coatings

Info

Publication number
CH344473A
CH344473A CH344473DA CH344473A CH 344473 A CH344473 A CH 344473A CH 344473D A CH344473D A CH 344473DA CH 344473 A CH344473 A CH 344473A
Authority
CH
Switzerland
Prior art keywords
solution
layer
iron
strips
resistant
Prior art date
Application number
Other languages
German (de)
Inventor
Heinz Dr Keller
Brodt Rudolf
Original Assignee
Metallgesellschaft Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft Ag filed Critical Metallgesellschaft Ag
Publication of CH344473A publication Critical patent/CH344473A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/025Other inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

  

  Verfahren zur Herstellung von Eisen- und Stahlblechen und -bändern  mit hitzebeständigen, elektrisch isolierenden Überzügen    Zur Isolation von Eisen- und Stahlblechen, bei  spielsweise Magnetblechen, sind verschiedene Ver  fahren bekannt. Neben Verfahren, bei denen auf  mechanischem Weg eine Isolierschicht aufgebracht  wird, beispielsweise durch Bekleben mit Papier oder  durch Lackieren, sind auch schon Verfahren bekannt,  bei denen eine Oberflächenschicht nach Art der       Korrosionsschutzschichten    aufgebracht wurde, bei  denen die Schicht durch chemische Umsetzung einer  Lösung mit der zu isolierenden Oberfläche herbei  geführt wird.

   So wurde beispielsweise die betreffende  Metalloberfläche mit einer     Phosphatschicht    versehen,  indem man auf die     Metalloberfläche    eine Phosphor  säurelösung aufbrachte und einbrannte. Ein solches  Verfahren wurde beispielsweise so durchgeführt, dass  man die zu     phosphatierende    Oberfläche durch eine       Phosphorsäurelösung    hindurchlaufen liess und an  schliessend die erhaltene     Schicht    bei etwa<B>500'</B> gegebe  nenfalls unter Schutzgas aufbrannte.  



  Unter diesen bekannten Verfahren haben nach  physikalischen Methoden aufgebrachte Schichten den  Nachteil, dass sie nur als Endbehandlung durchgeführt  werden können, da sowohl die     Papierbeklebung    als  auch die Lackierung keine Glühoperation zum Weich  glühen des Materials aushalten. Ein weiterer Nachteil  dieser Isolationsschichten besteht in ihrer relativ  grossen Dicke. Sie setzen den Füllfaktor und damit  letzten Endes die Leistung der aus den Blechen her  gestellten elektrischen Apparaturen herunter.  



  Die chemisch aufgebrachten Schichten besitzen im  allgemeinen den Vorteil einer besseren Temperatur  stabilität und einer geringeren Dicke, was sich auf die  mögliche Leistung des elektrischen Aggregats günstig  auswirkt. Solche Schichten wurden beispielsweise aus       Phosphorsäurelösungen,    die z. B. 300 g/1     P205    in Form  von freier Phosphorsäure enthalten, aufgebracht.    Zum Zwecke der Isolation wurden auch schon in       Zinkphosphatbädern    oder in     Manganphosphatbädern     aufgebrachte     Phosphatschichten    verwendet. Diese  sind bis etwa<B>500',</B> höchstens<B>600'</B> hitzebeständig, so  dass sie Glühoperationen, wie sie beispielsweise an  Magnetblechen durchgeführt werden müssen, nicht  aushalten.  



  Die vorliegende Erfindung     betrifft    ein Verfahren  zur Herstellung von Eisen- und     Stahlblechen    und  -bändern mit hitzebeständigen, elektrisch isolierenden  Überzügen, das dadurch gekennzeichnet ist, dass auf  der Blechoberfläche ein Film einer Lösung, die als       schichtbildende    Komponente ein     Erdalkaliphosphat     enthält, aufgebracht und bei einer Temperatur zwi  schen 250 und 800  C aufgebrannt wird.  



  Die bei dem Verfahren verwendete Lösung kann  zusätzlich andere schichtbildende Komponenten ent  halten, insbesondere     Eisenmonophosphat,    welches  sich     durcn    den Kontakt der zu behandelnden Werk  stücke mit der Lösung beim Aufbringen des einzu  brennenden Lösungsfilms bildet. Auch andere schicht  bildende Komponenten, beispielsweise     Manganphos-          phat,    können zusätzlich in der Lösung vorhanden  sein. Vorzugsweise verwendet man solche zusätzliche  Komponenten jedoch nur in geringen Mengen, um  die Hitzebeständigkeit des Überzuges nicht zu beein  trächtigen.  



  Es kann in der Weise verfahren werden, dass die  mit der Isolierschicht zu bedeckende Metalloberfläche  mit einer Lösung benetzt wird, die beispielsweise       Monocalciumphosphat    und vorzugsweise ein Netz  mittel sowie gegebenenfalls Zusätze von anorganischen       inerten    Stoffen, z. B.     quellbare    Stoffe, wie     Aktivbento-          nit,    enthält und dieser Film dann bei erhöhter Tem  peratur, vorzugsweise bei Temperaturen über<B>300',</B>  aufgebrannt wird. Bei diesen höheren Temperaturen      läuft die     Schichtbildung    auch ohne Zusatz von Be  schleunigern sehr rasch ab, und es werden festhaftende,  chemisch und thermisch beständige Schichten von  hohem Isolationsvermögen erhalten.

    



  Diese Art der Schichtausbildung ist besonders bei  kaltgewalzten Magnetbändern vorteilhaft, da diese  noch     Entspannungsglühungen    bis zu<B>1000'</B> C unter  worfen werden müssen, ohne dass die Isolierwirkung  der Schicht verlorengehen darf.  



  Nach dem erfindungsgemässen Verfahren können  hitzebeständige Überzüge, die zur elektrischen Iso  lation, insbesondere von Magnetblechen, geeignet  sind und Temperaturen von etwa<B>800'</B> in Wasserstoff  atmosphäre oder Luft und bis 1000  in     inerter    Atmo  sphäre aushalten, erhalten werden. Je weniger andere  schichtbildende Phosphate als     Erdalkaliphosphate    an  der     Überzugsbildung    beteiligt sind, um so grösser ist  die Temperaturbeständigkeit der Schicht. Vorzugs  weise bringt man daher     Erdalkaliphosphatschichten,     insbesondere     Calciumphosphatschichten,    auf, die weit  gehend frei von andern Phosphaten sind.  



  <I>Beispiel</I>  200 g technisches     Doppelsuperphosphat        wurden    in  einem Liter Wasser gelöst, wobei der Rückstand und  das ausfallende unlösliche sekundäre bzw. tertiäre       Calciumphosphat    in Suspension gehalten wurde. Die  zu isolierende     Oberfläche    aus kaltgewalztem Magnet  band wurde mit dieser Lösung benetzt und anschlie  ssend in einem     Durchlaufofen    auf<B>500'</B> eine Minute  lang erhitzt.  



  Die so erhaltenen festhaftenden     Phosphatschichten     sind in Luft- oder Wasserstoffatmosphäre bis<B>800'</B>  beständig, in Stickstoffatmosphäre bis<B>1000'.</B> Es ist  vorteilhaft, hierbei den Glühofen mit Schutzgas, bei  spielsweise Stickstoff oder einem reduzierenden Schutz  gas, beispielsweise     gekraktem    Ammoniak, zu fahren,  da hierdurch eine     Zunderbildung    vermieden wird.



  Process for the production of iron and steel sheets and strips with heat-resistant, electrically insulating coatings For the insulation of iron and steel sheets, for example magnetic sheets, various processes are known. In addition to methods in which an insulating layer is applied mechanically, for example by gluing with paper or by painting, methods are also known in which a surface layer has been applied in the manner of corrosion protection layers, in which the layer is created by chemical reaction of a solution with the to the insulating surface is brought about.

   For example, the metal surface in question was provided with a phosphate layer by applying a phosphoric acid solution to the metal surface and baking it in. Such a method was carried out, for example, in that the surface to be phosphated was allowed to run through a phosphoric acid solution and then the layer obtained was burned on at about 500 ', if necessary under protective gas.



  Among these known methods, layers applied by physical methods have the disadvantage that they can only be carried out as a final treatment, since neither the paper pasting nor the coating can withstand an annealing operation to soften the material. Another disadvantage of these insulation layers is their relatively large thickness. They reduce the fill factor and ultimately the performance of the electrical equipment made from the sheet metal.



  The chemically applied layers generally have the advantage of better temperature stability and a smaller thickness, which has a favorable effect on the possible performance of the electrical unit. Such layers were, for example, from phosphoric acid solutions, which z. B. 300 g / 1 P205 in the form of free phosphoric acid are applied. Phosphate layers applied in zinc phosphate baths or in manganese phosphate baths have also been used for insulation purposes. These are heat-resistant up to about <B> 500 ', </B> at most <B> 600' </B>, so that they cannot withstand annealing operations such as those that have to be carried out on magnetic sheets, for example.



  The present invention relates to a process for the production of iron and steel sheets and strips with heat-resistant, electrically insulating coatings, which is characterized in that a film of a solution containing an alkaline earth phosphate as a layer-forming component is applied to the sheet surface and at a temperature between 250 and 800 C is fired.



  The solution used in the process can also contain other layer-forming components, in particular iron monophosphate, which is formed when the work pieces to be treated come into contact with the solution when the solution film to be fired is applied. Other layer-forming components, for example manganese phosphate, can also be present in the solution. However, such additional components are preferably used only in small amounts so as not to impair the heat resistance of the coating.



  The procedure can be that the metal surface to be covered with the insulating layer is wetted with a solution containing, for example, monocalcium phosphate and preferably a wetting agent and, where appropriate, additions of inorganic inert substances, e.g. B. contains swellable substances, such as active bentonite, and this film is then burned on at an elevated temperature, preferably at temperatures above 300 '. At these higher temperatures, the layer formation takes place very quickly even without the addition of Be accelerators, and firmly adhering, chemically and thermally stable layers of high insulation are obtained.

    



  This type of layer formation is particularly advantageous in the case of cold-rolled magnetic strips, since these still have to be subjected to stress-relieving annealing of up to 1000 ° C without the layer's insulating effect being lost.



  According to the process according to the invention, heat-resistant coatings which are suitable for electrical insulation, in particular magnetic sheets, and withstand temperatures of about 800 in a hydrogen atmosphere or air and up to 1000 in an inert atmosphere can be obtained. The less layer-forming phosphates other than alkaline earth phosphates are involved in the formation of the coating, the greater the temperature resistance of the layer. Preference is therefore given to alkaline earth phosphate layers, in particular calcium phosphate layers, which are largely free of other phosphates.



  <I> Example </I> 200 g of technical double superphosphate were dissolved in one liter of water, the residue and the insoluble secondary or tertiary calcium phosphate which precipitated being kept in suspension. The surface to be insulated made of cold-rolled magnetic tape was wetted with this solution and then heated to <B> 500 '</B> for one minute in a continuous oven.



  The firmly adhering phosphate layers obtained in this way are resistant in an air or hydrogen atmosphere up to <B> 800 '</B>, in a nitrogen atmosphere up to <B> 1000'. </B> It is advantageous here to use the annealing furnace with protective gas, for example nitrogen or a reducing protective gas, for example krakem ammonia, to drive, as this prevents scale formation.

 

Claims (1)

PATENTANSPRUCH I Verfahren zur Herstellung von Eisen- und Stahl blechen und -bändern, mit hitzebeständigen, elektrisch isolierenden Überzügen, dadurch gekennzeichnet, dass auf der Blechoberfläche ein Film einer Lösung, die als schichtbildende Komponente mindestens ein Erd- alkaliphosphat enthält, aufgebracht und bei einer Temperatur zwischen 250 und<B>800'</B> C aufgebrannt wird. UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass bei 400 bis 500 C eingebrannt wird. 2. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass die Lösung 100 bis 300 g P205/1 enthält. 3. PATENT CLAIM I Process for the production of iron and steel sheets and strips, with heat-resistant, electrically insulating coatings, characterized in that a film of a solution containing at least one alkaline earth phosphate as a layer-forming component is applied to the sheet metal surface and at a temperature between 250 and <B> 800 '</B> C is burned on. SUBClaims 1. The method according to claim I, characterized in that it is baked at 400 to 500 C. 2. The method according to claim I, characterized in that the solution contains 100 to 300 g of P205 / 1. 3. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass die Lösung als schichtbildende Komponente Monocalciumphosphat enthält. 4. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass die Lösung als schichtbildende Komponente ein technisches Superphosphat enthält. 5. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass die Lösung ein Netzmittel enthält. 6. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass die Lösung inerte Stoffe enthält. 7. Verfahren nach Patentanspruch I und Unter anspruch 6, dadurch gekennzeichnet, dass die Lösung inerte quellbare Stoffe enthält. B. Process according to claim 1, characterized in that the solution contains monocalcium phosphate as the layer-forming component. 4. The method according to claim I, characterized in that the solution contains a technical superphosphate as the layer-forming component. 5. The method according to claim I, characterized in that the solution contains a wetting agent. 6. The method according to claim I, characterized in that the solution contains inert substances. 7. The method according to claim I and sub-claim 6, characterized in that the solution contains inert swellable substances. B. Verfahren nach Patentanspruch I und Unter anspruch 7, dadurch gekennzeichnet, dass Aktiv- bentonit als Zusatz zur Lösung verwendet wird. 9. Verfahren nach Patentanspruch I, dadurch ge kennzeichnet, dass das Band durch die Lösung hin durchgeführt und der auf seiner Oberfläche verblei bende Film der Lösung eingebrannt wird. PATENTANSPRUCH 1I Eisen- und Stahlbleche und -bänder, hergestellt nach dem Verfahren gemäss Patentanspruch I, dadurch gekennzeichnet, dass sie eine hitzebeständige, vor wiegend aus Erdalkaliphosphat bestehende Isolier schicht auf der Oberfläche aufweisen. Method according to claim 1 and sub-claim 7, characterized in that activated bentonite is used as an additive to the solution. 9. The method according to claim I, characterized in that the tape is carried out through the solution and the remaining film of the solution on its surface is baked. PATENT CLAIM 1I Iron and steel sheets and strips, produced by the method according to patent claim I, characterized in that they have a heat-resistant insulating layer on the surface, consisting mainly of alkaline earth phosphate.
CH344473D 1954-09-04 1955-09-01 Process for the production of iron and steel sheets and strips with heat-resistant, electrically insulating coatings CH344473A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE344473X 1954-09-04
DEM0026799 1955-04-09

Publications (1)

Publication Number Publication Date
CH344473A true CH344473A (en) 1960-02-15

Family

ID=32714431

Family Applications (2)

Application Number Title Priority Date Filing Date
CH344473D CH344473A (en) 1954-09-04 1955-09-01 Process for the production of iron and steel sheets and strips with heat-resistant, electrically insulating coatings
CH356191D CH356191A (en) 1954-09-04 1956-03-28 Process for the production of iron and steel sheets and strips with heat-resistant, electrically insulating coatings

Family Applications After (1)

Application Number Title Priority Date Filing Date
CH356191D CH356191A (en) 1954-09-04 1956-03-28 Process for the production of iron and steel sheets and strips with heat-resistant, electrically insulating coatings

Country Status (1)

Country Link
CH (2) CH344473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0049077A1 (en) * 1980-09-25 1982-04-07 Westinghouse Electric Corporation Interlaminar coating compositions cured at low temperatures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0049077A1 (en) * 1980-09-25 1982-04-07 Westinghouse Electric Corporation Interlaminar coating compositions cured at low temperatures

Also Published As

Publication number Publication date
CH356191A (en) 1961-08-15

Similar Documents

Publication Publication Date Title
DE2545578A1 (en) COATING SOLUTION FOR THE DIRECT FORMATION OF INSULATING COATINGS ON ELECTRIC STEEL
DE1919997A1 (en) Insulating covers and their manufacture
DE2743859B2 (en) Process for the treatment of an object made of silicon-containing steel and provided with an insulating protective covering made of silicate
DE2014544C3 (en) A method of applying an insulating glass coating to the surface of a silicon steel material
DE1621533B2 (en) Process for the production of a vitreous coating with high electrical insulation and high heat resistance on a silicon steel sheet
DE2621875A1 (en) GRAIN ORIENTED SILICONE STEEL AND THE METHOD FOR MANUFACTURING IT
DE2640419C3 (en) Method of treating sponge iron
DE2160784B2 (en) PROCESS FOR THE PRODUCTION OF PROTECTIVE LAYERS ON OBJECTS MADE OF METAL BY APPLICATION OF POLYPHOSPHATES
CH344473A (en) Process for the production of iron and steel sheets and strips with heat-resistant, electrically insulating coatings
DE980071C (en) Solution and process for the production of heat-resistant phosphate layers for electrical insulation on iron and steel, in particular for the insulation of magnetic sheets
DE2907093A1 (en) AGENT AND METHOD FOR PRODUCING NON-METAL COATINGS ON IRON AND STEEL
DE1100422B (en) Process for the application of highly heat-resistant protective layers on metallic surfaces
AT201386B (en) Process for the pretreatment of sheet metal or strips prior to the application of a phosphate protective layer after the baking process
DE2431793A1 (en) TREATMENT METHODS OF THE SURFACE OF ALUMINUM OR ALUMINUM ALLOY
DE2436685A1 (en) PROCESS FOR BLOCK ANNEALING OF COLD-ROLLED STEEL
CH349678A (en) Process for the production of insulated sheets or strips
AT209661B (en) Process for applying highly heat-resistant protective layers to metallic surfaces
DE68923826T2 (en) Process for refining the magnetic areas of electrical steels.
DE976692C (en) Process for applying oxalate coatings to metals
DE1192488C2 (en) Process for phosphating iron and steel
DE2227707B2 (en) Process for the production of low-sulfur, secondary recrystallized electrical steel sheets or strips from iron-silicon alloys
DE1621533C (en) Process for the production of a glass-like coating with high electrical insulation and high heat resistance on a Sihciumstahlblech
DE1090916B (en) Use of alkaline earth phosphate solutions for the production of heat-resistant, electrically insulating coatings on magnetic sheets or strips and processes for their production
CH344127A (en) Process for the production of iron and steel sheets and strips with heat-resistant, electrically insulating coatings
AT205309B (en) Process for applying phosphate, oxalate or similar chemical protective layers