CH260483A - Nickel-iron alloy spring, especially for thermocompensated oscillating systems. - Google Patents
Nickel-iron alloy spring, especially for thermocompensated oscillating systems.Info
- Publication number
- CH260483A CH260483A CH260483DA CH260483A CH 260483 A CH260483 A CH 260483A CH 260483D A CH260483D A CH 260483DA CH 260483 A CH260483 A CH 260483A
- Authority
- CH
- Switzerland
- Prior art keywords
- nickel
- thermocompensated
- spring
- iron alloy
- alloy spring
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/227—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
Landscapes
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Springs (AREA)
Description
Zusatzpatent zum Hauptpatent Nr. 227628. Feder aus Nickel-Eisenlegierung, insbesondere für thermokompensierte Schwingsysteme. Im Hauptpatent Nr. 227628 ist eine Feder aus Nickel-Eisenlegierung mit härtendem Be- rylliumzusatz, insbesondere für thermokom- pensierte Schwingsysteme beschrieben, die da durch gekennzeichnet ist, dass die Legierung aus 25 bis 40% Nickel, 0,5 bis 2 % Beryllium, 0,5 bis 2 % Titan, 5 bis 12 ,
wo mindestens eines Metalles der Chromgruppe, 0,2 bis<B>0,8%</B> Koh lenstoff und dem Rest im wesentlichen aus Eisen besteht, wobei diese Mengenverhältnisse so zueinander abgestimmt sind, dass ausser der erzielten hohen Härte und dem kleinen Tem peraturkoeffizienten des Elastizitätsmoduls der Feder die Temperatur-Gangkurve eines mit dieser Feder betriebenen Schwingsystems im Temperaturbereich von 0 bis -f- 40' prak tisch geradlinig verläuft.
Fabrikationsversuche mit grösseren Nor malschmelzen haben nun ergeben, dass der Curie-Punkt durch den Kohlenstoffzusatz wie erwartet nach oben verschoben wurde, aber weiter als ursprünglich an kleinen Versuchs schmelzen ermittelt werden konnte. Für eine Reihe von Anwendungen ist es erwünscht, dass der Curie-Punkt zwischen + 400 und -i- <B>801</B> C liegt. Bei Schmelzen mit über 0,2 Kohlenstoff liegt der Curie-Punkt, wie an den grossen Normalschmelzen festgestellt wurde, zwischen -f- 80" und + 100 C..
Um den Curie-Punkt in den für gewisse Fälle er wünschten Bereich von -j-- 400 bis + 8011 C zu verlegen, muss der Kohlenstoffgehalt unter 0,2 % gehalten werden.
Additional patent to main patent no. 227628. Spring made of nickel-iron alloy, especially for thermo-compensated oscillating systems. The main patent no. 227628 describes a spring made of nickel-iron alloy with hardening beryllium additive, especially for thermocompensated oscillating systems, which is characterized in that the alloy consists of 25 to 40% nickel, 0.5 to 2% beryllium, 0.5 to 2% titanium, 5 to 12,
where at least one metal of the chromium group, 0.2 to 0.8% carbon and the remainder consists essentially of iron, these proportions being matched to one another so that in addition to the high hardness achieved and the small Tem perature coefficient of the elastic modulus of the spring, the temperature-course curve of an oscillating system operated with this spring in the temperature range from 0 to -f- 40 'runs practically in a straight line.
Manufacturing tests with larger standard melts have now shown that the Curie point was shifted upwards as a result of the addition of carbon, but could be determined further than originally on small test melts. For a number of applications it is desirable that the Curie point be between + 400 and -i- 801 C. For melts with more than 0.2 carbon, the Curie point, as has been determined in the large normal melts, is between -f- 80 "and + 100 C ..
In order to move the Curie point in the range from -j-- 400 to + 8011 C, which is desired for certain cases, the carbon content must be kept below 0.2%.
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH260483T | 1944-01-25 | ||
CH227628T | 1944-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
CH260483A true CH260483A (en) | 1949-03-15 |
Family
ID=25727128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH260483D CH260483A (en) | 1944-01-25 | 1944-01-25 | Nickel-iron alloy spring, especially for thermocompensated oscillating systems. |
Country Status (1)
Country | Link |
---|---|
CH (1) | CH260483A (en) |
-
1944
- 1944-01-25 CH CH260483D patent/CH260483A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH536362A (en) | Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties | |
US2693413A (en) | Alloy steels | |
CH260483A (en) | Nickel-iron alloy spring, especially for thermocompensated oscillating systems. | |
DE875372C (en) | Nickel-iron alloy spring with hardening beryllium for thermo-compensated oscillating systems | |
US2395608A (en) | Treating inherently precipitationhardenable chromium-nickel stainless steel | |
CH227628A (en) | Nickel-iron alloy spring, especially for thermocompensated oscillating systems. | |
DE1483037B2 (en) | APPLICATION OF HOT-COLD OR COLD FORMING OR THE COMBINATION OF THE BOTH PROCESSES ON COMPONENTS MADE OF HIGH-TEMPERATURE STEEL | |
DE941797C (en) | Ferritic chromium-aluminum, chromium-silicon and chromium-aluminum-silicon steels for objects that have to endure a high permanent load above 800íÒ | |
DE1133443B (en) | Nickel alloy thermocouple | |
DE880449C (en) | Compensation process for the production of a modulus of elasticity that changes in a predetermined manner with temperature | |
DE585151C (en) | Nickel-iron alloy spring, especially for thermocompensated oscillating systems | |
AT264156B (en) | Piezoelectric pressure transmitter | |
CH223362A (en) | Process for the heat treatment of iron alloys. | |
Lehfeldt | The Normal Law of Progress | |
DE570232C (en) | Steel with high resistance to deformation at temperatures of 800 800 and above | |
DE731973C (en) | Process to increase the resistance to breakage of ferritic and ferritic-pearlitic steels under permanent stress and temperatures above 500ÒC | |
DE725586C (en) | Eligible nickel alloys | |
DE870762C (en) | alloy | |
AT208380B (en) | Process for increasing the resistance to intergranular corrosion of austenitic or predominantly austenitic steel alloys by means of stabilization annealing | |
CH166535A (en) | Nickel iron alloy spring, especially for thermo-compensated oscillating systems. | |
AT48253B (en) | Pole shoe housings for electrical measuring instruments according to the Deprez system. | |
CH306697A (en) | Iron-nickel-cobalt alloy, particularly suitable for watch springs. | |
DE767720C (en) | The use of a steel alloy for superheaters and similarly stressed components | |
DE881955C (en) | Process for the production of a metallic material with a modulus of elasticity that is independent of the temperature or that changes in a desired manner with the temperature | |
AT233849B (en) | Nickel-chromium-titanium-aluminum alloys |