CA2919554C - Temperature management system - Google Patents

Temperature management system Download PDF

Info

Publication number
CA2919554C
CA2919554C CA2919554A CA2919554A CA2919554C CA 2919554 C CA2919554 C CA 2919554C CA 2919554 A CA2919554 A CA 2919554A CA 2919554 A CA2919554 A CA 2919554A CA 2919554 C CA2919554 C CA 2919554C
Authority
CA
Canada
Prior art keywords
reservoir
management system
temperature management
heat
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CA2919554A
Other languages
French (fr)
Other versions
CA2919554A1 (en
Inventor
Jan Franck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2919554A1 publication Critical patent/CA2919554A1/en
Application granted granted Critical
Publication of CA2919554C publication Critical patent/CA2919554C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/003Central heating systems using heat accumulated in storage masses water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/10Fire place
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • F24F2005/0025Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice using heat exchange fluid storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Central Heating Systems (AREA)

Abstract

The invention relates to a temperature management system for a private household or a public building. Temperature management systems are known to be elaborate and expensive. The system of the present invention uses a hot reservoir, a cold reservoir and at least one solar collector installed outdoors, which is coupled to the hot reservoir or to the cold reservoir for the purpose of heating or cooling the respective reservoir.
A heat transfer medium circulates in a circuit through the heating spiral or through the cooling spiral. Valves are set so that the circuit is closed in a daytime operation via the heating spiral or in a nighttime operation via the cooling spiral. In the daytime operation heat is transported from the solar collector to the hot reservoir. In the nighttime operation heat is transported from the cold reservoir to the solar collector.

Description

Temperature Management System DESCRIPTION
The invention is directed to a temperature management system, especially for a private household or a public building.
The state of the art now includes hot water solar systems in which water heated by one or more solar collectors is used to heat or reheat a water supply in a hot water container through a spiral heat exchanger. The hot water container can, for example, be coupled with a central heating system that distributes the stored heat via radiators in the relevant apartment, as required.
io For example, examples of so-called solar or sun heating systems in a number of variants are presented on page 743 of Vo(ger, Karl: "Haustechnik"
("Buildings Technology7 Figure 743.1 shows a system that is primarily used to generate hot water and Figure 743.3 shows a solar absorber roof with heat pump for room heating.
One disadvantage of such installations is that such solar heating systems are comparatively elaborate and expensive and can be used only for heating purposes or, at most, also for generating hot water, whereas sometimes, namely on very hot days in particular, there is a need for cooling that such a solar heating system, by its very nature, is not able to satisfy.
Admittedly, there are air conditioning systems for this purpose which are installed in addition to the heating system already present. There are fairly small air conditioning devices, the installation of which requires that pipes and/or hoses be laid in addition to the pipes and hoses already present in the building for the heating system, whereby these additional pipes and/or hoses connect one or more indoor devices and at least one outdoor device, and there are also larger air conditioning systems which require that the air in the relevant rooms be circulated, whereby the exhaust air from the relevant rooms
2 is either filtered and recirculated or else replaced by fresh additional air, which has to be pre-heated, possibly by using waste heat gained from the exhaust air. However, such air conditioning systems are very expensive and, since they are mostly in use for only a few weeks of the year, altogether unprofitable.
The disadvantages of the state of technology described above result in the problem which initiated the invention, namely that of creating a temperature management system which is in a position not only to heat but also to provide for cooling of a private household or public building, as needed, without one having to procure and install an elaborate, expensive air conditioning system.
With a proper temperature management system, this problem can be solved through one hot reservoir and one cold reservoir which are or can be coupled with at least one solar collector or heat exchanger that is installed outdoors for the purpose of heating or cooling the respective reservoir. Here, the hot reservoir can be designed as a hot water container and the cold reservoir as a cold water container.
Thus there is not just one hot reservoir or hot water container as with conventional heating systems, but also one cold reservoir or cold water container in addition, so that the desired temperature is available for each use case at all times, and in particular so that cooling is possible even on hot days.
In that two containers that are separated from each other are used to supply a medium with two different temperature levels, these containers are available for different applications at all times, independently of each other.
It has proven to be advantageous for the hot water container and the cold water container to be coupled or capable of being coupled to one or more common solar collectors and/or heat exchangers for the purpose of heating or cooling the respective water reservoir. This makes it possible for energy to be absorbed from or supplied to the environment. Whereas conventional solar collectors are optimized primarly for capturing as much solar radiation as possible and converting it to usable heat, heat exchangers also allow direct
3 exchange of energy with a surrounding medium, in particular air or water.
There are several ways in which one can arrange heat exchangers: they can be integrated with solar collectors or realized as heat exchangers that are separate from the solar collectors. Integration of a heat exchanger with a solar collector could be direct, in that the solar collector is designed without insulation, or indirect through a joint arrangement of coiled pipes of the solar collector and of the heat exchanger on a common frame. In the latter case, a coiled pipe of the heat exchanger could be installed on the reverse side of the coiled pipe of the solar selector, and these can then, for example, be connected in parallel or selectively, that is, separately from each other, in order to accommodate the applicable requirements and environmental conditions.
Furthermore, one can use air heat exchangers, which are installed in the open and bathed only by air. On the other hand, these can also be designed for exchange of heat with the earth or ground water; a particularly efficient method would be to integrate them into a subterranean water cistern, where primary heat exchange with the contents of the water cistern is possible.
The solar collectors and heat exchangers in use should be capable of maximum heat exchange with their environment, in particular designed without any insulation whatsoever. This certainly cannot be taken for granted in the case of solar collectors because they may well be thermally insulated for smooth operation during the winter.
The invention also provides that the pipe and hose lines between the solar collectors and/or heat exchangers on the one hand, and the hot water and/or cold water container on the other hand, are thermally insulated so that the heat that is released or absorbed is transported to the reservoir containers with as little bss as possible.
The pipe and hose lines between the solar collectors and/or heat exchangers on the one hand, and the hot water and/or cold water container on the other hand, should be thermally closed to form a circuit in which a heat transfer
4 medium, preferably a liquid heat transfer medium, especially water, circulates.
This makes it possible for energy to be transported without interruption.
Its part of the invention that at least one pump and/or at least one compressor is installed in a circuit for a heat transfer medium. This pump or compressor secures a defined circulation of the heat transfer medium.
The invention can be refined in that at least one expansion valve is installed in a circuit for a heat transfer medium. The structure of a heat pump is created when an expansion valve supplements a compressor; that is, when a compressor is installed upstream from a heat exchanger and an expansion io valve is installed downstream from this heat exchanger, then the pressure and with it, above all, also the temperature level at this heat exchanger can be raised, and with that a release of heat is initiated there.
If, conversely, an expansion valve is located upstream from a heat exchanger and a compressor downstream from this same heat exchanger, then the pressure in the area of this heat exchanger and with it also the temperature level is lowered, so that an absorption of heat is initiated there.
The pipes and hoses from/to the solar collectors and heat exchangers should be designed as pressure pipes / pressure hoses so that these - especially in the context of a heat pump structure - can be placed under pressure in order to bring about a release of heat at the solar collectors or heat exchangers.
For the same reason. the solar collectors and heat exchangers themselves should be designed to be compression-proof, for example for a pressure burden of up to 5 atm or more, preferably for a pressure burden of up to 10 atm or more, especially for a pressure burden of up to 20 atm or more.
In the interests of minimizing loss of heat, the invention recommends that the hot water container and/or the cold water container be designed for minimal heat exchange with their respective environments, and that they be, in particular, equipped with intensive thermal insulation. This thermal insulation should be conceived so well that once a temperature level has been achieved, it can be kept fairly stable for several hours, in particular for at least roughly 12 hours, that is, for example, the temperature should deviate by at most
5 5 degrees: AT 5 5 C for At 5 12 hours, at least insofar as no heat is taken from or transferred to the container in question. This can be done, for example, by means of thermal insulation with so-called vacuum insulation panels, whereby an airtight hull, for example of aluminium or high barrier foil, is wrapped around a porous core and then evacuated after airtight sealing. There is no transport of heat within the evacuated pores, neither by convection nor conduction.
Further advantages result from the fact that the cold water container is installed underground, in particular in the form of a cistern. Then, the container is in direct contact with deeper layers of the earth which are not exposed to frost in the winter and which in the summer do not become warmer than approximately 10 to 15 C, which is much cooler than the heat of the air. For this reason, thermal insulation of such a cold reservoir is superfluous on the one hand, and on the other hand intensive thermal contact with the surrounding earth can even counteract heating of the contents of the container to more than the aforementioned 10 to 15 C even if the air does not cool off during especially balmy summer nights, in which case the solar collectors and air heat exchangers according to the invention would not provide sufficient cooling.
The hot water container and/or cold water container should have a pressure compensating valve so that excessive pressure cannot build up as a result of temperature changes. On the other hand, it would also be possible not to fill these containers completely but to leave an air or gas bubble that can expand as needed. A pressure compensating container would also be conceivable.
On the other hand, it can be advantageous for the hot water container and/or the cold water container to be equipped with a refilling system or a level regulator. This allows one to ensure that the heat exchangers in the container . 6 are completely submerged and, secondly, an air bubble, insofar as desired, is kept in the container.
Furthermore, one can have the hot water container and/or the cold water container equipped with a temperature regulator. Then, one is pursuing the objective of maintaining a temperature level inside the container which is or can be prescribed.
In the context of such a temperature regulation, a regulator can operate on a servo component in the form of a pump or a compressor in order to influence the flow rate or velocity within a circuit and in this way control or regulate the heat being transported. A circuit between the container in question and a solar collector or external heat exchanger is to be preferred for such regulation.
The hot water container and/or the cold water container should have a heating or cooling spiral through which the heat transfer medium circulates for the purpose of heat exchange.
Although the feeding circuits of the two containers could indeed be separated from each other, so that completely different media could circulate in them (for example, water with an antifreezing agent in the circuit of the cold water container and oil in the circuit of the hot water container, this is not to be regarded as being preferable. For the option of coupling to the same solar collectors or heat exchangers is greatly facilitated by use of a single heat transfer medium. The invention recommends water or oil for this purpose, possibly with additives such as antifreezing agents. This also allows for direct coupling between the two containers, as is explained in greater detail below.
The hot water container according to the invention should be fitted with a heating spiral that is installed in its lower area. The heated reservoir liquid rises from there within the container to the top, where the heat stored in it can be extracted directly via another connection or via a heat exchanger.

The cold water container, on the other hand, should be fitted with a cooling spiral that is installed in its upper area. The cooled reservoir liquid sinks from there within the container to the bottom and collects there, that is, preferably in the lower area, where heat dissipation through secondary heat exchangers is possible or the cool liquid can be siphoned off.
The invention recommends that the discharge of a pump or a compressor be directed toward a hot water container. When such a conveyance facility is located upstream from a hot water container, and, on the other hand, an expansion valve downstream from the hot water container, then the to temperature will be raised there; that is, this will cause release of heat to the reservoir liquid of the hot water container.
Another construction regulation says that the discharge of a pump or compressor is to be directed away from a cold water container. lf, accordingly, such a conveyance facility is located downstream from a cold water container and, on the other hand, an expansion valve is installed upstream from the cold water container, then the temperature within the cooling spiral of the cold water container goes down, thus bringing about absorption of heat by the reservoir liquid of the cold water container.
With one (a daytime) operating mode, heat is transported from one or more solar collectors and/or heat exchangers to the hot water container.
With another (a nighttime) operating mode, on the other hand, heat is transported from the cold water container to one or more solar collectors and/or heat exchangers.
Moreover, one can run a mixed operating mode m which heat is transported directly from the cold water container to the hot water container.
One or more radiators can be connected to the hot water container, especially by means of a spiral heat exchanger installed in the hot water container, ' 8 through which a heat transfer medium, preferably a liquid heat transfer medium, circulates in order to distribute the heat from the hot water container to one or more radiators.
On the other hand, it is also possible that one or more hot water consumers are connected to the hot water container, either directly or by means of a heating spiral installed in the hot water container, through which a heat transfer medium, preferably a liquid heat transfer medium, circulates in order to distribute the heat from the hot water container to one or more hot water consumers, for example to a warm shower, a hot water tap in the kitchen, etc.
io Yet another possibility is that one or more radiators are also attached to the cold water container, in particular through a cooling spiral installed in the cold water container, through which a heat transfer medium, preferably a liquid heat transfer medium, circulates in order to transport the heat absorbed by the radiators to the cold water container. With that, a pleasant indoor temperature can be maintained on warm and hot days.
Finally, the invention's doctrine allows for one or more cold water consumers to be connected to the cold water container either directly, so that the cooled reservoir liquid is directed in the form of cold water to a consumer, for example a cold shower, or indirectly by means of a spiral heat exchanger installed in the 2) cold water container, through which a heat transfer medium, preferably a liquid heat transfer medium, circulates in order to direct the heat from one or more cold water consumers, for example of a cold shower, to the cold water container.
Further attributes, details, advantages and effects on the basis of the invention are implied by the following description of a preferred embodiment of the invention as well as on the basis of the drawing, whereby:
Figure 1 shows a first embodiment of the invention in a schematic view, Figure 2 shows a second embodiment of the invention in a representation which corresponds to Figure 1, and Figure 3 shows a third embodiment of the invention in a representation which corresponds to Figure 1.
The underlying principle of the invention can be seen in the attached Figure 1, which schematically reflects part of a building installation, namely a Temperature Management System 1.
On the roof ot the building in question there is one, or preferably two or more solar collectors 2, each with at least one supply point 3 and at least one return io point 4. For each collector there is also just one supply rail 5 and just one return rail 6 internal to it, and these are connected with each other by several parallel ribbon conductors 7. Two or more solar collectors are connected with each other in that their supply rails 5 are connected with each other on the one hand, and their return rails 6 are connected with each other on the other hand, so that altogether, i.e. over all solar collectors, there is just one common supply rail and just one common return rail, whereby the ribbon conductors 7 are all connected in parallel.
As is generally customary with hot water solar systems, the ribbon conductors 7 are flowed through upward because the medium that is heated in them rises.
The solar collectors 2 should not be thermally insulated from their surroundings. They can, for example, have a metal plate which can be blackened and with which the ribbon conductors 7 are in thermal contact.
As is customary for solar heating, the solar collectors 2 are coupled with one hot reservoir 8, which is usually designed as a hot water container. The latter contains, preferably in its lower area, a heat exchanger 9, preferably in the form of coiled tubing. This heat exchanger 9 is connected with the row of solar collectors 2 by means of one supply pipe 10 and one return pipe 11, resulting in a closed loop for a heat transfer medium. A pump 12 or a compressor is provided to keep the heat transfer medium flowing.
The heat transfer medium flowing in a circuit is preferably liquid, especially water. It can contain an antifreezing agent so that its permissible temperature range also covers outdoor temperatures under 0 C and/or it can be kept under pressure so that it stays in liquid form even if it heats up to temperatures above 100 C, as could happen, for example, if a circulation pump were to fail.
Circulation can be interrupted by means of valves 13, 14.
The hot reservoir 8 is preferably thermally insulated, for example by means of vacuum insulation panels, and can be provided with a pressure equalizer, for example a pressure relief valve to the atmosphere. Level measurement can likewise be provided, as can a temperature measurement at one or more places in the hot reservoir 8.
The upper area of the hot reservoir 8 contains a second pipe coil as a second heat exchanger 15. Its two connector ends 16, 17 are connected via one pipe 18, 19 each and one shut-off device 20, 21 each with one distribution rail 22, 23 each, to which one or more, preferably all, of the household's radiators 24 are attached. The distribution rails 22, 23 may also be referred to as a distributing and collecting manifold.
Thermostats, which are not included in the diagram, 20 can be used to control flow through the radiators 24 individually, in accordance with actual heating requirements.
Also, warm water can be heated by or diverted from the hot reservoir 8, say for hot water for the kitchen or bathroom. This is not included in the diagram.
Furthermore, the hot reservoir 8 can be provided with supplementary heating, for example in the form of a gas burner, oil burner or the like.

= CA 02919554 2016-01-27 The system components described above are suitable only for heating the rooms in the household and for generating hot water. Cooling with the components described above would be just as unlikely as nighttime operations, inasmuch as the sun does not shine during the night, whence the hot reservoir 8 could not be reheated by the solar collectors 2.
However, if the hot reservoir 8 is sufficiently large, for example with a volume of 1,000 liters or more, preferably with a volume of 2,000 liters or more and especially with a volume of 4,000 liters or more, and if moreover it has optimal thermal insulation, and if it has been heated to a temperature of, for example, 50 C or more, preferably 60 C or more, then it might be able to keep its temperature overnight, maintaining its heating operations until the next morning. Conventional solar collectors 2 would be inactive during the night.
However, the system according to the invention also has a cold reservoir 25, likewise preferable in the form of a water tank or a container, whereby the water in it, which serves as a heat storage medium, preferably also contains an antifreezing agent so that it stays in its liquid state even at temperatures well under 0 C. Basically, the cold reservoir 25 can have the same construction as the hot reservoir 8, that is, for example, it can have thermal insulation, a pressure equalizer or relief, a refilling system, level measurements and possibly one or more sensors for measuring the temperature in its interior.
A heat exchanger 26 in the form of a pipe coil or the like is installed in the upper area of the cold reservoir 25 and its connector ends 27 and 28 are connected via one valve 29, 30 each or other shut-off device with the supply and return pipe respectively so that after the valves 13 and 14 have been closed and the valves 29 and 30 opened, circulation through the solar collectors 2 no longer continues through the heat exchanger 9 in the hot reservoir 8, but through the heat exchanger 26 in the cold reservoir 25. The heat transfer medium can then be kept in motion by a further pump 31 or a compressor.

With that, a so-called night operations mode is possible, as follows:
When the valves 13, 14 are closed during the night and the hot reservoir 8 is working in full storage mode, the valves 29, 30 are opened so that now the cold reservoir 25 communicates with the solar collectors 2. The solar .. collectors 2 are not insulated and can even be designed as heat exchangers which, for example, exchage heat with the surrounding air.
When the outdoor temporature has gone down at night, for example to 10 C
or below, pump 31 is turned on and now the heat transfer medium circulates back and forth between the heat exchanger 26 and the solar collectors 2 within o the circuit 10, 11. In doing so, this medium - preferably water - cools off in the solar collectors 2 or external heat exchangers accordingly and when it flows back to and enters the heat exchanger 26 of the cold reservoir 25, it extracts energy from the cold reservoir, which energy is in turn released in the solar collectors 2 or external heat exchangers. Thus the cold reservoir 25 can be cooled, in any case to the outdoor temperature near the solar collectors 2.
When the outdoor temperature rises again in the morning, the valves 29, 30 are closed again and the cold reservoir 25 switches to storage mode while the hot reservoir 8 is connected with the solar collectors again when the valves 13, 14 are opened again. It is advisable not to turn on the pump 12 31 during a certain transition time but to wait until the temperature of the heat transfer medium in the solar collecors 2 has reached the temperature level in the connected hot or cold reservoir 8, 25.
Thus there are actually four operating modes, namely, in addition to day and night operations there is also a morning and an evening mode, whereby certain valves 13, 14, 29, 30 can be opened, but neither pump 12 nor pump 31 is activated while the hot reservoir could be cooled or the cold resevoir warmed.
The cold reservoir 25 also has a second heat exchanger 32, preferably likewise in the form of a pipe coil, in particular in the lower area of the cold . CA 02919554 2016-01-27 , reservoir 25. As is the case with the hot reservoir 8, the cold reservoir 25 can likewise take the form of a somewhat cylindrical vessel standing upright. The two connector ends of the second heat exchanger 32 in the cold reservoir 25 are connected via one of the pipes 35, 36 each and one shut-off device 37, 38 each with one of the two heating distribution rails 22, 23 to which one or more, preferably all, of the radiators 24 of the household are attached.
Thermostats, not shown here, can be used to regulate the flow through the radiators 24 individually, in accordance with current requirements for cooling.
Since the heat transfer medium in the circuit 22, 23 33, 34, 35, 36 is at a low temperature level, for example at 10 C or below, the so-called radiators are not used to heat the rooms but to cool them off, i.e. they absorb heat and take it away to the cold reservoir 25, the temperature of which rises slowly.
However, if the cold reservoir 25 is sufficiently large, for example with a volume of 1,000 liters or more, preferably a volume of 2,000 liters or more, especially with a volume of 4,000 liters or more, and if moreover it has optimal thermal insulation, and it it has been cooled during the night to a temperature of, for example, 10 C or lower, preferably 5 C or lower, then it might be able to keep its temperature during the day, and maintain its cooling operations during the day and especially throughout the afternoon.
Also, cold water can be generated by or diverted from the cold reservoir 25, say for cold water for kitchen or bathroom. This is not included in the diagram.
The embodiment 1' according to Figure 2 has undergone a few, but functionally especially advantageous changes relative to the embodiment according to Figure 1.
The changes pertain solely to the circuit through the solar collectors 2'.
This circuit then uses a heat transfer medium which evaporates when heat is supplied at low pressure but then condenses again after compression to higher = CA 02919554 2016-01-27 pressure and release of heat. Thus operation like that of a heat pump is possible.
Compressors 12', 31' are used for this purpose instead of pumps 12, 31, and in addition a throttle or expansion valve 39, 40 is used on the other side of the relevant heat exchanger 9', 26'.
If the valves 29', 30' are closed and the valves 13', 14' are open, then the heat transfer medium is compressed by the compressor 12' and condenses with release of heat in the heat exchanger 9' being operated as a condenser. The medium undergoes a reduction of pressure in the valve 39 and the expanded medium ultimately evaporates with absorption of heat in the solar collectors 2' being operated as vaporizers. The advantage of this arrangement is that heat transport during the day from outdoors to indoors also works when the outdoor temperatures are relatively low.
Night operations, when the valves 13', 14' are closed and the valves 29', 30' are open, proceed similarly. The compressor 31', in contrast to the compressor 12', is installed so that it exerts a compressing effect on the medium flowing to the solar collectors 2', which releases heat to condense in the solar collectors 2' being operated as a condenser. The medium, which is still flowing, ultimately undergoes a reduction of pressure in the valve 40 and the expanded medium then absorbs heat to evaporate in the heat exchanger 26', which is being operated as a vaporizer.
The advantage of this arrangement is that the heat transport during the night from indoors to outdoors also works when the outdoor temperatures are relatively high, as during a balmy summer night. Even with outdoor temperatures such as 15 C or higher, it is still possible to cool the cold reservoir 25' to 5 C or lower; if antifreezing agents are used, temperatures within the cold reservoir could conceivably even lie under 0 C.

Figure 3 depicts an improved embodiment of a temperature management system 1" according to the invention which is based on the arrangement of Figure 2 and also works in accordance with the heat pump principle. However, here there is a total of only one single heat pump 41 with one compressor 42, 5 one condensation container 43, one expansion valve 44 and one evaporation container 45, which are connected in this order with each other to form a circle.
The condensation container 43 contains a heat exchanger 46, for example in the form of a pipe coil, which can be coupled via valves 13", 14" with the heat exchanger 9" within the hot reservoir 8".
o In a similar way, the evaporation container 45 has a heat exchanger 47 for example in the form of a pipe coil, which can be coupled via valves 29", 30"
with the heat exchanger 26" within the hot reservoir 25".
The supply and return pipes 10, 11 to and from the solar collectors 2" can be connected via the valves 48, 49 with the heat exchanger 46 in the 15 condensation container 43 or via the valves 50, 51 with the heat exchanger 47 in the evaporation container 45.
Various operating modes are possible, depending on whether the valves 13", 14", 29", 30", 48, 49, 50, 51 are open or closed.
With normal daytime operation, the valves 13", 14" and 50 and 51 are open and the remaing valves are closed - the hot reservoir 8" is charged via the solar collectors 2". The compressor 41 and/or additional circulation pumps are open in full daytime operation but still closed during preparatory morning operation.
With the nighttime operation described above, the valves 29", 30", 48 and 49 are open and the other valves are closed - the cold reservoir 25" is cooled off via the solar collectors 2" or external heat exchangers. The compressor 41 and/or further circulation pumps are on during full nighttime operation, but are still closed during preparatory evening operation.
In addition, this temperature management system 1" also allows a so-called fifth operating mode. It's defining characteristic is that the valves 13", 14"
and 29" und 30" are open while the other valves 48 to 51 are closed. Now the two reservoirs, namely the hot reservoir 8" and the cold reservoir 25", are coupled directly with each other via the heat pump 41, i.e. the hot reservoir 8" is heated and at the same time the cold reservoir 25" is cooled.
This mixed operating mode is frequently advisable when a reservoir has not io yet been charged and at the same time the other reservoir is already partly discharged. This frequently happens when the weather changes, for example when a cold day is followed by a mild night, so that due to the ongoing heating during the day the hot reservoir was not charged sufficiently, and, at the same time, the cold reservoir was not able to cool off fast enough during the evening.
The advantage of such a mixed operating mode is that there is no exchange of heat with the atmosphere but that instead of this, the heat pump's entire output can be used in its entirety.
*.*

= CA 02919554 2016-01-27 Reference Signs 1 Temperature Management System 27 connector end 2 solar collector 28 connector end 3 supply point 29 valve 4 return point 30 valve supply rail 31 pump, compressor
6 return rail 32 heat exchanger
7 ribbon conductor 33 connector end
8 hot reservoir 34 connector end
9 heating coil 35 pipe supply pipe 36 pipe 11 return pipe 37 shut-off device 12 pump, compressor 38 shut-off device 13 valve 39 expansion valve 14 valve 40 expansion valve heat exchanger 41 heat pump 16 connector end 42 compressor 17 connector end 43 condensation container 18 pipe 44 expansion valve 19 pipe 45 evaporation container shut-off device 46 heat exchanger 21 shut-off device 47 heat exchanger 22 distribution rail 48 valve 23 distribution rail 49 valve 24 radiator 50 valve cold reservoir 51 valve 26 cooling coil

Claims (32)

CLAIMS:
1. A temperature management system (1;1';1"), the temperature management system (1;1';1") comprising a) a hot reservoir (8;8';8"), b) a cold reservoir (25;25';25"), c) at least one solar collector (2;2';2") or heat exchanger installed outdoors, which is coupled to the hot reservoir (8;8';8") or to the cold reservoir (25;25';25"), for the purpose of heating or cooling the respective reservoir (8;8';8";25;25';25");
d) a heating spiral (9;9';9") in the hot reservoir (8;8';8"), e) a cooling spiral (26;26';26") in the cold reservoir (25;25';25"), f) a first heat transfer medium that circulates in a first circuit through the heating spiral (9;9',9") in the hot reservoir (8;8';8") or through the cooling spiral (26;26';26") in the cold reservoir (25;25';25"), g) valves (13,14;29,30;13',14';29',30';13",14";29",30") which are set so that the first circuit of the at least one solar collector (2;2';2") or heat exchanger installed outdoors for the first heat transfer medium is closed in a daytime operation via the heating spiral (9;9';9") in the hot reservoir (8;8';8") or else in a nighttime operation via the cooling spiral (26;26';26") in the cold reservoir (25;25';25");
h) whereby in the daytime operation, heat is transported from the at least one solar collector (2;2';2") or heat exchanger installed outdoors to the hot reservoir (8;8',8");
i) while in the nighttime operation, heat is transported from the cold reservoir (25;25';25") to the at least one solar collector (2;2';2") or heat exchanger installed outdoors, wherein the first heat transfer medium circulates within the first circuit between the cooling spiral (26;26';26") in the upper area of the cold reservoir (25;25';25") and the at least one solar collector (2;2';2") or heat exchanger installed outdoors;
j) two distributing and collecting manifolds (22,23;22',23';22",23"), between which several radiators (24;24';24") are connected;

k) a heat exchanging spiral (15;15';15") in the upper area of the hot reservoir (8;8';8"), to which the two distributing and collecting manifolds (22,23;22',23';22",23") are connected via a first shut-off device (20,21;20',21';20",21") each;
l) a heat exchanger (32;32';32") in the lower area of the cold reservoir (25;25';25"), to which the two distributing and collecting manifolds (22,23;22',23';22",23") are connected via a second shut-off device (37,38;37',38';37",38") each; and m) a liquid heat transfer medium which circulates in a second circuit through the radiators (24;24';24"), namely ml) through the heat exchanging spiral (15;15';15") in the upper area of the hot reservoir (8;8';8"), if the first shut-off devices (20,21;20',21;20",21") are open and the second shut-off devices (37,38;37',38';37",38") are closed, m2) through the heat exchanger (32;32';32") in the lower area of the cold reservoir (25;25';25"), if the corresponding second shut-off devices (37,38;37',38';37",38") are open and the first shut-off devices (20,21;20',21';20",21") are closed.
2. The temperature management system according to claim 1, characterized in that the hot reservoir is designed as a hot water container.
3. The temperature management system according to claim 1 or 2, characterized in that the cold reservoir is designed as a cold water container.
4. The temperature management system according to claim 3, characterized in that the cold water container is installed underground.
5. The temperature management system according to any one of claims 1 to 4, characterized in that the hot reservoir and the cold reservoir are coupled or are capable of being coupled to the at least one solar collector or heat exchanger for the purpose of heating or cooling the respective water reservoir.
6. The temperature management system according to any one of claims 1 to 5, characterized in that the at least one solar collector or heat exchanger is designed for maximum heat exchange with the environment and is without insulation.
7. The temperature management system according to any one of claims 1 to 6, characterized in that pipes between the at least one solar collector or heat exchanger on the one hand and at least one of the hot reservoir and the cold reservoir on the other hand are thermally insulated.
8. The temperature management system according to any one of claims 1 to 7, characterized in that pipes between the at least one solar collector or heat exchanger on the one hand and at least one of the hot reservoir and the cold reservoir on the other hand form the first circuit in which the first heat transfer medium circulates.
9. The temperature management system according to any one of claims 1 to 8, characterized in that at least one pump, at least one compressor, or at least one pump and at least one compressor are installed in the first circuit for the first heat transfer medium.
10. The temperature management system according to any one of claims 1 to 9, characterized in that at least one expansion valve is installed in the first circuit for the first heat transfer medium.
11. The temperature management system according any one of claims 1 to 10, characterized in that the at least one solar collector or heat exchanger is designed to be compression-proof, for a pressure burden of up to 5 atm or more.

,
12. The temperature management system according to any one of claims 1 to 11, characterized in that at least one of the hot reservoir and the cold reservoir is designed for minimum heat exchange with the environment and is equipped with a thermal insulation.
13. The temperature management system according to any one of claims 1 to 12, characterized in that at least one of the hot reservoir and the cold reservoir is provided with a pressure compensating valve.
14. The temperature management system according to any one of claims 1 to 13, characterized in that at least one of the hot reservoir and the cold reservoir is equipped with at least one of a refilling system and a level regulator.
15. The temperature management system according to any one of claims 1 to 14, characterized in that at least one of the hot reservoir and the cold reservoir is equipped with a temperature regulator.
16. The temperature management system according to claim 1, characterized in that at least one of the hot reservoir and the cold reservoir is equipped with a temperature regulator that operates as a servo component on a pump or a compressor.
17. The temperature management system according to any one of claims 1 to 16, characterized in that the hot reservoir has a heating coil installed in a lower area.
18. The temperature management system according to any one of claims 1 to 17, characterized in that the cold reservoir has a cooling coil installed in an upper area.

. . =
19. The temperature management system according to claim 1, characterized in that flow from a pump or a compressor is directed toward the hot reservoir.
20. The temperature management system according to claim 1, characterized in that flow from a pump or a compressor is directed away from the cold reservoir.
21. The temperature management system according to claim 1, characterized in that it has a heat pump of which the inputs and outputs are coupled with at least one of a heating coil in the hot reservoir, a cooling coil in the cold reservoir, and a supply pipe to and return pipe from the at least one solar collector.
22. The temperature management system according to any one of claims 1 to 21, characterized by an operation in which there is transport of heat from the at least one solar collector or heat exchanger to the hot reservoir.
23. The temperature management system according to any one of claims 1 to 21, characterized by an operation in which there is a transport of heat from the cold reservoir to the at least one solar collector or heat exchanger.
24. The temperature management system according to any one of claims 1 to 21, characterized by an operation in which there is a transport of heat directly from the cold reservoir to the hot reservoir.
25. The temperature management system according to any one of claims 1 to 24, characterized in that one or more radiators are connected to the hot reservoir, via a spiral heat exchanger that is installed in the hot reservoir and through which the liquid heat transfer medium circulates in order to distribute the heat from the hot reservoir to the one or more radiators.
26. The temperature management system according to any one of claims 1 to 24, characterized in that one or more radiators are connected to the cold reservoir, . =

via a spiral heat exchanger which is installed in the cold reservoir and through which the liquid heat transfer medium circulates in order to transport the heat absorbed by the one or more radiators to the cold reservoir.
27. The temperature management system according to any one of claims 1 to 24, characterized in that one or more hot water consumers are connected to the hot reservoir, via a spiral heat exchanger which is installed in the hot reservoir and through which the liquid heat transfer medium circulates in order to distribute heat from the hot reservoir to the one or more hot water consumers.
28. The temperature management system according to any one of claims 1 to 24, characterized in that one or more cold water consumers are connected to the cold reservoir, via a spiral heat exchanger which is installed in the cold reservoir and through which the liquid heat transfer medium circulates in order to direct heat from the one or more cold water consumers to the cold reservoir.
29. The temperature management system according to any one of claims 1 to 28, wherein the first heat transfer medium is a liquid.
30. The temperature management system according to claim 11, wherein the pressure burden is up to 10 atm or more.
31. The temperature management system according to claim 11, wherein the pressure burden is up to 20 atm or more.
32. The temperature management system according to any one of claims 1 to 31, further comprising thermostats for the individual regulation of the flow rate through the radiators.
CA2919554A 2013-07-29 2014-07-29 Temperature management system Active CA2919554C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013012436.0 2013-07-29
DE102013012436 2013-07-29
PCT/IB2014/001404 WO2015015273A1 (en) 2013-07-29 2014-07-29 Temperature management system

Publications (2)

Publication Number Publication Date
CA2919554A1 CA2919554A1 (en) 2015-02-05
CA2919554C true CA2919554C (en) 2022-05-31

Family

ID=49876933

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2919554A Active CA2919554C (en) 2013-07-29 2014-07-29 Temperature management system

Country Status (8)

Country Link
US (1) US20160161130A1 (en)
EP (1) EP3027971B1 (en)
CN (1) CN105452776A (en)
AU (1) AU2014298101B2 (en)
CA (1) CA2919554C (en)
NZ (1) NZ717024A (en)
RU (1) RU2652490C2 (en)
WO (2) WO2015015244A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2015MU01611A (en) * 2015-04-20 2015-05-01 Gunvant Mehta Alpesh
DE102017006460A1 (en) 2017-07-07 2019-01-10 ZLT Lüftungs- und Brandschutztechnik GmbH Method for air-conditioning a building and an apparatus for carrying out the method
EP3748253A1 (en) * 2019-06-04 2020-12-09 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO System and method for energy harvesting
EP3862637A1 (en) * 2020-02-07 2021-08-11 E.ON Sverige AB A thermal storage assembly and a controller configured to control such an assembly

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339629A (en) * 1963-05-20 1967-09-05 Ind Institution International Ground storage means for structure heating and cooling systems
US3965972A (en) * 1974-11-04 1976-06-29 Petersen Ross K Heating and cooling system
US4007776A (en) * 1974-12-23 1977-02-15 Universal Oil Products Company Heating and cooling system utilizing solar energy
US4165036A (en) * 1977-08-29 1979-08-21 Milton Meckler Multi source heat pump air conditioning system
US4182406A (en) * 1978-02-17 1980-01-08 Holbrook Edward M Solar energy system for heating and cooling of buildings utilizing moist air cycles
US4809523A (en) * 1984-05-17 1989-03-07 Vandenberg Leonard B Thermal cooling and heat transfer system
CN2412185Y (en) * 1999-08-02 2000-12-27 严国钟 Solar three-purpose for heating water, air conditioning and cold storage
CN1120339C (en) * 2000-08-18 2003-09-03 徐生恒 Geothermal liquid cold and hot source system
CN2482032Y (en) * 2001-05-30 2002-03-13 北京兖矿宏圣新技术发展有限公司 Solar floor radiation heating, refrigerating and hot-water supply device
CN201476399U (en) * 2009-09-03 2010-05-19 施国庆 Radiation refrigeration device
SK842010A3 (en) * 2010-08-10 2012-03-02 Fkkp, S.R.O. Tempering system
US20150168020A1 (en) * 2012-07-23 2015-06-18 PO Box 32598 Temperature limiter for fluidic systems

Also Published As

Publication number Publication date
WO2015015244A1 (en) 2015-02-05
RU2016107027A (en) 2017-09-04
CA2919554A1 (en) 2015-02-05
AU2014298101A1 (en) 2016-02-25
AU2014298101B2 (en) 2018-02-22
CN105452776A (en) 2016-03-30
NZ717024A (en) 2019-11-29
EP3027971A1 (en) 2016-06-08
RU2652490C2 (en) 2018-04-26
WO2015015273A1 (en) 2015-02-05
EP3027971B1 (en) 2022-03-16
US20160161130A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
US11408614B2 (en) Temperature management system
US7827814B2 (en) Geothermal water heater
US9175865B2 (en) Heat storage system
US7451611B2 (en) Solar air conditioning system
Tagliafico et al. An approach to energy saving assessment of solar assisted heat pumps for swimming pool water heating
JP4936726B2 (en) Geothermal air conditioning system
WO2016197663A1 (en) Hot water heating device having solar energy and off-peak electric heating energy storage and application
US10024550B2 (en) Energy efficient thermally dynamic building design and method
JP2010507066A (en) Dynamic thermal energy storage system
CA2919554C (en) Temperature management system
GB2247072A (en) Heating or cooling system
WO2013026274A1 (en) Superconducting heat transfer cooling and heating apparatus
US11329603B2 (en) Hybrid supplemental solar energy collection and dissipation system with one or more heat pumps
JP2010038507A (en) Heat pump utilizing underground heat reserve
CN104613531B (en) Separate heat pipe panel solar indoor heating system
JP5067958B2 (en) Geothermal heat pump system and water heat pump system
WO2007109899A1 (en) Energy supply system
CN204534802U (en) A kind of phase-change thermal storage coupled solar collection heat storage and heat supply system
JP2007127291A (en) Heat utilizing system
WO2015094102A1 (en) Construction comprising a building structure and a ground-based heat storage
RU128288U1 (en) HEAT PUMP HEAT COOLING SYSTEM
KR102251895B1 (en) Green Energy system with suppling water and geothermal heat
JP2007051528A (en) Water retentive building or detached house
FI124800B (en) Solar heating system in the building
CN118129353A (en) Solar energy distributed clean energy system

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20190306