CA2798780A1 - Shock absorbing shoes with improved assembly and operational performance - Google Patents

Shock absorbing shoes with improved assembly and operational performance Download PDF

Info

Publication number
CA2798780A1
CA2798780A1 CA2798780A CA2798780A CA2798780A1 CA 2798780 A1 CA2798780 A1 CA 2798780A1 CA 2798780 A CA2798780 A CA 2798780A CA 2798780 A CA2798780 A CA 2798780A CA 2798780 A1 CA2798780 A1 CA 2798780A1
Authority
CA
Canada
Prior art keywords
supporting member
shock absorbing
elastic member
backing
guide portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2798780A
Other languages
French (fr)
Other versions
CA2798780C (en
Inventor
Cheol Su Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&B Co Ltd
Original Assignee
A&B Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&B Co Ltd filed Critical A&B Co Ltd
Publication of CA2798780A1 publication Critical patent/CA2798780A1/en
Application granted granted Critical
Publication of CA2798780C publication Critical patent/CA2798780C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/1405Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form
    • A43B7/1415Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot
    • A43B7/144Footwear with health or hygienic arrangements with foot-supporting parts with pads or holes on one or more locations, or having an anatomical or curved form characterised by the location under the foot situated under the heel, i.e. the calcaneus bone
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B21/00Heels; Top-pieces or top-lifts
    • A43B21/24Heels; Top-pieces or top-lifts characterised by the constructive form
    • A43B21/30Heels with metal springs
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/181Resiliency achieved by the structure of the sole
    • A43B13/182Helicoidal springs
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/181Resiliency achieved by the structure of the sole
    • A43B13/183Leaf springs

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

The present invention relates to shock absorbing shoes with improved assembly and operational performance. More specifically, there is provided a shock absorbing shoe comprising: an outer sole; an upper sole which is arranged on top of the outer sole and has a guide portion; a backing member which includes a first backing body connected to the outer sole, and a second backing body that is connected to the upper sole and has a guidance element corresponding the guide portion; an elastic member arranged between the first backing body and the second backing body of the backing member; and a supporting member connected to the first and second backing bodies of the backing member, the supporting member being movable upward and downward through the guide portion and the guidance element of the second backing body. According to the shock absorbing shoes with improved assembly and operational performance, the supporting member serves in particular to prevent the separation and isolation of the elastic member to thus improve durability of the shock absorbing shoe; and when the supporting member makes a relative movement (i.e. the upward and downward movements) at the time of the compression and restitution following the compression of the elastic member during walking, the guide portion of the upper sole as well as the guidance element of the second backing body receive and guide the relative movement of the supporting member, thereby ensuring operational reliability of the elastic member and the supporting member, respectively. Further, coupling the elastic member and the supporting member that secures the elastic member from both top and bottom sides can be achieved easily and conveniently by means of the supporting member, which in turn results in easier assembly, shortened assembly time and increased productivity, compared to those conventional shock absorbing shoes. Moreover, since all components can be taken apart easily by disassembling the supporting member only, the maintenance work can be facilitated and the work efficiency can be enhanced.

Description

[DESCRIPTION]

[Invention Title]

SHOCK ABSORBING SHOES WITH IMPROVED ASSEMBLY AND
OPERATIONAL PERFORMANCE

[Technical Field]

The present invention relates to a shock absorbing shoe with improved assembly and operational performance, which is provided with a supporting member capable of preventing the removal or separation of an elastic member, thereby improving durability of the shock absorbing shoe, and in which an upper sole and a second support body of a support unit are provided with a guide portion and a guide part, respectively, so that when the elastic member is compressed and reverts back to its original shape after being compressed and the supporting member moves upward and downward during walking, it is possible to guide the movement of the supporting member, thereby realizing improved operational reliability of both the elastic member and the supporting member, and in which the elastic member and the support unit that supports the upper and lower ends of the elastic member can be easily and simply assembled thanks to the supporting member so that the shock absorbing shoe of the present invention can be easily assembled and can reduce the shoe assembling time in comparison with conventional shock i absorbing shoes, thereby increasing the productivity, and of which respective elements can be easily disassembled by disassembling only the supporting member so that the shoe of the present invention can be easily repaired and maintained, thereby improving work efficiency.

[Background Art) Generally, shoes function to protect the feet of a user and to absorb shocks, thereby providing the feet with relief from fatigue. In recent years, a variety of functional shoes that have such foot protecting and shock absorbing functions have been proposed.

Particularly, in shock absorbing shoes that have the specific function of absorbing shock, coil springs are assembled in various manners in an effort to realize easy repair and easy maintenance of the coil springs that are elastically deformed in order to absorb shocks.

In the prior art, to assemble a coil spring in a shock absorbing shoe, the coil spring may be embedded in the heel of the shoe or may be assembled in the shoe using a support unit and a bolt or may be assembled to the support unit by inserting the coil spring into the support unit.

However, the above-mentioned conventional manners for assembling the coil springs in the shock absorbing shoes cannot reliably support the coil springs.
Further, when the coil springs of the conventional shock absorbing shoes are loaded and compressed, the turns of each coil spring may come into contact with each other so that the coil springs may be broken by shocks.

The broken coil springs of the shoes must be repaired or replaced by new springs, thereby imposing a financial burden on users.

Further, due to the above-mentioned coil springs, the conventional shock absorbing shoes cannot realize reliability and cannot appeal to consumers.

[Disclosure]
[Technical Problem]

Accordingly, the present invention has been made keeping in mind the above problems occurring in the related art, and is intended to provide a shock absorbing shoe with improved assembly and operational performance, in which a supporting member is provided to prevent removal or separation of an elastic member, thereby improving durability of the shock absorbing shoe, a guide portion and a guide part are provided in an upper sole and a second support body of a support unit, respectively, so that when the elastic member is compressed and reverts back to its original shape after being compressed and the supporting member moves upward and downward during walking, it is possible to guide the movement of the supporting member, thereby realizing improved operational reliability of both the elastic member and the supporting member, the elastic member and the support unit that supports the upper and lower ends of the elastic member can be easily and simply assembled by the supporting member so that the shock absorbing shoe of the present invention can be easily assembled and can reduce the shoe assembly time in comparison with conventional shock absorbing shoes, thereby increasing productivity, and respective elements can be easily disassembled by disassembling only the supporting member so that the shoe of the present invention can be easily repaired and maintained, thereby improving work efficiency.

Further, the present invention provides a shock absorbing shoe with improved assembly and operational performance, in which a holding means is provided both in a first holding body that is combined with the first support body of the support unit and in the lower end of the supporting member so that the present invention can prevent the supporting member from being released or loosened by vibrations or shocks that are applied to the shoe while walking, thereby improving reliability of the product, and respective elements can be easily and simply assembled and disassembled by the holding means so that productivity and work efficiency of the present invention are improved during a process of assembling or disassembling the elements.

Further, the present invention provides a shock absorbing shoe with improved assembly and operational performance, in which a stopping means is provided both in the second holding body that is combined with the second support body of the support unit and in the upper end of the supporting member so that the present invention can prevent the second holding body and the supporting member from being unexpectedly separated from each other during upward and downward movement of the supporting member, thereby allowing a user to safely use the shoe.

[Technical Solution]

In an aspect, the present invention provides a shock absorbing shoe with improved assembly and operational performance, including: an outsole; an upper sole arranged on the outsole and having a guide portion; a support unit including: a first support body connected to the outsole; and a second support body connected to the upper sole and having a guide part corresponding to the guide portion; an elastic member arranged between the first and second support bodies of the support unit; and a supporting member connected to the first and second support bodies of the support unit, the supporting member being movable upward and downward along the guide portion and the guide part of the second support body.

In the present invention, the first and second support bodies of the support unit may include first and second holding bodies that are connected to the elastic member, and the first holding body and the supporting member may be provided with a holding means.

Further, in the present invention, the holding means may include: a seat groove formed in a lower surface of the first holding body; an insert hole formed in a lower end of the supporting member so as to correspond to the seat groove; and a locking pin inserted through the insert hole and seated in the seat groove.

Further, in the present invention, the second holding body may be provided with a corresponding guide part that corresponds to the guide part of the second support body, and the corresponding guide part of the second holding body and the supporting member may be provided with a stopping means.

[Advantageous Effects]

As described above, the shock absorbing shoe with improved assembly and operational performance according to the present invention is advantageous in that it has a supporting member capable of preventing removal or separation of the elastic member so that the present invention can realize a shock absorbing shoe that has improved durability.

Further, the guide portion and the guide part are provided in the upper sole and the second support body of the support unit, respectively, so that when the elastic member is compressed and reverts back to its original shape after being compressed and the supporting member moves upward and downward during walking, the present invention can guide the movement of the supporting member, thereby realizing improved operational reliability of both the elastic member and the supporting member.

Further, the elastic member and the support unit that supports the upper and lower ends of the elastic member can be easily and simply assembled by the supporting member so that the present invention can easily assemble the shoe and can reduce the shoe assembly time in comparison with conventional shock absorbing shoes, thereby increasing productivity.

Further, respective elements of the present invention can be easily disassembled by disassembling only the supporting member, thereby easily repairing and maintaining the shoe and, accordingly, improving work efficiency.

Further, in the present invention, the holding means is provided both in the first holding body that is combined with the first support body of the support unit and in the lower end of the supporting member, thereby preventing the supporting member from being released or loosened by vibrations or shocks that are applied to the shoe while walking and, accordingly, improving reliability of the product.

Further, the respective elements of the present invention can be easily and simply assembled and disassembled by the holding means, thereby improving productivity and work efficiency during a process of assembling or disassembling the elements.

Further, in the present invention, the stopping means is provided both in the second holding body that is combined with the second support body of the support unit and in the upper end of the supporting member so that the present invention can prevent the second holding body and the supporting member from being unexpectedly separated from each other during upward and downward movement of the supporting member, thereby allowing a user to safely use the shoe.

[Description of Drawings]

Fig. 1 is a perspective view illustrating a shock absorbing shoe with improved assembly and operational performance according to the present invention;

Fig. 2 is an exploded perspective view illustrating the shock absorbing shoe with improved assembly and operational performance according to the present invention;

Fig. 3 is a sectional view illustrating the shock absorbing shoe according to the present invention;
Fig. 4 is a side view illustrating the shock absorbing shoe according to the present invention;

Fig. 5 is a side view illustrating holding bodies, an elastic member and a supporting member of the shock absorbing shoe according to the present invention;

Fig. 6 is an exploded perspective view illustrating a holding means and a stopping means of the shock absorbing shoe according to the present invention; and Fig. 7 is an exploded perspective view illustrating a modification of the holding means of the shock absorbing shoe according to the present invention.

**Description of reference characters of important parts**
10: outsole 11: stud 20: upper sole 21: guide portion 30: support unit 30A: first support body 30B: second support body 31: depressed seat 32: annular protrusion 33: guide part 35: first holding body 35a: seat groove 35b: through hole 35f: internal thread 36: protruding spacer part 37: second holding body 37a: corresponding guide part 37b: stopper 35c, 37c: fitting protrusion 35d, 37d: rim 35e, 37e: seat depression 35f: internal thread 37f: shank passing hole 40: elastic member 41: coil spring 50: supporting member 51: head 53: shank 55: locking part 55a: insert hole 55b: external thread 60: locking pin FM: holding means SP: stopping means SB: shoe body [Best Mode]

Hereinbelow, a shock absorbing shoe with improved assembly and operational performance according to the present invention will be described in detail with reference to the accompanying drawings.

As shown in Figs. 1 through 7, the shock absorbing shoe with improved assembly and operational performance according to the present invention includes:

an outsole 10; an upper sole 20 which is arranged on top of the outsole 10 and has a guide portion 21; a support unit 30 which includes a first support body 30A that is connected to the outsole 10, and a second support body 30B that is connected to the upper sole 20 and has a guide part 33 corresponding to the guide portion 21; an elastic member 40 which is arranged between the first and second support bodies 30A and 30B of the support unit 30; and a supporting member 50 which is connected to the first and second support bodies 30A and 30B of the support unit 30 and moves upward and downward through both the guide portion 21 and the guide part 33 of the second support body 30B.

As shown in Figs. 1 through 4, in the shock absorbing shoe with improved assembly performance and improved operational performance according to the present invention, the outsole 10 is configured as follows.

The upper surface of the outsole 10 is firmly bonded to the lower surface of the first support body 30A of the support unit 30 using a bonding agent or a strong adhesive. This outsole 10 makes direct contact with the ground surface.

Here, the lower surface of the outsole 10 is a part that comes into direct contact with the ground surface so that, in order to absorb shocks and prevent slipping when the lower surface of the outsole is brought into contact with the ground surface. For this reason, it is preferred that the outsole be formed using an elastic material, such as elastomer, polyurethane or rubber.

Further, in order to improve the shock absorbing and slip prevention function, the outsole 10 is configured as follows using the above-mentioned elastic material.

That is, studs 11 are formed on the lower surface of the outsole in such a way that a plurality of protrusions or a plurality of prominences and depressions are formed on the lower surface of the outsole. Accordingly, the outsole has an improved shock absorbing function and an improved slip preventing function.

Further, the outsole 10 has an integrated structure in which the front sole and the heel of the outsole are integrated into a single structure.

The above-mentioned integrated structure of the outsole 10 can solve the problem that has been experienced with a separated outsole in which the front sole becomes separated from the heel so that a user may fall over a stone or a protruding object while walking.

Further, a stone or a protruding object may insert itself between the front sole and the heel of the separated outsole so that the stone or the protruding object causes the user discomfort while walking. However, the integrated structure of the outsole 10 of the present invention can solve the above-mentioned problem.

As shown in Figs. 1 through 4, in the shock absorbing shoe with improved assembly and operational performance according to the present invention, the upper sole 20 is configured as follows.

The upper sole is arranged on top of the outsole 10. The lower surface of the upper sole is firmly bonded to the upper surface of the second support body 30B of the support unit 30 using a bonding agent or a strong adhesive so that the sole of a user or an insole is laid on the upper surface of the upper sole.

Further, a shoe body SB is connected to the top of the upper sole 20 and covers the instep of the user, thereby safely protecting the instep of the user when the user walks or exercises.

In the upper sole 20 of the present invention, four guide portions 21 having a grooved shape are formed at four locations of a heel part at which four elastic members 40 are arranged.

Each of the four guide portions 21 is arranged inside an associated elastic member 40 so that, when the supporting member 50 that is combined with the first and second support bodies 30A and 30B of the support unit 30 moves upward and downward, the guide portion 21 functions to guide the upper portion of the supporting member 50.

In other words, when the user walks and the elastic member 40 is repeatedly compressed and reverts back to its original shape after being compressed, the guide portion 21 can guide the movement of the supporting member 50 that moves upward and downward relative to the elastic member 40, thereby realizing improved operational reliability of the supporting member 50.

As shown in Figs. 1 through 6, in the shock absorbing shoe with improved assembly and operational performance according to the present invention, the support unit 30 is configured as follows.

The support unit 30 is mounted to the upper surface of the outsole 10 and to the lower surface of the upper sole 20 and is combined with the elastic member 40, thereby supporting the elastic member 40 at a desired location.

The support unit 30 of the present invention includes the first and second support bodies 30A and 30B.

The first support body 30A is held in the upper surface of the outsole 10. The second support body 30B is held in the lower surface of the upper sole 20.

Further, the guide part 33 having a hole shape is formed in the second support body 30B so that the guide part 33 corresponds to the guide portion 21 of the upper sole 20.

When the supporting member 50 moves upward and downward, the guide part 33 guides the movement of the supporting member 50, thereby realizing the improved operational reliability of the supporting member 50.

Further, in each of the first and second support bodies 30A and 30B, the annular protrusions 32 are formed at locations at which the elastic members 40 are arranged. A depressed seat 31 is formed inside each of the annular protrusions 32 so as to hold the elastic member 40 therein.

Further, in the support unit 30 of the present invention, first and second holding bodies 35 and 37 having a disc shape are mounted to the depressed seats 31 of the first and second support bodies 30A and 30B by fitting or bonding.

The first holding body 35 is combined with the lower end of the elastic member 40 and the second holding body 37 is combined with the upper end of the elastic member 40.

Respective annular rims 35d and 37d are formed along the edges of the first and second holding bodies 35 and 37, and respective seat depressions 35e and 37e are formed inside the rims 35d and 37d.

Further, fitting protrusions 35c and 37c are formed in the centers of the respective seat depressions 35e and 37e so that the elastic member 40 can be held by the first and second holding bodies 35 and 37 as follows.

When the opposite ends of the elastic member 40 are fitted into the respective seat depressions 35e and 37e, the outer circumferential surfaces of the opposite ends of the elastic member 40 come into contact with the inner circumferential surfaces of the rims 35d 37d.

Further, the inner circumferential surfaces of the opposite ends of the elastic member 40 come into contact with the outer circumferential surfaces of the fitting protrusions 35c and 37c. Accordingly, the upper and lower ends of the elastic member 40 can be firmly held by the rims 35d and 37d, the seat depressions 35e and 37e, and the fitting protrusions 35c and 37c so that it is possible to prevent the elements from being removed or separated from each other.

Here, the elastic member 40 may be combined with the first and second holding bodies 35 and 37 through fitting or bonding.

However, to realize easy assembly of the elements based on the structural characteristics of the first and second holding bodies 35 and 37, it is preferred that the elastic member 40 be fitted into the first and second holding bodies 35 and 37.

Further, a protruding spacer part 36 is formed on the lower surface of the fitting protrusion 37c of the second holding body 37 so that, when the elastic member 40 is compressed, the lower surface of the protruding spacer part 36 comes into contact with the upper surface of the first holding body 35.

The protruding spacer part 36 in the above state can space the first and second holding bodies 35 and 37 away from each other by a predetermined gap so that it is possible to prevent the turns of a coil spring 41 that is used as the elastic member 40 from coming into contact with each other or from striking each other when the user walks, thereby preventing the elastic member 40 from being broken by shocks.

In Figs. 2, 3 and 6, the protruding spacer part 36 is formed on the lower surface of the fitting protrusion 37c of the second holding body 37.

However, it should be understood that although it is not shown in the accompanying drawings, the protruding spacer part 36 may be formed on the upper surface of the fitting protrusion 35c of the first holding body 35 so that, when the elastic member is compressed, the protruding spacer part 36 comes into contact with the lower surface of the fitting protrusion of the second holding body 37 and spaces the first and second holding bodies 35 and 37 away from each other by a predetermined gap, thereby performing the same operational function as that described above.

Further, the second holding body 37 has a corresponding guide part 37a, which is formed in the second holding body 37 in such a way that the corresponding guide part 37a is defined inside the protruding spacer part 36 of the second holding body 37.

In other words, the corresponding guide part 37a is formed inside the protruding spacer part 36 so as to correspond to the guide part 33 of the second support body 30B so that, when the supporting member 50 moves upward and downward, the corresponding guide part 37a can guide the movement of the supporting member 50, thereby realizing improved operational reliability of the supporting member 50.

Here, the guide portion 21 of the upper sole 20, the guide part 33 of the second support body 30B and the corresponding guide part 37a of the second holding body 37 communicate with each other so that the supporting member 50 can move upward and downward thanks to the above-mentioned elements which are all in communication with each other.

In the above state, the guide portion 21, the guide part 33 and the corresponding guide part 37a allow the supporting member 50 to reliably move without interfering with the other elements.

As shown in Figs. 1 through 6, in the shock absorbing shoe with improved assembly and operational performance according to the present invention, the configuration of the elastic member 40 is as follows.

The elastic member is placed between the first and second support bodies 30A and 30B of the support unit 30 so that the elastic element can absorb and attenuate shocks that are applied to the heel of the user when the user walks, thereby relieving the feet of the user from fatigue and allowing the user to walk in comfort.

Here, a coil spring 41 is used as the elastic member 40 of the present invention, in which the lower and upper ends of the coil spring 41 are combined with the first and second holding bodies 35 and 37, respectively.

In the above state, the coil spring 41 is firmly held by the inner circumferential surfaces of the rims 35d and 37d of the respective holding bodies 35 and 37, and by the seat depressions 35e and 37e, and by the fitting protrusions 35c and 37c.

Accordingly, when a user wearing the shoes having the coil springs 41 walks, exercises or is working, the coil springs perform their functions as follows.

When a load formed by the weight of the user is applied to the ground surface through the shoes, a reactive shock is applied upward from the ground surface to the user. In the above state, the coil springs 41 elastically absorb and attenuate the shock.

Accordingly, even when the user continuously walks, exercises or is working for a lengthy period of time, the coil springs can efficiently absorb and attenuate the shocks that are applied to the feet and body of the user, thereby relieving the feet and the body from fatigue and realizing the healthful function of the shoes and allowing the user to feel comfortable.

Further, it is preferred that the coil springs 41 have a square cross-section.

When the coil springs 41 are compressed by the load of the user, the coil springs that are arranged in the shoe may strike each other.

Here, when coil springs 41 having a circular cross-section are used, the outer circumferential surfaces of the coil springs 41 may come into contact with each other, so that their striking each other may cause them to easily break.

However, when the coil springs 41 having a square cross-section are used in the shoe and are compressed by the load, the springs 41 come into contact with each other along the flat surfaces thereof, thereby minimizing the breakage of the springs even should the springs strike each other.

As shown in Figs. 1 through 6, in the shock absorbing shoe with improved assembly and operational performance according to the present invention, the supporting member 50 is configured as follows.

The supporting member is connected to the first and second support bodies 30A and 30B of the support unit 30 at a location between the two support bodies so that, when the elastic member 40 repeats elastic deformation when the user walks, the supporting member can prevent removal or separation of the elastic member 40.

In other words, the supporting member 50 of the present invention is coupled to the first and second holding bodies 35 and 37 that are combined with the first and second support bodies 30A and 30B, respectively.

In the above state, the lower end of the supporting member 50 is combined with the first holding body 35.

The upper end of the supporting member 50 is combined with the second holding body 37 so that the supporting member can repeatedly move upward and downward when the user walks.

Described in detail, the supporting member 50 includes a head 51 that is formed in the upper end of the supporting member, a shank 53 that extends downward from the lower surface of the head 51, and a locking part 55 that is formed in the lower end of the shank 53.

Here, the locking part 55 is connected to the first holding body 35 by a holding means FM.

The head 51 is seated in the corresponding guide part 37a of the second holding body 37 so that, when the elastic member 40 performs an elastic action, the head 51 can prevent the removal or separation of the supporting member 50 from the second holding body 37. In the above state, the head 51 cooperates with a stopping means SP.

The construction for combining the supporting member 50 and the first holding body 35 with each other using the holding means FM will be described hereinbelow with reference to Figs.
2 through 6.

A through hole 35b is formed through the center of the first holding body 35.

Further, seat grooves 35a are symmetrically formed in the lower surface of the first holding body on opposite sides of the through hole 35b.

Further, an insert hole 55a is formed in the locking part 55 that is provided in the lower end of the supporting member 50.

Further, a locking pin 60 is provided. To combine the supporting member and the first holding body with each other, the locking pin 60 is inserted into the insert hole 55a after the supporting member 50 is inserted into the through hole 35b.
Thereafter, the locking pin 60 is seated in the seat grooves 35a.

When the lower end of the supporting member 50 is combined with the first holding body 35, the holding means FM performs the following function.

The holding means FM can more easily and efficiently combine the supporting member 50 and the first holding body 35 with each other.

Further, the assembled holding means can prevent the supporting member 50 and the first holding body 35 from being released from each other by vibrations or shocks that may be applied both to the supporting member and to the first holding body when a user wearing the shoes walks.

To realize the above-mentioned function of the holding means FM, the locking pin 60 of the holding means FM is seated in the seat grooves 35a of the first holding body 35 after the locking pin 60 has been inserted into the insert hole 55a of the supporting member 50 so that the locking pin 60 can hold and prevent rotation of the supporting member 50 irrespective of vibrations or shocks that are applied to the supporting member.

Fig. 7 illustrates a modification of the holding means FM.
In the modification, an internal thread 35f is formed on the inner circumferential surface of the through hole 35b of the first holding body 35, and an external thread 55b is formed around the outer circumferential surface of the locking part 55 of the supporting member 50 so that the supporting member 50 can be tightened to the holding body 35 by rotating the supporting member relative to the holding body.

In the above state, it is preferred that the upper surface of the head 51 of the supporting member 50 be recessed to form a straight recess, a cross recess or a combined recess so that the supporting member and the first holding body can be easily assembled and disassembled using a tool.

Hereinbelow, the structure for combining the supporting member 50 with the second holding body 37 using the stopping means SP will be described with reference to Figs. 2 through 7.

A stopper 37b is formed in the lower part of the corresponding guide part 37a of the second holding body 37.

That is, the stopper 37b is formed on the lower surface of the protruding spacer part 36 of the second holding body 37.

Further, a shank passing hole 37f is formed through the center of the protruding spacer part 36. Here, the diameter of the shank passing hole 37f is less than inner diameter of the corresponding guide part 37a but is greater than that of the shank 53.

The stopper 37b is formed in the shape of a step at an area around the shank passing hole 37f.

Accordingly, when the shank 53 of the supporting member 50 passes through the shank passing hole 37f, the shank 53 can move through the shank passing hole 37f when the elastic member 40 is compressed and reverts back to its original shape after yI ~

having been compressed.

Further, when the elastic member 40 fully extends and completely reverts back to its original shape, the head 51 that is connected to the upper end of the shank 53 of the supporting member 50 can be caught and held by the stopper 37b.

Therefore, it is possible to prevent removal or separation of the supporting member 50 from the second holding body 37.
Although the shock absorbing shoe with improved assembly and operational performance of the present invention has been disclosed based on specific shapes and directions in the above description, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (4)

  1. [Claim 1]

    A shock absorbing shoe with improved assembly and operational performance, comprising:

    an outsole;

    an upper sole arranged on the outsole and having a guide portion;

    a support unit including:

    a first support body connected to the outsole; and a second support body connected to the upper sole and having a guide part corresponding to the guide portion;

    an elastic member arranged between the first and second support bodies of the support unit; and a supporting member connected to the first and second support bodies of the support unit, the supporting member being movable upward and downward along the guide portion and the guide part of the second support body.
  2. [Claim 2]

    The shock absorbing shoe with improved assembly and operational performance as set forth in claim 1, wherein the first and second support bodies of the support unit include first and second holding bodies that are connected to the elastic member, and the first holding body and the supporting member are provided with a holding means.
  3. [Claim 3]

    The shock absorbing shoe with improved assembly and operational performance as set forth in claim 2, wherein the holding means comprises:

    a seat groove formed in a lower surface of the first holding body;

    an insert hole formed in a lower end of the supporting member so as to correspond to the seat groove; and a locking pin inserted through the insert hole and seated in the seat groove.
  4. [Claim 4]

    The shock absorbing shoe with improved assembly and operational performance as set forth in claim 2 or 3, wherein the second holding body is provided with a corresponding guide part that corresponds to the guide part of the second support body, and the corresponding guide part of the second holding body and the supporting member are provided with a stopping means.
CA2798780A 2010-05-27 2011-05-20 Shock absorbing shoes with improved assembly and operational performance Expired - Fee Related CA2798780C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2010-0049597 2010-05-27
KR1020100049597A KR101034656B1 (en) 2010-05-27 2010-05-27 Shoe for protecting shock
PCT/KR2011/003729 WO2011149218A2 (en) 2010-05-27 2011-05-20 Shock absorbing shoes with improved assembly and operational performance

Publications (2)

Publication Number Publication Date
CA2798780A1 true CA2798780A1 (en) 2011-12-01
CA2798780C CA2798780C (en) 2016-08-09

Family

ID=44366039

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2798780A Expired - Fee Related CA2798780C (en) 2010-05-27 2011-05-20 Shock absorbing shoes with improved assembly and operational performance

Country Status (8)

Country Link
US (1) US20130055593A1 (en)
EP (1) EP2578101B1 (en)
JP (1) JP5481601B2 (en)
KR (1) KR101034656B1 (en)
CN (1) CN102939024B (en)
CA (1) CA2798780C (en)
RU (1) RU2520007C1 (en)
WO (1) WO2011149218A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101217094B1 (en) * 2011-06-14 2012-12-31 이철장 Shoes for shock absorbing
KR101246053B1 (en) 2011-09-01 2013-03-21 김준희 Shock absorption for elasticity absence and elasticity absence a built-in shoe sole
JP5684319B2 (en) * 2013-04-18 2015-03-11 美津濃株式会社 Sole sole structure
US20150013191A1 (en) * 2013-07-15 2015-01-15 B&B Technologies L.P. Quick Change Shock Mitigation Outsole Insert with Debris Shield
US10959487B2 (en) * 2013-07-15 2021-03-30 B&B Technologies L.P. Quick change shock mitigation outsole insert with energy harvester
US20150047224A1 (en) * 2013-08-16 2015-02-19 Jing Zhao Shoe having carbon fiber composite spring soles and upper support
EP3253246B1 (en) * 2015-02-04 2020-06-17 NIKE Innovate C.V. Support structures for an article of footwear and methods of manufacturing support structures
JP6544037B2 (en) * 2015-05-18 2019-07-17 株式会社リコー Power generation element unit and power generation apparatus
WO2017079254A1 (en) * 2015-11-03 2017-05-11 Nike Innovate C.V. Article of footwear including a bladder element having a cushioning component with a single central opening and a cushioning component with multiple connecting features and method of manufacturing
KR101965401B1 (en) 2018-09-13 2019-04-03 김기연 Shock-absorbing shoe using spring
USD975985S1 (en) * 2021-10-01 2023-01-24 Nike, Inc. Shoe
KR102421694B1 (en) 2022-02-16 2022-07-15 김기연 Shock-absorbing shoe using spring
KR102491791B1 (en) 2022-02-18 2023-01-26 구남서 Sole system of leaf spring type with selective function for elasticity

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1261488A (en) * 1917-11-17 1918-04-02 Frank Cerar Resilient shoe-heel.
GB892940A (en) * 1959-12-08 1962-04-04 Andre Verger Improvements relating to shoe heels
US3764154A (en) * 1970-06-15 1973-10-09 G Witting Safety ski binding
SU1169599A1 (en) * 1981-07-02 1985-07-30 Pyatnitskij Igor Shoe for walking on hard surface
KR880001084Y1 (en) * 1985-09-24 1988-03-25 황세연 Resilient heels
US5502901A (en) * 1991-05-07 1996-04-02 Brown; Jeffrey W. Shock reducing footwear and method of manufacture
US5435079A (en) 1993-12-20 1995-07-25 Gallegos; Alvaro Z. Spring athletic shoe
JPH08107802A (en) * 1994-09-29 1996-04-30 Kolon Internatl Corp Cushion device of sole of shoe
GB2296176B (en) * 1994-12-22 1998-06-24 Cornwell Components Manufactur Heel top pieces
CN2262819Y (en) * 1996-11-18 1997-09-24 温绍良 Spring shock-absorbing device of shoes body
US5832629A (en) * 1996-12-03 1998-11-10 Wen; Jack Shock-absorbing device for footwear
IT238176Y1 (en) * 1997-02-27 2000-10-16 Sancisi Giancarlo CUSHIONING SOLE FOR FOOTWEAR
CN2299491Y (en) * 1997-10-16 1998-12-09 陈汉波 Ventilated shoes
FR2802780B1 (en) * 1999-12-23 2002-06-07 Emile Barbier Ets SHOE HEEL
KR200208464Y1 (en) * 2000-07-10 2001-01-15 이상훈 Cushion shoes
US7082698B2 (en) * 2003-01-08 2006-08-01 Nike, Inc. Article of footwear having a sole structure with adjustable characteristics
WO2004068987A1 (en) * 2003-02-07 2004-08-19 Cheol Su Park Shock absorbing shoe
DE20312215U1 (en) * 2003-08-04 2003-12-18 Gellrich, Martin, Dr. Spring sole and spring heel for long distance running shoe has sets of coil springs connecting outer sole to inner sole and has movement limiters inside coils of springs
WO2006014046A1 (en) * 2004-08-04 2006-02-09 Jong-Sik Kim Footwear
CN2778029Y (en) * 2005-04-11 2006-05-10 李超建 Ventilating, dehumidifying and thermal-insulating shoes with vibration damping and decompression function
KR200398724Y1 (en) 2005-05-20 2005-10-17 송종규 Sock absorber Sole of the Rolling Shoes
RU70443U1 (en) * 2006-04-06 2008-01-27 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Российский заочный институт текстильной и легкой промышленности (ГОУ ВПО "РосЗИТЛП") HEEL WITH NONLINEAR SHOCK ABSORBER
WO2009064286A1 (en) * 2007-11-13 2009-05-22 Insightful Products Multiple leaf spring assembly for foot support, and footwear and brace using same
ES1069112Y (en) * 2008-11-10 2009-05-01 Roldan Pascual Soria CUSHIONED FOOTWEAR HEEL COVER
CN201308149Y (en) * 2008-12-11 2009-09-16 陈启贤 Dry and comfortable ventilating shoe

Also Published As

Publication number Publication date
KR101034656B1 (en) 2011-05-16
EP2578101B1 (en) 2019-09-18
CN102939024A (en) 2013-02-20
JP5481601B2 (en) 2014-04-23
EP2578101A2 (en) 2013-04-10
CA2798780C (en) 2016-08-09
EP2578101A4 (en) 2016-03-16
RU2520007C1 (en) 2014-06-20
WO2011149218A2 (en) 2011-12-01
CN102939024B (en) 2013-11-13
WO2011149218A3 (en) 2012-05-03
US20130055593A1 (en) 2013-03-07
JP2013526973A (en) 2013-06-27

Similar Documents

Publication Publication Date Title
CA2798780C (en) Shock absorbing shoes with improved assembly and operational performance
US9538809B2 (en) Shock absorbing shoes with improved assembly and operational performance
JP5008995B2 (en) Walking correction sole
US20120137541A1 (en) Shock absorbing unit, sole and shoe having the same
US20140101972A1 (en) Shock absorbing shoes with triangle shock absorbing space
KR101166466B1 (en) Durability shoes for absorbing sock
KR101020012B1 (en) Functional footwear
KR101319821B1 (en) Shoe sole
KR101166572B1 (en) Shoe sole
KR101217094B1 (en) Shoes for shock absorbing
KR20110030854A (en) Shoe for protecting shock
KR20120063413A (en) Impact absorbing member, sole and shoe having the same
KR100978122B1 (en) Cushion shoes
KR20070060634A (en) Shoes having multiple springs
KR20120063417A (en) Impact absorbing member, sole and shoe having the same
KR20100011831U (en) Assistance shoes heel
KR101451377B1 (en) Shoes having shock absorb function
KR20120003743U (en) Flat spring jumping shoes
KR102421694B1 (en) Shock-absorbing shoe using spring
JPH0420606B2 (en)
KR101464643B1 (en) Shock absorbing shoes with a triangle shock absorbing space
KR101222850B1 (en) The shoes having a heel having the other elastic force and exchang
KR102024770B1 (en) Bottom of shoe having trampoline structure and shoe having the same
KR20110065107A (en) Shoe for protecting shock
KR200412048Y1 (en) Attrition Preventive Device for Foot Wear Heel

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20121106

MKLA Lapsed

Effective date: 20220520